DOI: 10.1289/EHP3325

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Long-Term Exposure to Ambient Ozone and Progression of Subclinical Arterial Disease: The Multi-Ethnic Study of Atherosclerosis and Air Pollution

Meng Wang, Paul D. Sampson, Lianne E. Sheppard, James H. Stein, Sverre Vedal, and Joel D. Kaufman

Table of Contents

- **Table S1.** Number of participants included in each exam with O₃ exposure data.
- **Table S2.** Participant characteristics with coronary artery calcification (CAC) measurement at baseline and during follow-up by study regions. Values provided are mean \pm standard deviation for continuous variables or number (%) for categorical variables.
- **Table S3.** Characteristics of air pollution distribution at baseline and follow-up period for intimamedia thickness of common carotid artery (IMT_{CCA}) and carotid plaque (CP) burden.
- **Table S4.** Within-site correlation coefficients between long-term air pollution exposures in the study period for intima-media thickness of common carotid artery (IMT_{CCA}) and carotid plaque (CP) burden.
- **Table S5.** Estimates of the associations between O_3 exposure (3 ppb) and carotid plaque (CP) incidence from models with increasing amounts of adjustment for covariates.
- **Table S6.** Main and sensitivity analyses for estimates of the effect of a 3 ppb increase of O_3 exposure on coronary artery calcification (CAC) progression over ten years from models with increasing amounts of covariate adjustment.
- Figure S1. Description of study design and data characteristics for coronary artery calcification.

Figure S2. Concentration-response curves for associations of long-term exposure to O₃ with progression of intima-media thickness of common carotid artery (IMT_{CCA}, μm/year) in mixed model (left) and carotid plaque (CP) formation (log-transformed odds ratio) in logistic model (right) smoothed by a natural spline with 4 degree of freedom. Full models were adjusted for age, sex, race/ethnicity, study region, body mass index, smoking status, pack-years, second-hand smoke exposure, alcohol consumption, physical activity, employment status, high-density lipid, total cholesterol, statin use, neighborhood SES index, income, education, systolic and diastolic blood pressure, hypertension, anti-hypertensive medication, diabetes.

SUPPLEMENTAL MATERIAL

Table S1. Number of participants included in each exam with O_3 exposure data.

Exam	1 (2000-01)	2 (2002-03)	3 (2004-05)	4 (2005-07)	5 (2010-12)	
CAC (N)	6374	2839	2723	1569 (245 new	3219	
				MESA		
				recruitment)		
IMT and CP(N)	3147	-	-	951	3276	
				(245 new		
				MESA		
				recruitment)		

CAC: coronary artery calcification.

IMTCCA: Intima-media thickness of common carotid artery.

CP: Carotid plaque burden.

Table S2. Participant characteristics with coronary artery calcification (CAC) measurement at baseline and during follow-up by study regions. Values provided are mean \pm standard deviation for continuous variables or number (%) for categorical variables.

		` '	-			
Site	Winston- Salem	NYC	Baltimore	St. Paul	Chicago	LA
O ₃ concentrations (ppb)	Surem					
Baseline: annual mean 2000	27.8±2.4	14.7±1.3	22.0±2.1	25.4±2.3	21.4±1.4	16.0±2.0
Follow-up: all-year mean	27.9±2.5	14.8±1.3	21.9±2.2	25.6±1.9	21.3±1.4	16.1±2.2
Number of Participants						
Baseline	1039	1083	1060	1030	1143	1264
Follow-up	944	975	905	928	1035	1076
Follow-up Time (years)	6.6±3.4	7.1±3.4	5.8±3.6	6.9±3.3	6.9±3.5	5.8±3.6
Average number of follow-up measurements per person	3±1	3±1	2±1	3±1	3±1	2±1
Outcomes						
Mean CAC at baseline (Agatston score)	265±574	233±560	277±630	301±645	229±469	216±529
Increase in CAC during follow-up (Agatston/year)	28±1.8	23±1.7	26±1.9	28±1.8	23±1.7	23±1.6
Baseline demographics						
Age	62±10	62±10	63±10	60±10	62±10	63±10
Male N(%)	488 (47)	487 (45)	498 (47)	505 (49)	537 (47)	607 (48)
Race/Ethnicity N(%)						
White	561 (54)	260 (24)	530 (50)	587 (57)	537 (47)	190 (15)
Chinese	-	-	-	-	309 (27)	430 (34)
Black	468 (45)	368 (34)	530 (50)		297 (26)	139 (11)
Hispanic	-	455 (42)	-	443 (43)	-	493 (39)
Education N(%)						
≤High School	83 (8)	249 (23)	117 (11)	196 (19)	80 (7)	417 (33)
High School	218 (21)	206 (19)	212 (20)	227 (22)	91 (8)	228 (18)
Some College/Technical	322 (31)	303 (28)	318 (30)	361 (35)	274 (24)	329 (26)
College or Graduate	416 (40)	325 (30)	413 (39)	247 (24)	697 (61)	291 (23)
Employment N(%)	662 (64)	615 (57)	631 (60)	718 (70)	762 (67)	579 (46)
Neighborhood SES index	-0.7±4.6	0.4±7.9	-0.2±4.5	0.2±3.3	-6.4±6.7	0.6±5.9
Income (USDx1000)	56±34	43±31	52±34	45±30	71±40	36±31
Baseline risk factors						
Body mass index (kg/m ²)	29±5	28±5	30±6	29±5	26±5	27±5
Smoking Status						
Never	416 (40)	531 (49)	456 (43)	433 (42)	549 (48)	771 (61)
Former	447 (43)	379 (35)	445 (42)	412 (40)	446 (39)	354 (28)
Current	177 (17)	173 (16)	159 (15)	185 (18)	149 (13)	139 (11)
Pack-years smoking	14±24	10±18	14±23	12±21	12±23	7±15
Second-hand smoking N(%)	594 (57)	475 (44)	532 (50)	629 (61)	592 (52)	363 (29)

Physical activity N(%)						
Q1	253 (24)	262 (24)	288 (27)	263 (26)	205 (18)	415 (33)
Q2	315 (30)	248 (23)	240 (23)	262 (25)	285 (25)	383 (30)
Q3	234 (23)	254 (23)	243 (23)	249 (24)	316 (28)	268 (21)
Q4	236 (23)	318 (29)	289 (27)	256 (25)	337 (29)	198 (16)
Systolic Blood Pressure (mmHg)	133±21	123±20	128±21	122±20	123±21	127±22
Diastolic blood pressure (mmHg)	74±10	73±10	72±10	70±10	72±10	72±10
Hypertension ^a	582 (56)	509 (47)	541 (51)	350 (34)	434 (38)	544 (43)
High-density lipid (mg/dl) ^b	50±15	53±15	52±15	49±14	54±16	49±14
Total Cholesterol (mg/dl) ^b	189±33	194±35	192±35	200±38	195±33	193±34
Statin Use N(%) ^c	166 (16)	173 (16)	201 (19)	124 (12)	160 (14)	152 (12)
Anti-hypertensive medication N(%) ^c	456 (44)	453 (42)	478 (45)	292 (28)	373 (33)	420 (33)
Diabetes N(%) ^d						
Normal	790 (76)	780 (72)	763 (72)	783 (76)	903 (79)	847 (67)
Impaired fasting glucose	125 (12)	152 (14)	159 (15)	134 (13)	137 (12)	202 (16)
Diabetic	125 (12)	152 (14)	138 (13)	113 (11)	103 (9)	215 (17)
Family history of premature CVD N(%) ^e	315 (30)	271 (25)	339 (32)	312 (30)	280 (25)	274 (22)
Fibrinogen (mg/dL)	339±72	364±79	348±75	351±73	337±72	344±69
C-reactive protein (mg/dL)	4.4±6.5	3.6±5	4.3±6.6	3.9±5.4	3.2±5.9	3.4±5.6
Creatinine (mg/dL)	1±0.3	1±0.3	1±0.4	1±0.3	0.9±0.2	0.9±0.3

^aHypertension was defined as systolic blood pressure at least 140 mm Hg, diastolic blood pressure at least 90 mm Hg, or reported use of antihypertensive medication.

^bPlasma lipid measurements for high-density lipid and total cholesterol.

^cMedication use was defined as any positive report of a statin and/or antihypertensive medication use on the medication inventory for the participants at each of the five clinical exams.

dDiabetes mellitus was defined as fasting glucose >125 mg/dl or the use of hypoglycemic medications. Among those not reporting use of hypoglycemic medications, we defined Impaired fasting glucose between 100 and 125mg/dl and normal fasting glucose as fasting blood glucose less than 100 mg/dl. Family history of premature cardiovascular disease was defined as myocardial infarction/heart attack, stroke/brain attack, or cardiovascular procedure (coronary bypass or balloon angioplasty) in a female primary relative (parent, sibling, or child) aged <65 years or a male primary relative aged <55 years) Outcome, demographic covariates and risk factors were available for all the participants.

Table S3. Characteristics of air pollution distribution at baseline and follow-up period for intimamedia thickness of common carotid artery (IMT $_{\text{CCA}}$) and carotid plaque (CP) burden.

	Mean	STD	Min	25%	50%	75%	Max
Baseline							
O ₃ Long-term	21.0	5.0	10.5	16.0	21.2	25.1	42.3
O ₃ warm season ^a	27.5	4.4	15.4	25.2	28.1	30.6	47.5
O ₃ 1-year ^b	21.0	5.0	10.5	16.0	21.2	25.1	42.3
NO _x all years	53.0	32.7	8.7	25.6	41.9	78.1	267.1
PM _{2.5} all years	16.5	2.8	10.9	15.0	16.0	17.4	27.9
Follow-up							
O ₃ all years	21.7	4.1	10.8	18.7	22.3	24.2	41.7
O ₃ warm season ^a	27.5	4.4	15.2	25.1	28.1	30.6	47.6
O ₃ 1-year ^b	22.8	4.6	11.1	18.9	23.3	26.1	44.3
NO _x Long-term	39.3	25.2	6.6	20.2	31.8	52.7	246.2
PM _{2.5} all years	13.6	2.4	8.6	12.6	13.5	14.8	22.3

^aLong-term ozone exposure between April and September. ^b1-year average prior to each exam.

Table S4. Within-site correlation coefficients between long-term air pollution exposures in the study period for intima-media thickness of common carotid artery (IMT $_{CCA}$) and carotid plaque (CP) burden.

	O ₃ all years	O ₃ warm season	O ₃ 1-year	NO _x all years	PM _{2.5} all years
O ₃ all years	1.00				
O ₃ warm season	0.71	1.00			
O ₃ 1-year	0.91	0.61	1.00		
NO _x all years	-0.42	-0.27	-0.46	1.00	
PM _{2.5} all years	-0.29	-0.17	-0.42	0.67	1.00

^aWithin-Site: Calculated after subtracting the city-specific mean from each observation.

Table S5. Estimates of the associations between O₃ exposure (3 ppb) and carotid plaque (CP) incidence from models with increasing amounts of adjustment for covariates.

Staged models	Odds Ratio (95% CI)
	CP incidence
Base	1.3 (1.1, 1.4)
Moderate	1.2 (1.1, 1.4)
Full	1.2 (1.1, 1.4)
Extended	1.2 (1.1, 1.4)

Base model includes age, sex, race/ethnicity, study region.

Moderate model= Base model + body mass index, smoking status, pack-years, second-hand smoke exposure, alcohol consumption, physical activity, employment status, high-density lipid, total cholesterol, statin use.

Full model (primary analysis) = Moderate model + neighborhood SES index, income, education, systolic and diastolic blood pressure, hypertension, anti-hypertensive medication, diabetes; Full model is the primary model for report in the main text and discussion.

Extended model = Full model+family history of premature CVD, fibrinogen, c-reactive protein, creatinine.

Table S6. Main and sensitivity analyses for estimates of the effect of a 3 ppb increase of O3 exposure on coronary artery calcification (CAC) progression over ten years from models with

increasing amounts of covariate adjustment.

	3
	Change of CAC ten years
	(Agatston units, 95% CI)
Main Analyses	
Base	-2 (-12, 8)
Moderate	-8 (-18, 2)
Full	-8 (-18, 2)
Extended	-8 (-19, 2)
Sensitivity Analyses	
O ₃ warm seasons [‡]	-6 (-15, 4)
O ₃ 1-year mean	-12 (-19, 4)
Adjust for NO _x	-18 (-38, 3)
Adjust for PM _{2.5}	-22 (-41, 1)

Main analyses (within-city IQR of O_3 exposure = 3ppb;):

Base model includes age, sex, race/ethnicity, study region and CT scanner types.

Moderate model= Base model + body mass index, smoking status, pack-years, second-hand smoke exposure, alcohol consumption, physical activity, employment status, high-density lipid, total cholesterol, statin use.

Full model = Moderate model + neighborhood SES index, income, education, systolic and diastolic blood pressure, hypertension, anti-hypertensive medication, diabetes; Full model is the primary model for report in the main text and discussion.

Extended model = Full model+family history of premature CVD, fibrinogen, c-reactive protein, creatinine Sensitivity analyses: covariates in the sensitivity analyses are the same as those in the full model of the main analyses.

Long-term ozone exposure between April and September.

1-year average prior to exams.

Figure S1. Description of study design and data characteristics for coronary artery calcification.

Figure S2. Concentration-response curves for associations of long-term exposure to O_3 with progression of intima-media thickness of common carotid artery (IMT_{CCA}, μ m/year) in mixed model (left) and carotid plaque (CP) formation (log-transformed odds ratio) in logistic model (right) smoothed by a natural spline with 4 degree of freedom. Full models were adjusted for age, sex, race/ethnicity, study region, body mass index, smoking status, pack-years, second-hand smoke exposure, alcohol consumption, physical activity, employment status, high-density lipid, total cholesterol, statin use, neighborhood SES index, income, education, systolic and diastolic blood pressure, hypertension, anti-hypertensive medication, diabetes.