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Appendix 1. Specific predictions of biodiversity sampling in space and time, which we tested 

after assigning every citizen science observation a measure of marginal value. 

Table S1. The predictions of biodiversity sampling in space and time, and a brief description 

of each. 

Prediction Description 

Site sampling 

If a site has been previously sampled or not. 

We predicted that unsampled sites would be 

marginally more valuable than previously 

sampled sites. 

Median sampling interval 

The median of the distribution of waiting 

times between samples at a site. We 

predicted that the median sampling interval 

would be positively associated with the 

value of a citizen science observation; i.e., 

observations from sites with high median 

waiting times would be more valuable than 

observations from sites with low median 

waiting times. 

Days since last sample 

The number of days between samples at a 

site. We predicted that the number of days 

since the last sample would be positively 

associated with the value of a citizen 

science observation. 

Distance to the nearest sampled site 

The distance between the site in question 

and the nearest sampled site. We predicted 

that the distance to the nearest sampled site 

would be positively associated with the 

value of a citizen science observation. 

Nearest neighbor sampling interval 

The median sampling interval of the nearest 

neighbor. We predicted that the nearest-

neighbor sampling interval would positively 

influence the value of an observation, 

whereby well-sampled areas (i.e., multiple 

sites near each other with low median 

sampling intervals) would have lower value. 

Number of unique days sampled 

The total number of unique days sampled 

for a given site. We predicted that the total 

number of unique days would be positively 

associated with the value of an observation, 

whereby sites with many observations 

would have additional value given the long-

term data originating from them. 

 

 

 



Appendix 2. A sensitivity analysis of trend estimates for the top 50 species included in our 

analysis. 

We performed a sensitivity/power analysis to investigate the robustness of our population 

trend models and to identify any critical thresholds which exist to provide inferences of 

population trends. We randomly subsampled the potential pool of eBird checklists 

(N=25,995) from 10% to 100% of the checklists, in 5% increments. We performed 100 runs 

of the same GLM as presented in the main manuscript, at each of these 19 levels, for each of 

the top 50 species; fitting a total of 95,000 models. We removed any models that did not 

converge and whose slope estimates were 2 SD > the mean and 2 SD < mean. We then 

plotted the percent of sampled eBird checklists against the slope estimate for the continuous 

day model parameter (i.e., the trend slope estimate), to investigate whether or not these slope 

estimates converged. 

 

Figures S1a – S1e demonstrate that the slope estimates do converge, but at largely different 

sample sizes (cf. Sulphur-crested Cockatoo versus Welcome Swallow). They also show 

varying ranges in slope estimates among species. Fig S2 shows the degree to which the range 

of slope estimates varies among species, by plotting the max range (i.e., the maximum 

difference in any two slope estimates for a given species) for each species. Pied Currawong 

had the lowest range in slope estimates and Galah had the largest range in slope estimates. 

 

We further investigated this by making the y-axis ‘unitless’. To do this, we first calculated 

the ‘best estimate’ – e.g., the average slope estimate when using the maximum amount of 

data for each species, and then calculated the relaitve value of the difference from that 

estimate as a function of sample size (i.e., percent of the possible checklists). 

 

Figures S3a – S3e clearly show that the relative difference from the best estimate again varies 

among species, with some species not needing a large additional pool of eBird checklists to 

approach the best estimate (e.g., Pied Currawong) and other species needing more eBird 

checklists (e.g., Australian Raven). Visual inspection shows different critical thresholds for 

different species (cf., Welcome Swallow and Rainbow Lorikeet). To quantify this, we 

calculated when the maximum absolute difference was reduced by at least 50% – a rough 

measure of convergence of the absolute difference – for each species, and calculated at what 

sampling level (i.e., number of eBird checklists) this occurred. 

 

We found that the median number of checklists necessary for the convergence of slope 

estimates (Fig. S4) to 50% reduction in the absolute difference between the best estimate was 

~11,700, with a min of ~ 6,500 and a max of ~ 20,800. We note however, that these analyses 

are preliminary, and future work should investigate these questions further. 

 



 

Fig S1a. The first ten species for which we plotted the trend estimate as a function of the 

percentage of total possible eBird checklists. The blue lines represent a quantile regression 

with 5 and 95% confidence limits. Note that the y-axis is different among species. 

 



 

Fig S1b. The 11th – 20th species for which we plotted the trend estimate as a function of the 

percentage of total possible eBird checklists. The blue lines represent a quantile regression 

with 5 and 95% confidence limits. Note that the y-axis is different among species. 

 



 

Fig S1c. The 21st – 30th  species for which we plotted the trend estimate as a function of the 

percentage of total possible eBird checklists. The blue lines represent a quantile regression 

with 5 and 95% confidence limits. Note that the y-axis is different among species. 

 



 

Fig S1d. The 31st – 40th species for which we plotted the trend estimate as a function of the 

percentage of total possible eBird checklists. The blue lines represent a quantile regression 

with 5 and 95% confidence limits. Note that the y-axis is different among species. 

 



 

Fig S1e. The 41st – 50th species for which we plotted the trend estimate as a function of the 

percentage of total possible eBird checklists. The blue lines represent a quantile regression 

with 5 and 95% confidence limits. Note that the y-axis is different among species. 

 



 

Fig. S2. The max range (i.e., the maximum difference in any two slope estimates for a given 

species) for each species. Pied Currawong had the lowest range and Galah had the largest 

range. 

 



 

Fig. S3a. The relative difference from the best slope estimate for each species (i.e., the mean 

slope estimate calculated when using all available data), shown as a function of the 

percentage of total possible checklists. The blue lines represent a quantile regression with 5 

and 95% confidence limits. Note that the y-axis is the same among species. 

 



 

Fig. S3b. The relative difference from the best slope estimate for each species (i.e., the mean 

slope estimate calculated when using all available data), shown as a function of the 

percentage of total possible checklists. The blue lines represent a quantile regression with 5 

and 95% confidence limits. Note that the y-axis is the same among species. 

 



 

Fig. S3c. The relative difference from the best slope estimate for each species (i.e., the mean 

slope estimate calculated when using all available data), shown as a function of the 

percentage of total possible checklists. The blue lines represent a quantile regression with 5 

and 95% confidence limits. Note that the y-axis is the same among species. 

 



 

Fig. S3d. The relative difference from the best slope estimate for each species (i.e., the mean 

slope estimate calculated when using all available data), shown as a function of the 

percentage of total possible checklists. The blue lines represent a quantile regression with 5 

and 95% confidence limits. Note that the y-axis is the same among species. 

 



 

Fig. S3e. The relative difference from the best slope estimate for each species (i.e., the mean 

slope estimate calculated when using all available data), shown as a function of the 

percentage of total possible checklists. The blue lines represent a quantile regression with 5 

and 95% confidence limits. Note that the y-axis is the same among species. 

 



 

Fig S4. The number of checklists necessary for a 50% reduction in the absolute difference 

from the best estimate (Figs. S3a – S3e), showing that there is variation among species, but 

the median was ~11,700, with a min of ~ 6,500 and a max of ~ 20,800. 

 

 



Appendix 3. Correlation plots showing the relationships between the predictor variables for 

each of the grain sizes. 

 

 

Fig. S5. Correlation plot showing the relationships between each of the initial potential 

predictor variables, standardized, for the 5 km grid cell size. Duration was highly correlated 

with median sampling interval for the majority of grid cell sizes, and as such, was excluded 

from consideration. s.neighbor_waiting_time is the nearest neighbor sampling interval; 

s.dist_km_nn is the distance to the nearest sampled grid; s.days_since is the number of days 

since the last sample; s.Number_of_days_samples is the number of unique days sampled; 

s.duration is the total duration between the original sample and the latest sample; 

s.median_waiting_time is the median sampling interval. 

 



 

Fig. S6. Correlation plot showing the relationships between each of the initial potential 

predictor variables, standardized, for the 10 km grid cell size. Duration was highly correlated 

with median sampling interval for the majority of grid cell sizes, and as such, was excluded 

from consideration. s.neighbor_waiting_time is the nearest neighbor sampling interval; 

s.dist_km_nn is the distance to the nearest sampled grid; s.days_since is the number of days 

since the last sample; s.Number_of_days_samples is the number of unique days sampled; 

s.duration is the total duration between the original sample and the latest sample; 

s.median_waiting_time is the median sampling interval. 

 



 

Fig. S7. Correlation plot showing the relationships between each of the initial potential 

predictor variables, standardized, for the 25 km grid cell size. Duration was highly correlated 

with median sampling interval for the majority of grid cell sizes, and as such, was excluded 

from consideration. s.neighbor_waiting_time is the nearest neighbor sampling interval; 

s.dist_km_nn is the distance to the nearest sampled grid; s.days_since is the number of days 

since the last sample; s.Number_of_days_samples is the number of unique days sampled; 

s.duration is the total duration between the original sample and the latest sample; 

s.median_waiting_time is the median sampling interval. 

 



 

Fig. S8. Correlation plot showing the relationships between each of the initial potential 

predictor variables, standardized, for the 50 km grid cell size. Duration was highly correlated 

with median sampling interval for the majority of grid cell sizes, and as such, was excluded 

from consideration. s.neighbor_waiting_time is the nearest neighbor sampling interval; 

s.dist_km_nn is the distance to the nearest sampled grid; s.days_since is the number of days 

since the last sample; s.Number_of_days_samples is the number of unique days sampled; 

s.duration is the total duration between the original sample and the latest sample; 

s.median_waiting_time is the median sampling interval. 

 

 

 



Appendix 4. Summary statistics for the daily-sampled parameters (i.e., predictors) for each 
of the four grain sizes (5, 10, 25, 50 km2, respectively). Each parameter was calculated for 
each day in 2018: N=365 times, whereby only the preceding days in the year factored into the 
calculation and not the following days. Summaries were produces using the ‘dfSummary’ 
function from the summarytools package in R (https://cran.r-
project.org/web/packages/summarytools/vignettes/Introduction.html). 

https://cran.r-project.org/web/packages/summarytools/vignettes/Introduction.html
https://cran.r-project.org/web/packages/summarytools/vignettes/Introduction.html
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Appendix 5. Distribution of sampling within 5 km grids throughout 15 regional cities in 

Australia. 

In order to investigate the generalizability of our results to other regions in Australia, we 

investigated the distribution of samples per grid for 5 km grids among 15 regional cities 

throughout Australia. We extracted coordinates for each city from: 

https://latitudelongitude.org. We then extracted all eBird checklists which met our criteria in 

the main manuscript within a 50 km buffer of each of these regional city’s coordinates. This 

approach slightly differed to our analysis presented in the main text because we had a 

shapefile of the Greater Sydney Region, but we did not have access to such shapefiles for 

other cities. We then gridded each region into 5 km grids, as in the main manuscript, and 

calculated the number of eBird checklists per each grid. Because the distributions below (Fig. 

S9) are very similar – many unsampled or poorly-sampled grids in most cities with a similar 

distribution aside from these (e.g., few well-sampled grids) – we believe that each region 

would be at the same ‘starting point’. In other words, the current sampling regimes among 

regions are all very similar – especially in regions where the cities receive similar sampling 

intensities (e.g., Brisbane, Melbourne, Sydney). But some remote regions receive relatively 

few eBird checklists (e.g., Longreach). 

https://latitudelongitude.org/


 

Fig. S9. The distribution of number of checklists within a grid for each of 15 regional cities 

in Australia, showing a similar distribution among regions (e.g., many unsampled or poorly 

sampled grids and then variation among the better-sampled grids). 
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