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1 Ground truth and SimKern simulations

The simulation framework, which handles the generation of ground truth data as well as

the SimKern module which performs the simulations and computes the similarity matrix,

is written in Python, and supports simulation models written in MATLAB, Octave, and

R. It uses text file communication so it could be easily adapted to simulations written

in other languages. The Python package, SimKern, is available at github: https://

github.com/davidcraft/SimKern. We refer to the ground truth simulation as SIM0

and the SimKern simulations as SIM1. This naming convention is also reflected in the

Python code base.

The various code modules are summarized in Table S1.

1.1 Ground truth data generation procedure: SIM0

A simulation model file used to create a ground truth dataset has the suffix .t. A file

used to create the SimKern family of simulations is suffixed with .u (see next section).

These model files are in the language of the system used to run the simulations and have
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Name Functionality Requires Language

Groundtruth dataset 
generation
(“SIM0”)

Generates datasets 
(features and known 
outcomes) with 
user-selected 
number of samples

The simulation 
(“SIM0”) model (*.t 
file)

Python (simulation 
models though are 
in Matlab, octave, or 
R)

SimKern
(“SIM1”)

Handle running 
families of 
simulations, 
aggregating results 
and forming the 
similarity kernel 

Feature vectors that 
are used to simulate 
each feature 
(“genome key” files), 
and the master *.u 
file that contains the 
stochasticity 
information 𝛉

Python (as above)

Machine Learning 
Comparison 

Tune and train 
models with all 
machine learning 
algorithms on 
various dataset 
sizes for comparison

Sample features for 
standard machine 
learning, sample 
similarity matrix for 
kernelized learning, 
and sample 
outcomes

Matlab (also 
available in the 
SimKern python 
repository, but 
Matlab version used 
for the results in the 
paper)

Table S1: Code module descriptions.

entities that are set off by dollar signs. These entities are the parameters to vary from

one sample to the next, for the ground truth dataset generation, or from one trial to the

next, for the SimKern generation.

As an example, if different samples may have different values for a rate parameter

called k1, a line in the simulation file could read:

k1 = $gauss(8,2, name=‘decayConstant1’)$;

The Python code will replace the text set off by the dollar signs with a random variable

drawn from a Gaussian distribution with mean 8 and standard deviation 2. In the file

storing the sample features that gets written, this feature will be named decayConstant1.
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This same style is used for both Sim0 and SIM1. The distributions that are allowed, and

more usage details, are given in the manual on the SimKern github repository.

If the simulation package to use is MATLAB, the Python package allows a direct

process hook via a MATLAB-Python API provided by MathWorks. This speeds up the

overall runtime by not requiring the expensive startup time of MATLAB for every run.

Let N be the number of samples we generate for the SIM0 dataset. Let the feature

vectors (the parameters that make the samples different from each other) be given by the

vectors xi, i = 1 . . . N . Each xi vector is a vector of length p, where we are following the

standard machine learning notation where p equals the number of features. Let yi denote

the outcome of the simulation, which could be a category (e.g. alive or dead) or a real

number. Since we generate these outputs via a simulation, viewing that simulation as a

function S0 we can write yi = S0(xi). The ground truth data generation procedure is

depicted in Figure S1.

Figure S1: Ground truth data generation procedure, SIM0.

The x data get written to Sim0Genomes.csv and the y data to Sim0Output.csv (the

term genome is used since the use case that provides the motivation for this software is
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machine learning for biological systems where the feature vector is based on genomics).

Separate files, called genome keys, are written out for each sample for use in the SIM1

runs.

1.2 Similarity kernel generation: SIM1

The main document describes the similarity matrix computation. The python software

handles writing out and running the individual (i, r) run files, using the .u file as the

template. This .u file must reference another file which specifies the parameters from the

SIM0 run that make each individual sample i distinct. This file is called genome1 key

(the “1” is replaced automatically by the SIM1 python code with the sample number i).

The output of this procedure is the similarity matrix, given in a file called Similarity-

Matrixfinal.csv. A similarity matrix is also written after every trial (from the third trial

onward; similarity matrices before the third trial are considered not converged yet and so

are not written out).

1.2.1 Similarity as measured by closeness of ODE solutions

A typical setting for a SIM1 run will be the simulation of a set of ordinary differential

equations (ODEs). In this context, the similarity between population members i and j,

for simulation r, can be a measure of how close the overall time dynamics for i are to the

time dynamics of j, e.g., represented by the mean squared error over discrete time points.

More specifically, assume the ODE simulation contains E different entities (e.g. protein

levels), in other words E ODEs. Let us further assume that the simulation program

outputs the levels of these entities at a given set of times, t1, t2, . . . , tk, . . . tT . Let Li
r(e, k)

be the level of ODE entity e at time tk, for population member i under simulation r.

Since the ODE equations may be of different magnitudes, we will normalize each pair

being compared by the maximum level that either ever takes over the time course (we are
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implicitly assuming the ODEs solutions are always non-negative, this would have to be

modified for negative levels). For the pair of samples (i, j) and for entity e in simulation

run r, the maximum value M is given by:

M(i, j, e, r) = max[maxkL
i
r(e, k), maxkL

j
r(e, k)]

With these definitions, we can write

z(i, j, r) = 1− 1

E · T

E∑
e=1

T∑
k=1

(
Li
r(e, k)− Lj

r(e, k)

M(i, j, e, r)

)2

(1)

Finally, in addition to normalizing the ODE solutions to a maximum value of 1, the

user may want to weight the different entities e to express the prior knowledge that some

entities are more important for similarity considerations than others. Let 0 ≤ we ≤ 1 be

user-defined weights and then we have:

z(i, j, r) = 1− 1

E · T

E∑
e=1

we

T∑
k=1

(
Li
r(e, k)− Lj

r(e, k)

M(i, j, e, r)

)2

(2)

2 Machine learning details

2.1 Machine learning algorithm comparisons procedure

Machine learning (ML) was conducted in MATLAB (MathWorks, Natick, MA, USA)

using the libSVM package for all SVM models (1). The python SimKern codebase also

provides routines for the machine learning runs. Alg 1. outlines the experimental de-

sign to tune the hyperparameters and then estimate performance metrics for each ML

algorithm. Although the algorithm initially splits a dataset into three pieces–50% for

training, 25% for validation, and 25% for final accuracy assessment–the training subset

is further subsampled to assess how accuracy depends on the amount of training data for

the various models and machine learning algorithms. The same experiment is repeated for
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each dataset. The procedure is outlined below and explained in detail in the subsequent

subsections.

load data of the ground truth data simulation;
load similarity matrix of the SimKern simulation;
shift and rescale features to [0, 1];
dummy-code categorical features for SVM algorithms;
for repetition i = 1 : 10 do

randomly sample 50% of all rows as training data (stratify samples if it is a
classification problem);

randomly sample 25% of all remaining rows as validation data (stratify samples
if it is a classification problem);

assign the remaining rows as test data;
foreach subsampling percentage s ∈ {s1, s2, ..., sS} do

randomly subsample s of all training rows as training data (stratify samples
if it is a classification problem);

foreach algorithm a ∈ A do
foreach hyperparameter configuration ha ∈ Ha do

train algorithm a with hyperparameter configuration ha on training
data;

predict outcomes for validation data;
compute performance metric on validation data predictions;

end
select hyperparameter configuration h∗a with best validation performance
metric;

select algorithm a trained with hyperparameter configuration h∗a;
predict outcomes for test data;
compute performance metric on test data predictions;

end

end

end

Alg. 1. Experimental design to estimate ML performance (this algorithm is executed

independently on each dataset). A is the set of ML algorithms used. si subsampling

percentages vary by model in order to home in on the most relevant part of the curve

which represents accuracy versus amount of training data, see Table S3.
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2.1.1 Stratification

For the classification models, the data is split while approximately stratifying for classes.

Stratification of classes in training, validation, and test data ensures stability in the esti-

mation process. Consider the case where random sampling led to an unusual distribution

of classes in training and validation data. Consequently, the test data would very likely

have a class distribution different than the training data. Classifiers not correcting for

class imbalance (default RF and default SVMs) that are trained on this training data

would perform worse on the test data. Since we want to estimate generalization perfor-

mance, i.e. performance on the general population with a class distribution estimated by

the class distribution in the full dataset, we stratify classes in training and test data.

2.1.2 Hyperparameter tuning

The performance of the studied ML algorithms is dependent on algorithm-specific hyper-

parameters (HP) whose optimal values for generalization performance are not known a

priori. HPs are tuned by a grid search: for a selection of values per HP, the algorithm is

trained on the training data and evaluated on the validation data for each possible HP

combination. The HP combination with the best performance metric in the validation

data is selected. Table S2 lists the HPs that are tuned, their ranges, and values on the

search grid for each algorithm. Values are partly determined from existing literature or

chosen experimentally. HPs not mentioned here are set to default values. Values for SVM

parameters are partially taken from (2). For RF, the number of trees is fixed at 100.

While (3) did not limit the number of terminal nodes in a tree, (4) provide empirical

evidence in favor of tuning. Therefore, we tune the maximal number of splits allowed in

a tree. Tuning grid boundaries have been extended manually to reduce the number of

cases where the tuning procedure selects HP values on the grid boundaries, which would
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suggests that better HP values might be found outside the grid.

Algorithm HP Range Values on grid

linear SVM
& SimKern SVM

C [0,∞] {10−12, 10−11, ..., 1012}
ε [0, 1] {10−5, 10−4, ..., 10−1, 0.25, 0.5, 0.75, 1}

RBF SVM
C [0,∞] {10−12, 10−11, ..., 1012}
γ (0,∞] {10−15, 10−14, ..., 101}
ε [0, 1] {10−5, 10−4, ..., 10−1, 0.25, 0.5, 0.75, 1}

RF
& SimKern RF

n. feat. [1,∞] {1, b(1 +
√
p)/2c, b√pc, b(√p+ p)/2c, p}

n. splits [1, (n− 1)] b{0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1}nc

Table S2: Hyperparameter tuning per algorithm. C is the weight corresponding to train-
ing set error in the SVM objective. ε (only used for SVM regression) determines the width
of the margin enclosing the separating hyperplane in SVM regression. γ is a parameter of
the RBF kernel K(x, y) = exp (−γ||x− y||2). n. feat. is the number of randomly sampled
features compared at each split in a tree. n. splits is the maximal number of splits per
tree, grid values exceeding the interval [1, (n−1)] are truncated to the boundary. n is the
number of training samples, p is the number of features.

Model s1 s2 s3 s4 s5

Radiation 5% 10% 25% 50% 100%
Flowering 5% 10% 30% 60% 100%
Boolean 2.5% 5% 10% 20% 100%
Network 4% 7% 10% 13% 16%

Table S3: Subsampling training percentages per model.

2.2 Machine learning algorithms

We compare standard machine learning algorithms that use the ground truth feature

vectors (Standard ML algorithms) to ML algorithms that use the SimKern kernel matrix

(SimKern ML algorithms), see Figure S2. For the Standard ML learning, we utilize

three established ML algorithms: linear SVM (5), radial basis function (RBF) SVM, and

random forest (RF) (3). For SimKern learning, we use SVM with the similarity matrix
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as a custom kernel (note that for the SVM algorithm the kernel matrix, also known as

the Gram matrix, has to be symmetric positive definite, which in all of our models is the

case, and indeed is required by the libSVM software) and the random forest algorithm

with the similarity matrix as the feature matrix input (6). This random forest, called

SimKern RF, classifies new samples according to their similarities with training samples.

Additionally, we compute nearest neighbor predictions to compare to the more advanced

machine learning algorithms. For the Standard ML case, we use a 1-NN algorithm on the

SIM0 feature vector. For the SimKern case, we use the label of the most similar distinct

training sample according to the similarity matrix. We label this approach SimKern NN.

Figure S2: An overview of the data handling procedures for the various machine
learning algorithms used. SVM=support vector machine, RBF=radial basis function,
ML=machine learning, NN=nearest neighbors, RF=random forest.

3 Model descriptions

Table S4 gives a summary of the machine learning problem sizes, number of features, and

other attributes, for the four models.
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Model Class 1 Class 2 Class 3 Class 4 n p R

Radiation 27.5% 23% 44.2% 5.3% 1000 39 20
Flowering - - - - 500 35∗ 5
Boolean 62.5% 9.3% 28.2% - 1000 37 20
Network 61.6% 18.2% 20.2% - 500 12 10

Table S4: Numerical information for the four models. Class distribution per model for the
ground truth (SIM0) dataset. Note that the Flowering model has continuous outcomes
(i.e. flowering time) and the Boolean and Network models have only three classes. Classes
(in order 1, 2, 3, 4) for the Radiation model are apoptosis, repaired and cycling, mitotic
catastrophe, and quiescence. For the Boolean cancer model they are apoptosis, metastasis,
and other. For the Network model they are simply which of the exit arcs the optimal
solution flows through. n is the number of samples generated for the SIM0 ground truth
dataset, p is the number of features in the ground truth dataset, and R is the number of
trials run in the SimKern step. ∗For the flowering model one of the features is a categorical
variable of 19 classes, representing 19 different mutational states. Thus if one-hot encoded
this would lead to an additional 19 features.

3.1 Radiation model

The radiation model is built up as four connected modules. We opt to not simulate the

cell cycle and instead focus on the chain of events that happens after radiation damages a

cell’s DNA: DNA repair (modeled at a high level), p53-based transcription factor control,

cell cycle arrest, and apoptosis, see Figure S3. Although highly simplified, this model

recapitulates the idea that the inter-connected dynamics of these processes determine cell

fate after radiation damage.

Tuning this model to reflect the behavior of an actual cell line is very large task, and

probably not possible in any realistic way, since the genes (proteins) chosen to be in the

model are but a small subset of the proteins involved in a DNA repair and cell cycle control

cascade. However, even without validated rate constants chosen, the model provides a

numerical instance of a complex system, based on known biology, where different modules

(biochemical processes) are involved in determining the fate of a cell subject to an external
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stimulus. We hand tuned the parameters of the base model. There are many parameters

to choose from, and our choices were from manual explorations which led to a set of

parameters that led to diverse system behavior (some samples ending in apoptosis, others

in cell cycle arrest, etc.).

P_Siah

P_ARF

P_ATM_Phos

P_Bcl2

P_Apaf1

O_Apoptosis

P_Apoptosom

e

P_BclXl

P_Bax

P_FasL

P_WIP1

P_p21cip

O_ARRESTSIGNAL

P_E2F

P_MDM2

P_ECDK2

P_Reprimo

K_MYC

P_CytC

O_CAPPED_ENDS
_READY

O_CAPS

O_BROKEN_ENDS

P_P53_Phos

O_RADIATION O_CAPPED_ENDS
O_FIXED

P_P53

M_WIP1

M_MDM2

K_Rb

Figure S3: A model of entities and processes involved in cell fate decision following ra-
diation. The gray nodes depict the process of DNA breakage and repair. DNA breaks
send signals via ATM to the p53-MDM2-ARF module (purple), which in turn sends both
apoptotic signals (orange) and cell cycle arrest signals (blue). The cancer genes MYC
and Rb (green) are modeled as fixed parameters rather than time varying entities. The
first letters of each oval have the following meanings: P = protein, M = mRNA, K = rate
constant, O = other. Phos stands for phosphorylated.

The p53-MDM2 transcription regulatory control circuit comes from (7). We use the

single compartment version of the model, where the specific location of molecules (nucleus

versus cytoplasm) is ignored. Radiation damage affects this circuit via the ATM kinase
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pathway, which increases the phosphorylation and hence stability of p53. p53 then goes

on to be a transcription factor for apoptosis and cell cycle arrest genes.

Cell specific alterations (mutations, amplifications, deletions) for MYC, RB1, and

p53 interact to influence how the p53-MDM2 circuit behaves, which in turn affects the

behavior of the downstream processes of cell cycle arrest and apoptosis. The number of

cell cycle controls in an eukaryotic cell is large. Rather than attempting to model most of

them, we choose a few overlapping controls to create a model that creates a challenging

machine learning problem.

Apoptosis is modeled as the competition between pro-apoptotic (BAX, FasL) and

anti-apoptotic proteins (BCL-2, BCL-xl). Apoptosis occurs if the apoptosome is formed

(a combination of cytochrome c and APAF-1, which together release caspases from the

mitochondrial membrane) or via the extrinsic Fas/FasL pathway.

The detailed mathematical model is given next. In the ODE equations as written

below, we use a generic “k” for ODE constants, to reduce clutter. For the full details, we

refer the reader to the MATLAB code.

Phosphorylated nuclear p53 protein tetramerizes to form its active transcription factor

state. For convenience we define the p53 tetramerized term as:

p53tt = (MUTp53 ∗ pP53NucPhos4) (3)

The mutation coefficient MUTp53 is a uniform random variable between 0 and 1, reflect-

ing the idea that there are a large number of p53 mutations that potentially affect the

tetramerization in varying ways.
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The full ODE model is given here:

˙oRadiation = −k ∗ oRadiation

˙oBrokenEnds = k ∗ oRadiation− k ∗ oBrokenEnds ∗ oCaps

˙oCaps = min ((k ∗ oBrokenEnds), k5)− k ∗ oBrokenEnds ∗ oCaps− k ∗ oCaps

˙oCappedEnds = k ∗ oBrokenEnds ∗ oCaps− k ∗ oCappedEnds

˙oCappedEndsReady = k ∗ oCappedEnds− k ∗ oCappedEndsReady

˙oF ixed = k ∗ oCappedEndsReady

˙pP53Nuc = k + k ∗ pWIP1Nuc ∗ pP53NucPhos

+pP53NucPhos
−

k ∗ pMDM2Nuc ∗ pP53Nuc

k ∗ pP53Nuc
− k ∗ pATMNucPhos

pP53Nuc

k ∗ pP53Nuc
−

k ∗ pP53Nuc

˙pMDM2Nuc = k ∗mMDM2Nuc− pMDM2NUC−

MUTarf ∗ k ∗ pARF ∗ pMDM2Nuc

˙mMDM2Nuc = k + k ∗ p53tt

k4 + p53tt
− k ∗mMDM2Nuc− k ∗mMDM2Nuc

˙pP53NucPhos = k ∗ pATMNucPhos ∗ pP53Nuc

k ∗ pP53Nuc
− k ∗ pWIP1Nuc ∗ k ∗ pP53NucPhos

k + pP53NucPhos

˙pWIP1Nuc = k ∗mWIP1Nuc− kpWIP1Nuc

˙mWIP1Nuc = k + k ∗ p53tt

k4 + p53tt
− k ∗mWIP1Nuc− k ∗mWIP1Nuc

˙pATMNucPhos = 2 ∗ k ∗ oBrokenEnds ∗

k − pATMNucPhos

2

k +
k − pATMNucPhos

2

−

2 ∗ k ∗ pWIP1Nuc ∗ ATMNucPhos2

k + pATMNucPhos2

˙pBcl2 = k ∗ p53tt

k + p53tt
− k ∗ pBcl2

˙pBclXl = k ∗ p53tt

k + p53tt
− k ∗ pBclXl

˙pFasL = k ∗ p53tt

k + p53tt
− k ∗ pFasL
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˙pBax = MUTBax ∗
(
k ∗ p53tt

k + p53tt
− k ∗ pBax

)
˙pApaf1 = MUTApaf1 ∗

(
k ∗ p53tt

k + p53tt
− k ∗ pApaf1

)
˙pCytC = k ∗ 1

1 + e−k∗pBax−k ∗ k ∗ (1− 1

1 + e−k∗pBcl2−k ) ∗ k ∗ (1− 1

1 + e−k∗pBclXl2−k )−

kpCytC − k ∗ pApaf1 ∗ pCytC7

˙pApoptosome = k ∗ pApaf1 ∗ pCytC7 − k ∗ pApoptosome

˙oApoptosis = k ∗ pFasL+ k ∗ pApoptosome− k ∗ oApoptosis

˙pE2F = MUTRb ∗MUTmyc − kpE2F

˙pARF = MUTarf

(
k1 ∗ pE2F

k + pE2F
− k2 ∗ pARF − k ∗ pARF ∗ pMDM2Nuc

)
˙pP21cip = k ∗ p53tt

k + p53tt
− k ∗ pP21cip

˙pECDK2 = k − k ∗ pP21cip

k + pP21cip
− (k ∗ pECDK2)

˙pSiah = MUTSiah

(
k ∗ p53tt

k + p53tt
− k ∗ pSiah

)
˙pReprimo = MUTReprimo

(
k ∗ p53tt

k + p53tt
− k ∗ pReprimo

)
˙oArrestsignal = (see below)

The initial condition of the system is an externally applied radiation dose modeled

by setting oRadiation(0) = 1 followed by an exponential decay. The only other non-zero

initial condition is for ECDK2 since at time 0 we assume that there are no brakes on the

cell cycle.
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3.1.1 Additional modeling notes

Cells have many mechanisms to control cell growth and division. We choose to model

just a few, and in a simplified manner, to get the flavor of the complexity. We split the

control into two cases, one where the Rb gene is functioning (Rb = 1) and one where the

Rb gene is impaired (Rb = 0). For the Rb = 0 case, a way to arrest cell growth is via the

SIAH or Reprimo gene pathways. SIAH and Reprimo are activated by a functioning p53

danger signal pathway, and we model their effect on the arrest signal as additive. Thus:

Case Rb = 0:

oArrestsignal =
1

1 + eka1∗(x(Siah)+x(Reprimo)−ka2) ; (4)

We take the derivative of this to embed it into the ODE set.

For Rb = 1, the Rb controls are working correctly. In that case, low levels of the

Cyclin E/CDK2 complex (ECDK2) will arrest the cell cycle, independently of SIAH and

Reprimo levels. On the other hand, high levels of ECDK2 mean that the cell can pass

through the G1-S transition, but SIAH or Reprimo might still stop it. We model this as

a convex combination for the arrest signal:

Case Rb = 1:

oArrestsignal = λlow ∗ 1 + (1− λlow)
1

1 + eka1∗(x(Siah)+x(Reprimo)−ka2) ; (5)

where λlow = 1− (ECDK2/ECDK2max), where ECDK2max is the maximum level that

ECDK2 can attain. We differentiate this as above.

The final classification (into one of four states: 1, 2, 3, or 4) for the ground truth

simulation uses the following rules, based on the levels at the end of the simulation:

If Apoptosis >= 0.8: 1 (apoptosis)

Else
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If FIXED > 0.9 and ARREST < .5: 2 (repaired and cycling)

Else if FIXED <= 0.9 and ARREST < .5: 3 (not repaired, and cycling

i.e. mitotic catastrophe)

Else 4 (quiescence)

For details on mutations and parameter changes used for ground truth dataset and

the kernel dataset, see the MATLAB input files.

3.2 Flowering model

The flowering model is taken directly from (8). The outcome that we build a prediction

model for is flowering time, which, as in the original paper, is taken to be the time at

which the protein AP1 exceeds a given threshold. The ODE model is simulated using

MATLAB. The flowering model represents an isolated genetic circuit in multi-cellular

eukaryote, and therefore as a model is a distant cousin–but a relevant one–to the vastly

complicated genetic circuitry of human cancer cells.

3.3 Boolean cancer model

The Boolean cancer model is taken from (9). We converted their GinSIM model into

BoolNet format, which is a package in R. The authors provide an original model as well

as a modular reduction. In the SimKern simulation we use the modular reduction, which

represents a limited understanding of the model, further perturbed by uncertainties of

how to map the feature data into this reduced model. The model output for both the

ground truth dataset and the SimKern runs are based on the steady state vectors found

by simulating the network for the given initial conditions. Let ss(n) denote the steady

state value for node n. If the steady state is a fixed steady state, ss(n) will be a single

value, either 0 or 1. If the steady state is a cycle, then ss(n) will be a binary vector
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of length equal to the cycle length. For the classification, we rely on two compartments

in particular: n = Apoptosis and n = Metastasis. We classify the outputs into three

categories using the following logic.

If all(ss(Apoptosis)) = 1: 1 (apoptosis)

Else if all(ss(Metastasis)) = 1: 2 (metastasis)

Else 3 (other)

For details about the meaning of this model we refer the readers to the original pub-

lication (9). In the present work, it is sufficient to view this model as an instance of a

discrete complex system.

3.4 Network flow optimization model

We wrote a random network generation routine in MATLAB which generates a layer-wise

directed graph. The user specifies the number of nodes for each layer and probabilities

for adding a connecting arc between the nodes of two layers. We also add arcs between

non-adjacent layers with a small probability. We ran this routine once to create a single

network for all the samples in the dataset, shown in Figure S2. We generate random

numbers for the cost for these arcs. This represents the base network from which all the

samples of SIM0 are built. Unique samples are created by varying the weights of 12 of the

80 arcs, the bold arcs in Figure S2. The outcome of the simulation is a classification, 1,

2, or 3, representing which of the last three arcs the optimal flow passes through (linear

network flow optimization theory guarantees that there exists an optimal solution with

all the flow through one of the exit arcs, and that such a solution will be returned by

simplex-based methods (10)).

We run two versions of SIM1, a less noisy model (with fewer perturbed, less noisy arc

costs) and a noisier model (with larger number and higher magnitude of perturbed arc

18



Figure S4: Network flow directed graph. The bold lines are the arcs with variable costs
in the ground truth simulation. The unit flow that enters the network at the uppermost
node will exit through one of the labeled arcs at the bottom, which creates a classification
problem.

costs). For the less noisy models we assume the arc costs of the 12 SIM0 variable arcs

are not known with certainty: they are scaled by a uniformly distributed random variable

between 0.1 and 1.9. We also perturb every arc in the second layer by a uniform variable
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from 0.5 to 1.5. For the noisier model we additionally perturb the arc costs of the third

layer (uniform 0.5 to 1.5) as well as a large perturbation, uniform between 9 and 10, of

the third arc, which otherwise always takes the flow because of its otherwise low arc cost

(see Figure S4).

4 Supplementary results

The flowering model, Figure S5, displays a typical “good kernel” result where the SimK-

ern methods dominate the no-prior-knowledge methods throughout, but especially for

small training set sizes. Similarity based NN is competitive with the more sophisticated

similarity SVM and RF, but exhibits slightly more variance. The success of the SimKern

methods indicates that the space induced by the similarity kernel is well behaved and the

classes are easily separable with this kernel.

Figure S5: Machine learning results for the flowering model. NN = nearest neighbor, RF
= random forest, SVM = support vector machine, RBF = radial basis function. R2 is
the coefficient of determination.
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With the network flow model, we demonstrate the obvious but important result that

if the SimKern simulation is farther from the ground truth simulation due to additional

noise, the SimKern learning will be worse. The kernel based on a less noisy SimKern

simulation, Figure S6, displays dominance throughout whereas the kernel based on a

noisier SimKern simulation, Figure S7, is overtaken by the standard RF already by 18

training samples. We also used vector-based outputs from the SIM1 simulations, where

the flow through every arc was used to compute similarity scores. The results were not

fundamentally different so here we display results from only the scalar based SIM1 output.

Figure S6: Machine learning results for the network flow optimization model for the less
noise case. NN = nearest neighbor, RF = random forest, SVM = support vector machine,
RBF = radial basis function.

The SimKern idea is effective provided that the simulations correctly judge the similar-

ity between two samples, but the SimKern simulations need not themselves make correct

predictions (in fact, the raw output of the SimKern simulations need not be the same

type of output as we are trying to predict). To illustrate this, we examine the first 13

21



Figure S7: Machine learning results for the network flow optimization model for the more
noise case. NN = nearest neighbor, RF = random forest, SVM = support vector machine,
RBF = radial basis function.

samples from the dataset for the network (lower quality) model, see Figure S8. Samples

2 and 11, which both are classified as 3s in the ground truth dataset, are given a high

similarity score because they behave similarly for most of the 10 trials, even though in

only one of those trials (trial 6) are they actually classified correctly.

Each model displays two nearest neighbor (NN) algorithm learning results: the default

method which is Euclidean distance in feature space, and the kernelized method which

uses the simulation based similarity scores for the distance computation. Consistently,

the kernel based NN methods dominates over standard NN, which implies the power of a

custom similarity measure. The difference between either of these NN methods and the

SVMs display the power of better machine learning algorithms: rather than classifying a

new sample based on which training sample it is closest to, SVMs factor in the distance

to many of the training samples. In some cases (Figure 3, main document: the radiation
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model with the higher quality kernel, and Figure 4 main document or Figure S5: the

flowering model) we see that a good similarity score is ultimately good enough and more

advanced machine learning algorithms do not offer much improvement over the kernelized

NN.

Figure S8: SIM1 results for the first 13 samples from the network (lower quality) dataset,
for all ten trials and also showing in the bottom yellow row the ground truth (SIM0)
result. We have highlighted samples 2 and 11. These samples are both 3s in the ground
truth set, but in the R = 10 SimKern (SIM1) trials they get correctly classified only once.
However, they are given a high similarity score since they behave the same for most of
the trials. We use this to highlight the idea that it is sufficient to correctly judge sample
similarity; accurate class prediction is not necessary.

As an additional way to compare machine learning results in the case of regression

(the flowering model), Figure S9 plots the predicted flowering times versus the actual

flowering times. With additional training samples (13 to 25), linear SVM and, even more

so, SimKern SVM improve their predictions for samples with a flowering time < 6. After

training on additional data, one observes a small additional downward bias in linear SVM

predictions for samples with a flowering time > 10. Both algorithms, however, achieve an
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R2 improvement by 0.19 (linear SVM) and 0.31 (SimKern SVM).
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Figure S9: Observed and predicted test set values after training on 13 (left) and 25 (right)
samples for the flowering time model. Results for linear SVM and SimKern SVM are in
orange and green, respectively. Left: R2 equals 0.27 and 0.66 for linear SVM and SimKern
SVM, respectively. Right: R2 equals 0.46 and 0.97 for linear SVM and SimKern SVM,
respectively.

5 A word on the “kernel trick”

Kernel methods are often touted in the literature as a cure-all for the problem of overly

high dimensional samples: by kernelizing the data, the high dimensionality goes away. In

fact, kernelizing data does not so cleanly solve this problem since there are many ways

to make a kernel. Only when considering highly restricted kernel classes such as linear

kernels or RBF kernels, without any feature weighting or feature selection, does the kernel

trick simplify the search for a good machine learning approach. But in general, we do not
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know how to build a good kernel (that is, how to judge similarity between two samples

in a way that is most effective for our machine learning problem). We propose herein

to distill expert knowledge of a domain into simulations that use the high dimensional

features, which pre-supposes quite detailed knowledge of the system. If such detailed

knowledge is not available, the number of ways to turn a large feature set into a kernel

is unmanageable (consider combinatoric calculations for example of selecting 200 genes

out of 20000 to test all sets of 200 genes). We state this here as a word of caution: the

kernel approach can be very useful but it requires obtaining a good kernel, and there is

no general recipe for that.

Clearly for the SimKern approach to work, the simulations used to generate the kernel

have to be “good”, but unfortunately, it does not seem possible to be more quantitative

than that for general cases. We explored the issue by demonstrating that as we veer away

from high quality simulations, the machine learning using the custom kernel does worse

(see e.g. Figures S6 and S7), but it will always be a data- and problem-specific analysis

to see if a proposed kernel is useful.
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