SUPPORTING INFORMATION

Chalcone-Thiazole Hybrids: Rational Design, Synthesis and Lead Identification against 5-Lipoxygenase

Shweta Sinha^{§#}, S. L Manju[#]*, Mukesh Doble[§]*

[§]Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu, 600036, India.

[#]Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

*Corresponding authors Email: <u>mukeshd@iitm.ac.in</u>, <u>slmanju@vit.ac.in</u>

Table of contents

1.	General procedure for chemical synthesis of compounds (4a-w)	1-2
2.	Spectral details (NMR, HRMS) of compounds (4a-w)	3-11
3.	¹ H and ¹³ C NMR spectra of the target compounds (4a-w)	12-33
4.	HRMS spectra of the target compounds (4a-w)	34-44
5.	Docking protocol, images and PDB ID number	45-46
6.	Experimental section of biological activity	47-50
7.	In silico pharmacokinetic parameters from Swiss ADME software	51

General. All chemicals, solvents and reagents were procured from commercial sources such as Merck Millipore (Billerica, MA, USA), Sigma-Aldrich Chemie GmbH (Steinheim, Germany), Thermo Fisher Scientific (Waltham, United States), Acros Organics (Geel, Belgium), Sisco Research Laboratories, Spectrochem[®] and Rankem[®] and were used without additional purification. Melting points were recorded on GUNA melting point apparatus and are uncorrected. IR spectra were taken in KBr pellets on Perkin Elmer Spectrum1 FT-IR spectrophotometer (resolution of 1.0 cm⁻¹ and MIR 450-4000 cm⁻¹). ¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE III 500 MHz (AV-500) NMR Spectrometer. CDCl₃ and DMSO-d₆ are used as solvents with tetramethylsilane (TMS) as an internal standard (chemical shift represented in *δ* ppm and

coupling constants (*J*) in Hz. HRMS were measured by Thermo Scientific Orbitrap Elite Mass spectrometer with high-field orbitrap Mass analyzer. Silica gel 60G F_{254} TLC plates from Merck KGaA (Darmstadt, Germany), Millipore were used to moniter reactions. Silica gel (60–120 mesh) used for coloumn purification. Purities of all final compounds synthesized here were 95 % or higher.

General procedure for chemical synthesis of compounds (4a-w):

The reaction of substituted benzoyl chloride (1.5 mmol) with ammonium thiocyanate (1.9 mmol) in 2 mL acetonitrile in scheme 1 (in main article) resulted in substituted benzoyl isothiocyanates (1a-d). Product in yellow aromatic layer was filtered after stirring 2 h at 65 ^oC and treated with ammonium hydroxide (2 equivalents) at 0 ^oC and stirred at room temperature to yield various N-carbamothioyl substituted benzamides (2a-d). The white solid product obtained was filtered, washed with saturated aqueous sodium bicarbonate solution and dried in vacuo. Equimolar mixture of N-carbamothioyl substituted benzamides and 3-chloropentane-2,4-dione was refluxed in ACN to afford the desired intermediates, N-(5-acetyl-4-methylthiazol-2-yl) substituted benzamides (3a-d) via Hantzsch thiazole synthesis. Solvent was removed under reduced pressure. Solid obtained was recrystallized with ethanol and ethyl acetate to get pure compounds. The target compounds, chalcone-thiazole hybrids (4a-w) were synthesized by using base catalyzed Claisen–Schmidt condensation reaction. Substituted benzamide thiazoyl ketone, **3a-d** (1 mmol) is reacted with various substituted aromatic/heteroaromatic aldehyde (1 mmol) in ethanol in the presence of 2.5 N NaOH to give the corresponding thiazole-chalcone hybrids (4a-w) in good yield. All the synthesized structures were appropriately confirmed by spectroscopic data and analytical methods.

2. Spectral details (NMR, HRMS) of compounds (4a-w):

(E)-N-(5-cinnamoyl-4-methylthiazol-2-yl)benzamide (4a). Pale yellow solid, yield 83 %, mp 170-172 0 C. ¹H NMR (500 MHz, CDCl₃) δ : 11.23 (s, 1H, NH), 7.97 (d, J = 7.4 Hz, 2H, Ar-H), 7.83 (d, J = 15.4 Hz, 1H, alkene-CH), 7.66 (t, J = 6.8 Hz, 3H, Ar-H), 7.54 (t, J = 7.7 Hz, 2H, Ar-H), 7.48 – 7.43 (m, 3H, Ar-H), 7.32 – 7.28 (m, 1H, alkene-CH), 2.50 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, CDCl₃) δ : 182.55, 165.46, 159.75, 156.40, 144.13, 134.53, 133.51, 131.64, 130.76, 129.18, 129.04, 128.62, 127.80, 125.52, 124.44, 18.15. HRMS (ESI) m/z for C₂₀H₁₆N₂O₂S [M + H]⁻ calcd 349.1005, found 349.1000.

(E)-N-(5-(3-(4-fluorophenyl)acryloyl)-4-methylthiazol-2-yl)benzamide (4b). Light yellow solid, yield 85 %, mp 167-169 °C. ¹H NMR (500 MHz, CDCl₃) δ : 11.20 (s, 1H, NH), 7.97 (dd, J = 8.3, 1.2 Hz, 2H, Ar-H), 7.79 (d, J = 15.3 Hz, 1H, alkene-CH), 7.69 – 7.63 (m, 3H, Ar-H), 7.54 (t, J = 7.8 Hz, 2H, Ar-H), 7.21 (d, J = 15.4 Hz, 1H, alkene-CH), 7.14 (t, J = 8.6 Hz, 2H, Ar-H), 2.50 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, CDCl₃) δ : 182.32, 165.44, 163.20, 159.72, 156.51, 142.78, 133.52, 131.59, 130.81, 130.78, 130.57, 130.50, 129.18, 127.79, 125.35, 124.19, 116.30, 116.13, 18.14. HRMS (ESI) m/z for C₂₀H₁₅FN₂O₂S [M + H]⁻ calcd 367.0911, found 367.0909.

(E)-N-(5-(3-(4-chlorophenyl)acryloyl)-4-methylthiazol-2-yl)benzamide (4c). Pale yellow solid, yield 79 %, mp 181-183 0 C. ¹H NMR (500 MHz, DMSO- d_{6}) δ : 13.12 (s, 1H, NH), 8.14 (d, J = 7.5 Hz, 2H, Ar-H), 7.89 (d, J = 8.4 Hz, 2H, Ar-H), 7.72 – 7.64 (m, 2H, Ar-H, alkene-CH), 7.58 (t, J = 7.7 Hz, 2H, Ar-H), 7.53 (d, J = 8.5 Hz, 2H, Ar-H), 7.48 (d, J = 15.5 Hz, 1H, alkene-CH), 2.71 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, 2H, 2H, 2H, 2H)

(E)-N-(5-(3-(4-bromophenyl)acryloyl)-4-methylthiazol-2-yl)benzamide (4d). Yellow solid, yield 89 %, mp 201-203 0 C. ¹H NMR (500 MHz, DMSO- d_{6}) δ : 8.16 (d, J = 6.6 Hz, 2H, Ar-H), 7.73 (d, J = 8.5 Hz, 2H, Ar-H), 7.65 (d, J = 8.5 Hz, 2H, Ar-H), 7.54 (d, J = 15.5 Hz, 1H, alkene-CH), 7.45 (tt, J = 8.6, 4.4 Hz, 4H, Ar-H, alkene-CH), 2.63 (s, 3H, thiazole-CH₃).¹³C NMR (126 MHz, DMSO- d_{6}) δ : 180.97, 158.53, 139.29, 134.70, 132.42, 131.28, 131.02, 130.66, 128.72, 128.37, 127.64, 123.68, 19.51. HRMS (ESI) m/z for C₂₀H₁₅ BrN₂O₂S [M + H]⁺ calcd 427.0110, found 427.0112.

(E)-N-(5-(3-(3-bromophenyl)acryloyl)-4-methylthiazol-2-yl)benzamide (4e). Dark yellow solid, yield 66 %, mp 185-186 °C. ¹H NMR (500 MHz, DMSO- d_6) δ : 8.16 (d, J =6.8 Hz, 2H, Ar-H), 8.01 (s, 1H, Ar-H), 7.79 (d, J = 7.7 Hz, 1H, alkene-CH), 7.62 (d, J =8.9 Hz, 1H, alkene-CH), 7.56 – 7.40 (m, 6H, Ar-H), 2.64 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO- d_6) δ : 181.13, 170.41, 158.41, 139.17, 137.94, 133.00, 131.51, 131.22, 128.72, 128.45, 128.29, 127.63, 122.85, 19.46. HRMS (ESI) m/z for C₂₀H₁₅ BrN₂O₂S [M + H]⁺ calcd 427.0110, found 271.0111.

(E)-N-(5-(3-(4-fluorophenyl)acryloyl)-4-methylthiazol-2-yl)-4-methoxybenzamide

(4f). Light yellow solid, yield 88 %, mp 185-186 0 C. ¹H NMR (500 MHz, CDCl₃) δ : 10.91 (s, 1H, NH), 7.95 (d, J = 8.8 Hz, 2H, Ar-H), 7.78 (d, J = 15.4 Hz, 1H, alkene-CH), 7.64 (dd, J = 8.6, 5.4 Hz, 2H, Ar-H), 7.21 (d, J = 15.3 Hz, 1H, alkene-CH), 7.14 (t, J =8.6 Hz, 2H, Ar-H), 7.01 (d, J = 8.8 Hz, 2H, Ar-H), 3.90 (s, 3H, OCH₃), 2.59 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO- d_6) δ : 182.35, 166.51, 164.79, 163.14, 162.81, 156.38, 141.38, 131.66, 131.46, 131.40, 130.83, 125.51, 124.77, 116.56, 116.38, 114.29, 56.51, 55.96, 18.92. HRMS (ESI) m/z for C₂₁H₁₇FN₂O₃S [M + H]⁻ calcd 397.1017, found 397.1016.

(E)-N-(5-(3-(4-chlorophenyl)acryloyl)-4-methylthiazol-2-yl)-4-nitrobenzamide (4g). Dark yellow solid, yield 92 %, mp 202-203 0 C. ¹H NMR (500 MHz, DMSO- d_{6}) δ : 8.38 – 8.27 (m, 6H, Ar-H), 8.20 (s, 1H, Ar-H), 7.86 (d, J = 8.5 Hz, 1H, alkene-CH), 7.52 (d, J = 8.5 Hz, 1H, alkene-CH), 7.49 – 7.37 (m, 1H, Ar-H), 2.69 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO- d_{6}) δ : 180.97, 158.53, 139.29, 134.70, 132.42, 131.28, 131.02, 130.66, 128.72, 128.37, 127.64, 123.68, 19.51. HRMS (ESI) m/z for C₂₀H₁₄ ClN₃O₄S [M + H]⁻ calcd 428.0466, found 428.0464.

(E)-N-(4-methyl-5-(3-(3-nitrophenyl)acryloyl)thiazol-2-yl)benzamide (4h). Pale yellow solid, yield 92 %, mp 214-216 0 C. ¹H NMR (500 MHz, DMSO-*d*₆) δ : 13.13 (s, 1H, NH), 8.67 (s, 1H, Ar-H), 8.32 (d, *J* = 7.8 Hz, 1H, alkene-CH), 8.27 (d, *J* = 8.2 Hz, 1H, alkene-CH), 8.14 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.82 – 7.72 (m, 2H, Ar-H), 7.70 – 7.62 (m, 2H, Ar-H), 7.57 (t, *J* = 7.7 Hz, 2H, Ar-H), 2.72 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 182.59, 148.86, 140.67, 136.76, 135.08, 133.48, 130.90, 129.17, 128.80, 128.10, 125.16, 123.71, 18.83. HRMS (ESI) *m*/*z* for C₂₀H₁₅N₃O₄S [M + H]⁻ calcd 394.0856, found 394.0852.

(E)-N-(5-(3-(4-methoxyphenyl)acryloyl)-4-methylthiazol-2-yl)benzamide (4i). Pale yellow solid, yield 85 %, mp 191-193 0 C. ¹H NMR (500 MHz, CDCl₃) δ : 11.27 (s, 1H, NH), 7.97 (d, J = 7.2 Hz, 2H, Ar-H), 7.80 (d, J = 15.3 Hz, 1H, alkene-CH), 7.63 (dd, J = 14.3, 8.1 Hz, 3H, Ar-CH), 7.52 (s, 2H, Ar-CH), 7.17 (d, J = 15.3 Hz, 1H, alkene-CH), 6.97 (d, J = 8.7 Hz, 2H, Ar-CH), 3.89 (s, 3H, O-CH₃), 2.49 (s, 3H, thiazole-CH₃). ¹³C

NMR (126 MHz, CDCl₃) δ : 182.61, 165.42, 161.87, 159.52, 155.91, 143.94, 133.43, 131.69, 130.43, 129.15, 127.79, 127.29, 125.68, 122.14, 114.49, 55.47, 18.08. HRMS (ESI) m/z for HRMS (ESI) m/z for C₂₁H₁₈N₂O₃S [M + H]⁻ calcd 379.1111, found 379.1108.

(E)-N-(5-(3-(3,4-dimethoxyphenyl)acryloyl)-4-methylthiazol-2-yl)benzamide (4j). Pale yellow solid, yield 77 %, mp 159-160 0 C. ¹H NMR (500 MHz, CDCl₃) δ : 7.98 (d, *J* = 8.5 Hz, 2H, Ar-H), 7.79 (d, *J* = 15.2 Hz, 1H, alkene-CH), 7.66 (t, *J* = 7.4 Hz, 1H, Ar-H), 7.54 (t, *J* = 7.7 Hz, 2H, Ar-H), 7.24 (d, *J* = 8.3 Hz, 1H, Ar-H), 7.18 – 7.11 (m, 2H, Ar-H), 6.92 (d, *J* = 8.3 Hz, 1H, alkene-CH), 4.01 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 2.50 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, CDCl₃) δ : 182.33, 165.49, 159.62, 156.42, 153.54, 144.46, 140.62, 133.54, 131.50, 130.00, 129.17, 127.83, 125.11, 123.50, 105.83, 61.06, 56.35, 18.11. HRMS (ESI) *m/z* for C₂₂H₂₀N₂O₄S [M + H]⁻ calcd 409.1217, found 409.1216.

(E)-N-(4-methyl-5-(3-(3,4,5-trimethoxyphenyl)acryloyl)thiazol-2-yl)benzamide (4k). Light yellow solid, yield 81 %, mp 180-182 0 C. ¹H NMR (500 MHz, CDCl₃) δ : 8.01 (d, *J* = 7.3 Hz, 2H, Ar-H), 7.76 (d, *J* = 15.2 Hz, 1H, alkene-CH), 7.66 (t, *J* = 7.4 Hz, 1H, Ar-H), 7.55 (t, *J* = 7.8 Hz, 2H, Ar-H), 7.16 (d, *J* = 15.2 Hz, 1H, alkene-CH), 6.87 (s, 2H, Ar-H), 3.97 (s, 6H, OCH₃), 3.93 (s, 3H, OCH₃), 2.57 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, CDCl₃) δ : 182.44, 165.51, 159.54, 155.83, 151.67, 149.33, 144.49, 133.53, 131.56, 129.18, 127.83, 127.48, 125.38, 123.73, 122.08, 111.10, 109.94, 56.13, 56.05, 30.51, 18.02. HRMS (ESI) *m/z* for C₂₃H₂₂N₂O₅S [M + H]⁻ calcd 439.1322, found 439.1318.

(E)-N-(4-methyl-5-(3-p-tolylacryloyl)thiazol-2-yl)benzamide (4l). Light yellow solid, yield 90 %, mp 168-170 0 C. ¹H NMR (500 MHz, CDCl₃) δ : 11.40 (s, 1H, NH), 7.97 (d, J

= 8.4 Hz, 2H, Ar-H), 7.81 (d, J = 15.3 Hz, 1H, alkene-CH), 7.65 (t, J = 7.4 Hz, 1H, Ar-H), 7.54 (q, J = 7.8 Hz, 4H, Ar-H), 7.28 – 7.20 (m, 3H, Ar-H, alkene-CH), 2.47 (s, 3H, thiazole-CH₃), 2.42 (s, 3H, Ar-CH₃). ¹³C NMR (126 MHz, CDCl₃) δ : 182.64, 165.55, 159.78, 156.14, 144.22, 141.37, 133.46, 131.80, 131.70, 129.77, 129.15, 128.66, 127.84, 125.56, 123.42, 21.60, 18.09. HRMS (ESI) m/z for C₂₁H₁₈N₂O₂S [M + H]⁻ calcd 363.1162, found 363.1156.

(E)-4-fluoro-N-(4-methyl-5-(3-p-tolylacryloyl)thiazol-2-yl)benzamide (4m). Light yellow solid, yield 95 %, mp 183-185 0 C. ¹H NMR (500 MHz, DMSO-*d*₆) δ : 13.10 (s, 1H, NH), 8.21 (s, 2H, Ar-H), 7.72 (d, *J* = 7.6 Hz, 2H, Ar-H), 7.66 (d, *J* = 15.4 Hz, 1H, alkene-CH), 7.39 (d, *J* = 15.9 Hz, 3H, Ar-H, alkene-CH), 7.29 (d, *J* = 7.4 Hz, 2H, Ar-H), 2.70 (s, 3H, thiazole-CH₃), 2.36 (s, 3H, Ar-CH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 182.82, 166.35, 164.36, 143.37, 141.26, 132.11, 131.76, 131.68, 130.13, 129.24, 124.19, 116.32, 116.15, 21.56, 18.66.

HRMS (ESI) m/z for C₂₁H₁₇FN₂O₂S [M + H]⁻ calcd 381.1068, found 381.1062.

(E)-4-methoxy-N-(4-methyl-5-(3-p-tolylacryloyl)thiazol-2-yl)benzamide (4n). Light yellow solid, yield 92 %, mp 207-209 0 C. ¹H NMR (500 MHz, DMSO- d_{6}) δ : 12.88 (s, 1H, NH), 8.14 (d, J = 8.9 Hz, 2H, Ar-H), 7.70 (d, J = 8.1 Hz, 2H, Ar-H), 7.65 (d, J = 15.4 Hz, 1H, alkene-CH), 7.37 (d, J = 15.4 Hz, 1H, alkene-CH), 7.27 (d, J = 8.0 Hz, 2H, Ar-H), 7.09 (d, J = 9.0 Hz, 2H, Ar-H), 3.86 (s, 3H, OCH₃), 2.69 (s, 3H, thiazole-CH₃), 2.35 (s, 3H, Ar-CH₃). ¹³C NMR (126 MHz, DMSO- d_{6}) δ : 182.76, 163.49, 143.22, 141.21, 132.11, 130.91, 130.11, 129.20, 124.21, 114.47, 56.04, 21.56, 18.75. HRMS (ESI) m/z for C₂₂H₂₀N₂O₃S [M + H]⁻ calcd 393.1267, found 393.1265.

(E)-N-(4-methyl-5-(3-p-tolylacryloyl)thiazol-2-yl)-4-nitrobenzamide (4o). Yellow solid, yield 87 %, mp 208-210 0 C. ¹H NMR (500 MHz, DMSO-*d*₆) δ : 8.28 (d, *J* = 9.0 Hz, 3H, Ar-H), 8.19 (s, 2H, Ar-H), 7.66 (d, *J* = 7.7 Hz, 2H, Ar-H), 7.58 (d, *J* = 16.1 Hz, 1H, alkene-CH), 7.36 (d, *J* = 15.5 Hz, 1H, alkene-CH), 7.28 (d, *J* = 7.9 Hz, 2H, Ar-H), 2.65 (s, 3H, thiazole-CH₃), 2.35 (s, 3H, Ar-CH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 184.47, 130.15, 130.02, 128.98, 124.51, 123.82, 21.52, 19.04. HRMS (ESI) *m*/*z* for C₂₁H₁₇N₃O₄S [M + H]⁺ calcd 408.1013, found 408.1013.

(E)-N-(5-(3-(4-(dimethylamino)phenyl)acryloyl)-4-methylthiazol-2-yl)benzamide

(**4p**). Fluorescent yellow solid, yield 82 %, mp 174-176 ^oC. ¹H NMR (500 MHz, CDCl₃) δ : 11.41 (s, 1H, NH), 7.98 – 7.93 (m, 3H, Ar-H), 7.80 (d, J = 15.1 Hz, 1H, alkene-CH), 7.64 (t, J = 7.4 Hz, 1H, Ar-H), 7.56 – 7.50 (m, 4H, Ar-H), 7.09 (d, J = 15.1 Hz, 1H, alkene-CH), 6.71 (d, J = 8.8 Hz, 1H, Ar-H), 3.08 (s, 3H, thiazole-CH₃), 2.55 (s, 3H, N-CH₃), 2.37 (s, 3H, N-CH₃). ¹³C NMR (126 MHz, CDCl₃) δ : 190.71, 182.70, 165.54, 159.99, 159.41, 155.17, 155.00, 152.21, 145.11, 133.43, 133.33, 131.89, 131.68, 130.65, 129.11, 127.82, 126.07, 125.39, 122.27, 119.10, 111.83, 40.15, 30.51, 17.82. HRMS (ESI) m/z for C₂₂H₂₁N₃O₂S [M + H]⁻ calcd 392.1427, found 392.1425.

(E)-N-(5-(3-(4-(dimethylamino)phenyl)acryloyl)-4-methylthiazol-2-yl)-4-

fluorobenzamide (**4q**). Dark yellow solid, yield 86 %, mp 212-213 ^oC. ¹H NMR (500 MHz, DMSO-*d*₆) δ : 13.02 (s, 1H, NH), 8.28 – 8.12 (m, 4H, Ar-H), 7.63 (d, *J* = 9.2 Hz, 1H, alkene-CH), 7.46 – 7.31 (m, 4H, Ar-H), 6.74 (d, *J* = 8.8 Hz, 1H, alkene-CH), 3.35 (s, 6H, N-CH₃), 3.01 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 191.23, 182.46, 166.34, 164.34, 152.50, 144.54, 131.67, 131.10, 122.01, 119.11, 116.30, 116.13,

112.27, 111.53, 30.58, 18.40. HRMS (ESI) m/z for C₂₂H₂₀FN₃O₂S [M + H]⁻ calcd 410.1333, found 410.1328.

(E)-N-(5-(3-(furan-2-yl)acryloyl)-4-methylthiazol-2-yl)benzamide (4r). Pale yellow solid, yield 81 %, mp 185-186 °C. ¹H NMR (500 MHz, DMSO- d_6) δ : 13.11 (s, 1H, NH), 8.13 (d, J = 7.2 Hz, 2H, Ar-H), 7.92 (d, J = 1.4 Hz, 1H, furan-H), 7.67 (t, J = 7.4 Hz, 1H, Ar-H), 7.57 (t, J = 7.7 Hz, 2H, Ar-H), 7.53 (d, J = 15.2 Hz, 1H, alkene-CH), 7.13 (d, J = 15.2 Hz, 1H, alkene-CH), 7.10 (d, J = 3.4 Hz, 1H, furan-H), 6.70 (dd, J = 3.4, 1.8 Hz, 1H, furan-H), 2.69 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO- d_6) δ : 181.94, 151.25, 146.81, 133.52, 129.79, 129.18, 128.80, 121.73, 117.85, 113.65, 18.72. HRMS (ESI) m/z for C₁₈H₁₄N₂O₃S [M + H]⁻ calcd 339.0796, found 339.0794.

(E)-4-fluoro-N-(5-(3-(furan-2-yl)acryloyl)-4-methylthiazol-2-yl)benzamide (4s). Yellow solid, yield 97 %, mp 126-128 ⁰C. ¹H NMR (500 MHz, DMSO-*d*₆) δ : 13.11 (s, 1H, NH), 8.21 (dd, *J* = 8.9, 5.4 Hz, 2H, Ar-H), 7.92 (d, *J* = 1.4 Hz, 1H, furan-H), 7.52 (d, *J* = 15.2 Hz, 1H, alkene-CH), 7.41 (t, *J* = 8.8 Hz, 2H, Ar-H), 7.12 (d, *J* = 15.2 Hz, 1H, alkene-CH), 7.09 (d, *J* = 3.4 Hz, 1H, furan-H), 6.70 (dd, *J* = 3.4, 1.8 Hz, 1H, furan-H), 2.69 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 181.92, 166.37, 164.37, 151.25, 146.79, 131.77, 131.70, 129.79, 121.71, 117.82, 116.34, 116.16, 113.63, 18.68. HRMS (ESI) *m*/*z* for C₁₈H₁₃FN₂O₃S [M + H]⁻ calcd 357.0704, found 357.0701.

(E)-N-(4-methyl-5-(3-(thiophen-2-yl)acryloyl)thiazol-2-yl)benzamide (4t). Light yellow solid, yield 77 %, mp 184-186 0 C. ¹H NMR (500 MHz, CDCl₃) δ : 11.40 (s, 1H, NH), 7.98 – 7.93 (m, 3H, Ar-H, alkene-CH), 7.65 (t, J = 7.4 Hz, 1H, Ar-H), 7.53 (t, J = 7.8 Hz, 2H, Ar-H), 7.47 (d, J = 5.0 Hz, 1H, thiofene-H), 7.38 (d, J = 3.5 Hz, 1H, thiofene-H), 7.12 (dd, J = 5.0, 3.7 Hz, 1H, thiofene-H), 7.07 (d, J = 15.0 Hz, 1H, alkene-

CH), 2.46 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, CDCl₃) δ : 182.10, 165.57, 159.85, 156.15, 140.00, 136.55, 133.49, 132.36, 131.66, 129.27, 129.16, 128.41, 127.84, 125.47, 123.13, 18.08. HRMS (ESI) m/z for C₁₈H₁₄N₂O₂S₂ [M + H]⁻ calcd 355.0569, found 355.0566.

(E)-4-fluoro-N-(4-methyl-5-(3-(thiophen-2-yl)acryloyl)thiazol-2-yl)benzamide (4u). Light yellow solid, yield 86 %, mp 211-213 0 C. ¹H NMR (500 MHz, DMSO-*d*₆) δ : 13.11 (s, 1H, NH), 8.21 (dd, *J* = 8.9, 5.4 Hz, 2H, Ar-H), 7.86 (d, *J* = 15.2 Hz, 1H, alkene-CH), 7.79 (d, *J* = 5.0 Hz, 1H, thiofene-H), 7.66 (d, *J* = 3.4 Hz, 1H, thiofene-H), 7.40 (t, *J* = 8.8 Hz, 2H, Ar-H), 7.20 (dd, *J* = 5.0, 3.7 Hz, 1H, thiofene-H), 7.09 (d, *J* = 15.1 Hz, 1H, alkene-CH), 2.68 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 182.01, 166.37, 164.36, 139.85, 136.07, 133.54, 131.76, 131.69, 130.81, 129.32, 123.40, 116.33, 116.15, 18.62. HRMS (ESI) *m*/*z* for C₁₈H₁₃FN₂O₂S₂ [M + H]⁺ calcd 373.0475, found 373.0475.

(E)-N-(5-(3-(6-bromobenzo[d][1,3]dioxol-5-yl)acryloyl)-4-methylthiazol-2-

yl)benzamide (4v). Yellow solid, yield 95 %, mp 203-205 °C. ¹H NMR (500 MHz, DMSO- d_6) δ : 8.14 (d, J = 7.2 Hz, 2H, methylenedioxy Ar-H), 7.84 (d, J = 15.2 Hz, 1H, alkene-CH), 7.72 (s, 1H, alkene-CH), 7.59 (t, J = 7.2 Hz, 1H, Ar-H), 7.52 (t, J = 7.5 Hz, 2H, Ar-H), 7.38 (d, J = 13.8 Hz, 2H, Ar-H), 6.18 (s, 2H, dioxy-CH₂), 2.67 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO- d_6) δ : 150.64, 148.41, 139.71, 128.81, 128.75, 127.80, 126.94, 118.30, 113.30, 107.54, 103.12, 19.15. HRMS (ESI) m/z for C₂₁H₁₅BrN₂O₄S [M + H]⁻ calcd 471.0009, found 471.0003.

(E)-N-(5-(3-(6-bromobenzo[d][1,3]dioxol-5-yl)acryloyl)-4-methylthiazol-2-yl)-4fluorobenzamide (4w). Dark yellow solid, yield 94 %, mp 217-219 ^oC. ¹H NMR (500

MHz, DMSO- d_6) δ : 8.21 (dd, J = 8.7, 5.6 Hz, 2H, methylenedioxy Ar-H), 7.85 (d, J = 15.2 Hz, 1H, alkene-CH), 7.72 (s, 1H, alkene-CH), 7.36 (d, J = 3.6 Hz, 4H, Ar-H), 6.17 (s, 2H, dioxy-CH₂), 2.68 (s, 3H, thiazole-CH₃). ¹³C NMR (126 MHz, DMSO- d_6) δ : 181.89, 150.66, 148.51, 139.82, 131.52, 131.44, 127.75, 126.79, 118.35, 115.89, 115.72, 113.28, 107.53, 103.13, 19.08. HRMS (ESI) m/z for C₂₁H₁₄ BrFN₂O₄S [M + H]⁺ calcd 488.9914, found 488.9914.

3. ¹H and ¹³C NMR spectra for the target compounds (4a-w):

¹³C NMR spectrum of **4d** (126 MHz, DMSO-*d*₆)

¹H NMR spectrum of 4e (500 MHz, DMSO- d_6)

¹³C NMR spectrum of **4f** (126 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 4g (126 MHz, DMSO- d_6)

4h

- 13.13

0.91-I

13

14

- 182.59

150 140 130 120 110 100 f1 (ppm)

90 80 70

15

TC19 (4h)

200

190

180

170 160

TC19 (4h)

-50000

an **i** Maria

0

hilling

40

30

50

60

20 10

¹³C NMR spectrum of **4h** (126 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 4i (126 MHz, CDCl₃)

¹H NMR spectrum of **4l** (500 MHz, CDCl₃)

¹H NMR spectrum of **4m** (500 MHz, DMSO-*d*₆)

¹H NMR spectrum of **4q** (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **4s** (126 MHz, DMSO-*d*₆)

4t

4. HRMS spectra for the target compounds (4a-w):

$4a : C_{20}H_{16}N_2O_2S$

$4b: C_{20}H_{15}FN_2O_2S$

4c : C₂₀H₁₅ClN₂O₂S

$4d: C_{20}H_{15}BrN_2O_2S$

$4e: C_{20}H_{15}BrN_2O_2S$

4f : C₂₁H₁₇FN₂O₃S

4g:C20H14ClN3O4S

4h : C₂₀H₁₅N₃O₄S

4i : C₂₁H₁₈N₂O₃S

4j : C₂₂H₂₀N₂O₄S

4k : C₂₃H₂₂N₂O₅S

$4l:C_{21}H_{18}N_2O_2S$

4m : C₂₁H₁₇FN₂O₂S

$4n : C_{22}H_{20}N_2O_3S$

4p:C₂₂H₂₁N₃O₂S

4q:C22H20FN3O2S

$4r : C_{18}H_{14}N_2O_3S$

4s : C₁₈H₁₃FN₂O₃S

$4t: C_{18}H_{14}N_2O_2S_2$

4u : C₁₈H₁₃FN₂O₂S₂

$4v : C_{21}H_{15}BrN_2O_4S$

 $4w: C_{21}H_{14}BrFN_2O_4S$

5. Docking protocol, images and PDB ID number

The software used for docking was Molecular operating environment (MOE; version 2016.0801, Chemical Computing Group, Suite 910, Canada). The X-ray crystal structure of protein 5-LOX was obtained from Protein Data Bank (PDB Code: 308Y). The protein structure was then processed for protein preparation by removing duplicate chain B, excess water molecules and non-receptor ions. In the next step, kollmann charges were assigned and polar hydrogens were added. Then, energy of the protein was minimized to a least possible energy state using AMBER99 force field. Ligand preparation was done by drawing their structures in MOE and minimizing energies to the lowest energy state using MMFF94x force field. The active site of the enzyme 5-LOX was selected as per previous literature reports comprising of amino acids: Trp147, Phe177, Tyr181, Thr364, His367, Leu373, Ile406, Asn407, Leu414, Leu420, Phe421, His432, His550, Trp599, His600, Ala606, Ile673.¹ In the selected active site, the ligands **4n** and **4v** were docked and the binding energy was calculated using LondondG and GBVI/WSAdG rescoring methodologies. The ligand-receptor interaction was analysed for the best fit pose and the lowest binding energy with H-bonds.

Ref. 1. Gilbert, N. C.; Bartlett, S. G.; Waight, M. T.; Neau, D. B.; Boeglin, W. E.; Brash, A. R.; Newcomer, M. E. The structure of human 5-lipoxygenase. *Science* **2011**, 331, 217-219.

Figure1. Docked pose of compound **4n** in stick model with enzyme 5-LOX (PDB Code: 308Y) (a) black (b) white background with ionic interactions.

Figure2. Docked pose of compound **4v** in stick model with enzyme 5-LOX (PDB Code: 308Y) (a) black (b) white background with ionic interactions.

6. Experimental section of biological activity

Arachidonic acid, Zileuton and 13(S) HpODE) and were obtained from Cayman Chemicals (Inalco, Milan, Italy). 5-LOX-pT3 plasmid was received as a generous gift from Prof. Olof Rådmark, Karolinska Institute, Stockholm, Sweden.

Expression of Recombinant 5-LOX Enzyme. The expression and purification of human recombinant 5-LOX were performed as per previously reported methodology.^{1,2} 5-LOX in a pT3 plasmid was transformed into E. coli BL21 bacteria and grown overnight with 150 µg/mL ampicillin in LB medium at 37 °C. The culture was induced with 0.5 mM of isopropyl-D-thiogalactopyranoside (IPTG) when OD_{600} attained between 0.5-1. The medium was shaked overnight at 18 °C and cells were pelleted out at 5000 rpm and 4 °C by centrifugation (Centrifuge 5804 R, Eppendorf AG). Cell pellets were incubated for lysis in buffer solution of 50 mM of triethanolamine/HCl at a pH 8.0 containing 5 mM of ethylenediaminetetraacetic acid (EDTA), 1 mM of phenylmethylsulphonylfluoride (PMSF), 60 µg/mL of trypsin inhibitor and 500 µg/mL of lysozyme. Further, sonication for 42 s and centrifugation (Centrifuge 5418 R, Eppendorf AG) at 19000 × g and 4 °C for 15 min of cell lysate were performed. The supernatant collected was precipitated with 50 % w/v ammonium sulphate solution, centrifuged at $16000 \times g$ and $4 \degree C$ for 30 min and pellet was resuspended in Phosphate buffered saline (PBS) containing 1 mM EDTA and 1 mM PMSF. Further supernatant collected from centrifugation at 100000 x g and 4 $^{\circ}$ C for 70 min were immediately used for 5-LOX enzyme activity assays.

In vitro 5-LOX Inhibition Assay. The activity of enzyme was measured in cell free determining the product, 5(S)-hydroperoxy-6-trans-8,11,14-cissystem by eicosatetraenoic acid (5-HPETE) converted from AA in presence of 5-LOX at λ_{236} . An assay reaction mixture used for 5-LOX inhibition studies was 25 mM of HEPES buffer, 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (pH 7.3) containing 10 mM of CaCl₂, 0.4 M of ethylenediaminetetraacetic acid (EDTA), 4 mM of adenosine 5'triphosphate (ATP). Test compounds were dissolved in DMSO (2 % v/v) for the assay. For 5-LOX enzyme activity assay, test compound (10 μ M) was mixed in the assay buffer and reaction was started by the addition of the substrate AA (30 μ M). The UV absorbance was taken at λ_{max} , 236 nm (Jasco V-550 UV–vis spectrophotometer) for the activity which was measured in terms of the product, 5-HPETE formed from AA. The positive control used was Zileuton. IC₅₀ of the active compounds were determined using GraphPad Prism version 5.01. Each assay was repeated three times and means \pm SEM were determined.

Kinetics of 5-LOX Enzyme. The kinetics of enzyme inhibition was determined to elucidate the mode of action of inhibitors. The methodology followed was same as 5-LOX activity assay with varying substrate (AA) concentration between 1–30 μ M and three different constant concentrations (0, 2 and 5 μ M) of inhibitors, **4k**, **4n** and **4v**.³ Lineweaver–Burk plot was plotted against rate of reaction and substrate concentrations. K_m and V_{max} values were determined from the non-linear curve fitting graphs. Calculations were done in GraphPad Prism 5.01. All assays were performed thrice.

Pseudoperoxidase Activity Assay. The redox behaviour of inhibitors is determined by pseudoperoxidase activity assay in presence of enzyme 5-LOX and substrate 13-HPODE.

The activity is measured at 234 nm (Jasco V-550 UV-Vis spectrophotometer) in terms of UV absorbance. The decrease in the amount of the substrate 13-HPODE with respect to time is the measure of redox nature of inhibitors. The assay buffer used is 50 mM potassium phosphate (pH 7.4) containing 0.1 mM EDTA, 0.3 mM CaCl₂, 200 μ M ATP. The reaction was started by the addition of same concentration, 10 μ M of inhibitor and substrate (1:1 ratio to 13-HPODE).^{4,5} Standard used for this assay is one of the known redox inhibitors, Zileuton.

Radical Scavenging Assay. DPPH radical scavenging property of inhibitors was evaluated using 10 μ M of test compounds, and 0.1 mM of methanolic solution of DPPH.⁶ The mixture was incubated for 30 min in dark at room temperature and absorbance taken at 517 nm in Multimode Plate reader (Enspire Perkin Elmer, version 4.10.3005.1440). Ascorbic acid was used as positive control. Each assay was done in triplicates and data are expressed as mean ± SEM. The antioxidant behaviour was calculated in terms of percentage using formula:

% Inhibi<u>tion = $(A_0 - A_t)$ x 100 A₀ where, A₀ = absorbance of blank and A_t = absorbance of test compound .</u>

Pharmacophore Model Elucidation. The essential features in the active molecules required for biological activity was evaluated through pharmacophore modeling and elucidation studies. The software used was MOE; version 2016.0801, Chemical Computing Group, Quebec, Canada. All the chemical structures were drawn and their energies minimized in MOE. A conformational library of all the structures has been generated. A pharmacophore model was developed from the known inhibitors for the common essential features. Then a pharmacophore search against Ph model was

performed on pharmacophore editor in MOE for pharmacophore mapping of the hit molecules.⁷ The results obtained were saved in .ph4 format and viewed using database viewer.

References

- Zhang, Y. Y.; Rådmark, O.; Samuelsson, B. Mutagenesis of some conserved residues in human 5lipoxygenase: effects on enzyme activity. Proceedings of the National Academy of Sciences 1992, 89, 485-489.
- Fischer, L.; Szellas, D.; RÅDMARK, O.; Steinhilber, D.; Werz, O. Phosphorylation-and stimulusdependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors. The FASEB journal 2003, 17, 949-951.
- Ribeiro, D.; Freitas, M.; Tomé, S. M.; Silva, A. M.; Porto, G.; Cabrita, E. J.; Marques, M. M. B.; Fernandes, E. Inhibition of LOX by flavonoids: a structure–activity relationship study. European journal of medicinal chemistry 2014, 72, 137-145.
- 4. Falgueyret, J.-P.; Hutchinson, J. H.; Riendeau, D. Criteria for the identification of non-redox inhibitors of 5-lipoxygenase. Biochemical pharmacology 1993, 45, 978-981.
- Hoobler, E. K.; Rai, G.; Warrilow, A. G.; Perry, S. C.; Smyrniotis, C. J.; Jadhav, A.; Simeonov, A.; Parker, J. E.; Kelly, D. E.; Maloney, D. J. Discovery of a novel dual fungal CYP51/human 5lipoxygenase inhibitor: implications for anti-fungal therapy. PloS one 2013, 8, e65928.
- Greiner, C.; Hörnig, C.; Rossi, A.; Pergola, C.; Zettl, H.; Schubert-Zsilavecz, M.; Steinhilber, D.; Sautebin, L.; Werz, O. 2-(4-(Biphenyl-4-ylamino)-6-chloropyrimidin-2-ylthio) octanoic acid (HZ52)–a novel type of 5-lipoxygenase inhibitor with favourable molecular pharmacology and efficacy in vivo. British journal of pharmacology 2011, 164, 781-793.
- Aparoy, P.; Reddy, K. K.; Kalangi, S. K.; Reddy, T. C.; Reddanna, P. Pharmacophore modeling and virtual screening for designing potential 5-Lipoxygenase inhibitors. Bioorganic & medicinal chemistry letters 2010, 20, 1013-1018.

7. In silico pharmacokinetic parameters from Swiss ADME software

In silico study including pharmacokinetic parameters has been done using Swiss ADME

(http://www.swissadme.ch) software. The active inhibitors are having more total polar

surface area (TPSA) than Zileuton (Table 3 in manuscript), indicating chances of less adverse effects in compounds (http://www.asteris-app.com/technical-info/core-properties/logp.htm). The inhibitors also followed Lipinski rule of five as well as Ghose, Veber, Egan, Muegge rules signifying that they have good druglikeness properties along with $C \log P$ value more than Zileuton indicating their higher lipophilic nature.

The preliminary experimental study for **4k**, **4n** and **4v** in normal L929 (mouse fibroblast) cells showed no cytotoxicity below 1 μ M inhibitor concentration. Hence, these molecules could be explored further for in vivo related studies in future as potential anti-inflammatory agents targeting 5-LOX.

In silico pharmacokinetic parameters of **4k** in pictorial form as below as obtained from Swiss ADME software:

TT 🙂 🅢				Water Solubility
H.C.	UPO		Log S (ESOL) 1	-5.23
a L			Solubility	2.58e-03 mg/ml ; 5.88e-06 mol/l
HC II	FLEX	SIZE	Class 📀	Moderately soluble
i i l			Log S (Ali) 😣	-6.68
ľ			Solubility	9.22e-05 mg/ml ; 2.10e-07 mol/l
E.			Class 🥹	Poorly soluble
	INSATU	POLAR	Log S (SILICOS-IT) 🕖	-7.02
			Solubility	4.15e-05 mg/ml ; 9.46e-08 mol/l
<_>>			Class 🔞	Poorly soluble
	INSOLU			Pharmacokinetics
SMILES COc1cc(/C=C/C(=O)c2sc(nc2C)NC(=O)c2cccc2)cc(c1OC)OC		GI absorption ⁶⁹	High
Physicochemical Properties			BBB permeant 😣	No
Formula	C23H22N2O5S		P-gp substrate 🔞	No
Molecular weight	438.50 g/mol		CYP1A2 inhibitor 0	No
Num. heavy atoms	31		CYP2C19 inhibitor 😣	Yes
Num. arom. heavy atoms	17		CYP2C9 inhibitor 😣	Yes
Fraction Csp3	0.17		CYP2D6 inhibitor 😣	No
Num. rotatable bonds	9		CYP3A4 inhibitor 📀	Yes
Num. H-bond acceptors	6		Log K. (skin permeation) 0	-5.75 cm/s
Num. H-bond donors	1			Druglikeness
Molar Refractivity	120.58		Lininski 🔞	Yes: 0 violation
TPSA 🤨	114.99 Ų		Ghose @	Yes
Lipophilicity			Veher 🖗	Ves
Log P _{o/w} (iLOGP) 🔞	3.45		Fran O	Voc
Log P _{olw} (XLOGP3) 📀	4.54		Lyan 🐱	Vac
Log P _{olw} (WLOGP) 😣	g P _{olw} (WLOGP) 4.33 g P _{olw} (MLOGP) 1.69		Niucyyc 🐱	0.66
Log Poly (MLOGP) 1			bioavaliability Score 😈	0.00 Medicinal Chemistry
Log P (SILICOS-IT) 0	5.49		DAING 0	0 alort
			FAINO 🐨	Ualcit

4k