

1

Supplemental Information for:

A genomic approach to inferring kinship reveals limited
intergenerational dispersal in the yellow fever mosquito

Moshe Jasper*, Thomas L. Schmidt*^, Nazni W. Ahmad, Steven P. Sinkins, Ary A Hoffmann

*Equal first authors
^ Corresponding Author

Calculation of Axial Standard Deviations of Dispersal

 Table of Contents:

Theory Page 2

Code: Dependencies and Data Setup Page 3

Code: Axial Distance Functions Page 4

Final Code Page 6

2

Theory

To enable the calculation of axial standard deviations, each dispersal process is modelled as a
bivariate normal distribution with a mean of (0, 0) and rotational symmetry, allowing both axial
standard deviations to be equivalent. Under these assumptions, the following procedure
derives axial standard deviations from the distributions of separation distances for each kinship
category:

1. For each separation distance between kin, assign a random angle of rotation. Applied
aggregatively, this removes any directional sampling biases in the data while projecting
the distances onto a polar coordinate system.

2. Convert the distances to one-dimensional vectors by multiplying each distance by the
cosine of its rotation angle. For a polar coordinate system, this flattens the available
distance information to a one-dimensional distribution centred around zero – an axial
distribution.

3. Calculate the standard deviation of the resulting distribution.

4. For statistical inference by bootstrapping, apply the above steps to 1,000 subsamples
produced by resampling with replacement from within the kinship category, with angles
randomised in each subsample. The average of the resulting 1,000 standard deviations
is an estimate of the axial standard deviation, while the 2.5% and 97.5% quantiles of the
distribution define 95% confidence intervals for the estimate.

5. For Parent-Offspring inference, use equation 3 (main text) to derive an estimate from
axial standard deviations of the other categories, bootstrapping on final P-O estimates.

3

Code

Dependencies

The code to calculate axial deviations depends on the dplyr package
https://cran.r-project.org/web/packages/dplyr/index.html

Data setup

To run the following code, pairwise kinship and distance data must be set up as a dataframe,
with each row corresponding to a separate pairwise comparison between two individuals.

A variety of fields could prove useful in this frame, but typically will at least include Loiselle’s
kinship (k), genetic distance, and geographical distance (in this example, the $meters field).

During kinship filtering, this main dataframe has been split into several smaller kinship groups
(dataframes) labelled fullsibs, halfsibs, and cousins. Each dataframe contains all pairwise
comparisons classified under that kinship grouping.

https://cran.r-project.org/web/packages/dplyr/index.html

4

Axial Distance Functions

The first function, axialdist, takes a distribution of distances and calculates an axial standard
deviation with random angles from it (no replicates, unless specified). This corresponds to steps
1 – 3 in the paper.

axialdist <- function(datasource, nrep=1){
 container <- matrix(nrow = dim(datasource)[1], ncol = nrep)
 for(n in 1:ncol(container)){
 rand <- runif(dim(datasource)[1], min=0, max=2*pi)
 for(m in 1:dim(datasource)[1]) {
 container[m, n] <- datasource[m,]$meters*cos(rand[m])
 }
 }
 sd1 <- apply(container, 2, sd)
 return(sd1)
}

The second function, quantax, applies the first to 1,000 samplings of a kinship group and
returns the quantiles, including those required for 95% confidence interval.

quantax <- function(datasource){
 return(quantile(replicate(1000, axialdist(sample_n(datasource, size=
dim(datasource)[1], rep = TRUE))[1]), c(0.025, 0.25, 0.5, 0.75, 0.975)
))
}

The third function, po_quantile, returns quantiles for parent-offspring axial standard deviation,
including those required for 95% confidence intervals, through resampling the underlying
distributions 1,000 times. Note that as sampling distributions for cousins overlap with those of
halfsibs, a small number of trials result in Zero Division Errors, which can be discarded.

po_quantile <- function(fullsib_data, halfsib_data, cousin_data){
 resample_ax <- function(datasource){
 return(axialdist(sample_n(datasource, size=dim(datasource)[1], rep = TRUE

), nrep=1)[1])
 }

5

 po_resample <- function(fullsib_data, halfsib_data, cousin_data){
 fullax <- resample_ax(fullsib_data)
 halfax <- resample_ax(halfsib_data)
 cousax <- resample_ax(cousin_data)
 po_ax <- sqrt(cousax**2 - 0.5*(fullax**2 + halfax**2))
 return(po_ax)
 }

 return(quantile(replicate(1000, po_resample(fullsib_data, halfsib_data, cou

sin_data)), c(0.025, 0.25, 0.5, 0.75, 0.975), na.rm = TRUE))
}

6

Final code

Using the above data structures and functions, final axial dispersal parameters are calculated as
shown below.

#axial deviations
fullsibs_axial_deviation <- mean(axialdist(fullsibs, nrep=1000))
halfsibs_axial_deviation <- mean(axialdist(halfsibs, nrep=1000))
cousins_axial_deviation <- mean(axialdist(cousins, nrep=1000))

#confidence intervals
fullsibs_quantile <- quantax(fullsibs)
halfsibs_quantile <- quantax(halfsibs)
cousins_quantile <- quantax(cousins)

#parent-offspring axial deviation
parent_offspring_axial_deviation <- sqrt(cousins_axial_deviation**2 -0.5*(ful

lsibs_axial_deviation**2 + halfsibs_axial_deviation**2))

#confidence interval for parent-offspring axial deviation
parent_offspring_ci <- po_quantile(fullsibs, halfsibs, cousins)

