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Theory 

To enable the calculation of axial standard deviations, each dispersal process is modelled as a 
bivariate normal distribution with a mean of (0, 0) and rotational symmetry, allowing both axial 
standard deviations to be equivalent. Under these assumptions, the following procedure 
derives axial standard deviations from the distributions of separation distances for each kinship 
category: 

1. For each separation distance between kin, assign a random angle of rotation. Applied 
aggregatively, this removes any directional sampling biases in the data while projecting 
the distances onto a polar coordinate system. 

2. Convert the distances to one-dimensional vectors by multiplying each distance by the 
cosine of its rotation angle. For a polar coordinate system, this flattens the available 
distance information to a one-dimensional distribution centred around zero – an axial 
distribution.  

3. Calculate the standard deviation of the resulting distribution. 

4.  For statistical inference by bootstrapping, apply the above steps to 1,000 subsamples 
produced by resampling with replacement from within the kinship category, with angles 
randomised in each subsample. The average of the resulting 1,000 standard deviations 
is an estimate of the axial standard deviation, while the 2.5% and 97.5% quantiles of the 
distribution define 95% confidence intervals for the estimate. 

5.  For Parent-Offspring inference, use equation 3 (main text) to derive an estimate from 
axial standard deviations of the other categories, bootstrapping on final P-O estimates.  
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Code 

 

Dependencies 

The code to calculate axial deviations depends on the dplyr package                                  
https://cran.r-project.org/web/packages/dplyr/index.html 

 

Data setup 

To run the following code, pairwise kinship and distance data must be set up as a dataframe, 
with each row corresponding to a separate pairwise comparison between two individuals. 

A variety of fields could prove useful in this frame, but typically will at least include Loiselle’s 
kinship (k), genetic distance, and geographical distance (in this example, the $meters field). 

During kinship filtering, this main dataframe has been split into several smaller kinship groups 
(dataframes) labelled fullsibs, halfsibs, and cousins. Each dataframe contains all pairwise 
comparisons classified under that kinship grouping. 

  

https://cran.r-project.org/web/packages/dplyr/index.html
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Axial Distance Functions 

 

The first function, axialdist, takes a distribution of distances and calculates an axial standard 
deviation with random angles from it (no replicates, unless specified). This corresponds to steps 
1 – 3 in the paper. 

axialdist <- function(datasource, nrep=1){ 
  container <- matrix(nrow = dim(datasource)[1], ncol = nrep) 
  for(n in 1:ncol(container)){  
    rand <- runif(dim(datasource)[1], min=0, max=2*pi)  
    for(m in 1:dim(datasource)[1]) {  
      container[m, n] <- datasource[m,]$meters*cos(rand[m])  
    } 
  } 
  sd1 <- apply(container, 2, sd)  
  return(sd1) 
} 

 

The second function, quantax, applies the first to 1,000 samplings of a kinship group and 
returns the quantiles, including those required for 95% confidence interval. 

quantax <- function(datasource){ 
  return(quantile(replicate(1000, axialdist(sample_n(datasource, size=
dim(datasource)[1], rep = TRUE))[1]), c(0.025, 0.25, 0.5, 0.75, 0.975)
)) 
} 

 

The third function, po_quantile, returns quantiles for parent-offspring axial standard deviation, 
including those required for 95% confidence intervals, through resampling the underlying 
distributions 1,000 times. Note that as sampling distributions for cousins overlap with those of 
halfsibs, a small number of trials result in Zero Division Errors, which can be discarded. 

po_quantile <- function(fullsib_data, halfsib_data, cousin_data){ 
  resample_ax <- function(datasource){ 
    return(axialdist(sample_n(datasource, size=dim(datasource)[1], rep = TRUE

), nrep=1)[1]) 
  } 
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  po_resample <- function(fullsib_data, halfsib_data, cousin_data){ 
    fullax <- resample_ax(fullsib_data) 
    halfax <- resample_ax(halfsib_data) 
    cousax <- resample_ax(cousin_data) 
    po_ax <- sqrt(cousax**2 - 0.5*(fullax**2 + halfax**2)) 
    return(po_ax) 
  } 
   
  return(quantile(replicate(1000, po_resample(fullsib_data, halfsib_data, cou

sin_data)), c(0.025, 0.25, 0.5, 0.75, 0.975), na.rm = TRUE)) 
} 
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Final code 

 

Using the above data structures and functions, final axial dispersal parameters are calculated as 
shown below. 

#axial deviations 
fullsibs_axial_deviation <- mean(axialdist(fullsibs, nrep=1000)) 
halfsibs_axial_deviation <- mean(axialdist(halfsibs, nrep=1000)) 
cousins_axial_deviation <- mean(axialdist(cousins, nrep=1000)) 
 
#confidence intervals 
fullsibs_quantile <- quantax(fullsibs) 
halfsibs_quantile <- quantax(halfsibs) 
cousins_quantile <- quantax(cousins) 
 
#parent-offspring axial deviation 
parent_offspring_axial_deviation <- sqrt(cousins_axial_deviation**2 -0.5*(ful

lsibs_axial_deviation**2 + halfsibs_axial_deviation**2)) 
 
#confidence interval for parent-offspring axial deviation  
parent_offspring_ci <- po_quantile(fullsibs, halfsibs, cousins) 

 


