Supporting Information for:

TRPC channels are not required for graded persistent activity in entorhinal cortex neurons

Alexei V. Egorov¹, Dagmar Schumacher², Rebekka Medert², Lutz Birnbaumer³, Marc Freichel²and Andreas Draguhn¹

¹Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany

²Institute of Pharmacology, Heidelberg University, 69120 Heidelberg, Germany

³Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA and School of Medical Sciences, Catholic University of Argentina, Institute of Biomedical Research (BIOMED UCA-CONICET), Buenos Aires, Argentina

Figure S1. PCR-based genotyping of Trpc1/2/3/4/5/6/7 --- animals

Ethidium bromide stained DNA fragments obtained by PCR from Trpc1/2/3/4/5/6/7 ^{-/-} Hepta KO (HKO) mice following gel electrophoresis of the amplification products of genomic DNA fragments that are diagnostic for each of the seven TRPC wild type and TRPC null alleles, respectively, are shown. Allele specific primer combinations are indicated and their sequence is listed in Table S1. The sizes of marker DNA fragments are indicated. pos, positive control sample; neg, negative control sample without template DNA.

Table S1. Genotyping of TRPC-deficient mice

Genotyping of TRPC wildtype and Null alleles were performed by PCR using the amplification protocol and primers as indicated below.

Cyling pro	ogramr	n:		
94°C	1:30			
94°C	0:30			
65° C	0:30	-0,5°C decrea	ise per cycle	10 cycles
72°C	0:30			
94°C	0:30			
60°C	0:30			26 cycles
72°C	0:30			
72°C	5:00			
4°C	¥			
тррс1.		Drimer 01.	GAGACTGTTGTCAC	A A G ATGC
INICI.		Primer 02:		ATTCCGGC
		Primer 02:		GGTTGCC
		Primer $0/2$:	AGAGGCCACTTGTG	TAGCGC
		1 I IIII 0 1 .	AUAOUCCACITOIO	IAUCUC
TRPC2:		IntF:	ATGACGGGTTTATG	GCTCAG
		IntR:	GATCCCCTGGAATT	GGAGTT
		KOF:	CTGTAGCCATCTTCA	GACACACC
		206R1:	ACGAGACTAGTGAG	ACGTGCTAC
TRPC3:		loxF:	GCTATGATTAATAGC	TCATACCAAGAGATC
		loxF2:	GAATCCACCTGCTTA	ACAACCATGTG
		loxR:	GGTGGAGGTAACAC	CACAGCTAAGCC
TRPC4:		15:	ACAGTGCTCTGAAC	CCACGG
		40:	CTCGCACCGGATGC	CTTTGC
		NeoPa:	GCCTGCTCTTTACTC	GAAGGCTCT
TRPC5henta:		C5loxFÄ:	GGCGCAGAAAGAG	TTATGGGGA
	·P····	C5loxR:	GGATGTTGGCTCTG	TGAAACAATGACTC
		C5loxF2:	AGCTAACAGTATCC	CTAAGTGATCC
TRPC6:		Primer 01:	ACGAGACTAGTGAG	ACGTGCTACTTCC
		Primer 02:	GGGTTTAATGTCTGT	TATCACTAAAGCCTCC
		Primer 03:	CAGATCATCTCTGAA	AGGTCTTTATGC
		Primer 04:	TGTGAATGCTTCATT	CTGTTTTGCGCC
		CD 10		
1 KPC/:		SB19:		CLIAACTIAG
		SB21:		CACATGG
		SB25:	GACACACCTGCCAG	IGCAC

mEC LV	TRPC1/4/5 KO (C57Bl6/N background)		hepta-TRPC KO		vs. WT control		
		n		n	р		n
Resting mp (mV)	-65.3 ± 1.2	8	-73.4 ± 5.4	11	0.002*	-64.9 ± 2.2	6
Input resistance (MΩ)	66 ± 27	8	83 (59; 89)	11	0.024*	103 ± 24	6
AP threshold (mV)	-48.0 ± 2.4	8	-47.7 ± 2.4	12	0.757	-48.1 ± 1.1	6
AP amplitude (mV)	64.9 ± 3.7	8	62.9 ± 6.7	12	0.803	62.1 ± 5.4	6
AP half-width (ms)	0.67 ± 0.11	8	0.87 ± 0.1	12	0.118	0.80 ± 0.1	6
AP rise slope (mV/ms)	147.5 (142; 152)	8	141.1 ± 17.9	12	0.916	140.2 ± 15.3	6
AP fall slope (mV/ms)	-90.3 ± 17.5	8	-62.0 ± 11.2	12	0.190	-69.3 ± 9.6	6
AHP following single AP							
fAHP amplitude (mV)	10.6 ± 3.4	7	9.4 ± 2.2	8	0.301	8.4 ± 1.1	6
fAHP latency (ms)	1.9 ± 0.3	7	2.4 ± 0.4	8	0.588	2.3 ± 0.2	6
mAHP amplitude (mV)	14.5 (13.7; 15.2)	8	16.0 ± 2.5	12	0.218	14.6 ± 1.6	6
mAHP latency (ms)	14.6 ± 7.6	8	24.1 ± 9.7	12	0.754	25.5 ± 5.8	6
mAHP following train of APs							
mAHP amplitude (mV) Δ to AP threshold	17.9 ± 4.8	8	19.7 ± 2.5	7	0.004*	15.5 ± 1.6	6
mAHP amplitude (mV) Δ to recording mp	4.6 ± 2.6	8	7.0 ± 2.8	7	0.019*	3.7 ± 1.1	6
Recording mp (mV)	-59.8 ± 3.1	8	-60.6 ± 2.5	7	0.628	-59.9 ± 1.9	6

Table S2. Intrinsic properties of mEC LV neurons of TRPC1/4/5 knockout mice, and hepta-TRPC knockout versus WT control mice

All values were obtained in the presence of CCh and during blockade of AMPA-, NMDA- and GABA(A)-mediated neurotransmission. Averaged data are given as mean \pm SD or as median (P₂₅; P₇₅). P values for hepta-TRPC KO vs. WT control mice (Unpaired two-tailed t-test; Mann-Whitney U-test for input resistance, * p < 0.05). AP: action potential, fAHP: fast after-hyperpolarization, mAHP: medium afterhyperpolarization, mp: membrane potential.