
Supplementary Document

James M. Holt et al.

August 6, 2019

Contents

1 Overall Workflow 2

2 Model Features 3
2.1 Overview . 3
2.2 Phenotype Features . 3

2.2.1 HPO-cosine . 3
2.2.2 PyxisMap . 3

2.3 Codicem Features . 3

3 Hyperparameter Tuning 6
3.1 Tuning method . 6
3.2 Tuning results . 6

4 External Tools 8
4.1 Exomiser . 8

4.1.1 Installation . 8
4.1.2 Execution . 8

4.2 Phen-Gen . 8
4.2.1 Installation . 8
4.2.2 Execution . 8

4.3 DeepPVP . 8
4.3.1 Installation . 8
4.3.2 Execution . 9

5 Results Extended 10
5.1 Ranking Boxplot . 10

6 Codicem Filtering 11
6.1 Total Depth filter . 11
6.2 Percentage of Reads Supporting Allele filter. 11
6.3 Population Allele Frequency filter. 11
6.4 HGMD, ClinVar, CADD, and Effects filter . 11
6.5 Gene Has Associated Disease filter . 11
6.6 Red Herring filter . 11
6.7 Repeats filter . 11
6.8 Unknowns filter . 19
6.9 Near Splice filter . 19

1

1 Overall Workflow

Figure 1 contains a visualization of the overall workflow for training VarSight models. For details, refer to
the main paper.

Figure 1: Training Workflow. This is a visualization of the workflow for training VarSight models.

2

2 Model Features

2.1 Overview

There are a total of 50 features used as inputs to the models. Two of those features are phenotype-based fea-
tures and the remaining 48 are derived from Codicem (http://envisiongenomics.com/codicem-analysis-platform/)
extractions.

2.2 Phenotype Features

For both methods, we relied on annotations and ontological structures provided by the Human Phenotype
Ontology (HPO). Specifically, we used the hp.obo and ALL_SOURCES_ALL_FREQUENCIES_phenotype_to_

genes.txt corresponding to data version releases/2018-10-09.

2.2.1 HPO-cosine

The first phenotype feature is called the “HPO-cosine” score. Given P terms in the HPO, a phenotype profile
is represented by an P -dimensional vector where dimension p is set to 1.0 if the corresponding phenotype
term is present in the profile. Note that if a phenotype is present in the profile, all ancestor terms as defined
by the ontology are automatically set as present as well. Given two profiles, we calculate the “HPO-cosine”
score by performing the dot product calculation on the vectors and normalizing by their lengths. Using this
measure, values close to 1.0 are highly similar (the vectors are “pointing” in similar directions) whereas those
close to 0.0 are not (the vectors are mostly perpendicular).

For each gene, we created a phenotype profile based on the HPO annotations relating genes to pheno-
types. For each patient, we created a phenotype profile and calculated the cosine score between the patient
profile and all genes to create an ordered rank from 1 to G, where G is the total number of genes anno-
tated by the HPO. For each variant, we then found the smallest rank, R, of genes tied to the variant and
stored the normalized value (R

G) as the “HPO-cosine” feature tied to the variant. For precise implementa-
tion details, please refer to the source code (https://github.com/HudsonAlpha/VarSight/blob/master/
scripts/HPOUtil.py).

2.2.2 PyxisMap

The second phenotype is derived from PyxisMap (https://github.com/HudsonAlpha/LayeredGraph). We
derived our data from PyxisMap v1.2 and we ran the standard installation script that downloads all required
data sources on December 19, 2018.

To run PyxisMap, we passed in the patient phenotype terms and obtained an ordered rank of all genes.
For each variant, we then selected the best rank from genes tied to the variant, normalized the rank, and
stored it as the “PyxisMap” feature tied to the variant. Note that this process is identical to how ranks were
handled in the “HPO-cosine” feature. For precise implementation details, please refer to the source code
(https://github.com/HudsonAlpha/VarSight/blob/master/scripts/PyxisMapUtil.py).

2.3 Codicem Features

Codicem annotates each variant using many different data sources. We selected the annotations that we
believed were most frequently used by analysts when reviewing a case. Each annotation is assigned a feature
type corresponding to how that annotation was turned into a feature for the models:

1. float - The feature is a single value floating-point decimal that is copied from the annotation.

2. single - The annotation is a categorical field with a single value per variant. Each allowed value is
assigned a numerical value, and that value is used as the feature.

3. multiple - The annotation is a categorical field with multiple values per variant. The total number of
occurrences of each allowed value is calculated per variant and each is stored as a feature. This is the
only annotation type resulting in multiple features per variant.

3

4. float reduce - The annotation is a floating-point decimal with multiple values per variant. These float
values are combined using a reduction method (typically, minimum or maximum as defined by the
JSON configuration) and the single-value result of this reduction is used as the feature.

The JSON describing features is available on GitHub (https://github.com/HudsonAlpha/VarSight/
blob/master/CODI_metadata/fields_metadata.json), and a selection of that information is reproduced
here. Table 1 contains a list of each Codicem annotations that was automatically generated from the JSON.

Feature Label Feature Type Description

percent reads
float The percentage of reads containing the alternate allele

at a variant site.
total depth float The total number of reads covering a variant site.
CADD Scaled float The phred-scaled version of the CADD score that es-

timates the pathogenicity of a variant in the human
genome.

phylop conservation float The PhyloP conservation score is a measure of evo-
lutionary conservation at an individual genomic site.
This value is the 46-way PhyloP conservation score
that uses the alignments of 45 vertebrate species to
the human genome.

phylop100 conserva-
tion

float The PhyloP conservation score is a measure of evo-
lutionary conservation at an individual genomic site.
This value is the 100-way PhyloP conservation score
that uses the alignments of 99 vertebrate species to the
human genome.

phastcon100 conser-
vation

float The PhastCon conservation score is a measure of evo-
lutionary conservation that factors in surrounding nu-
cleotides (as opposed to a single base). This value
is the 100-way PhastCon conservation score that uses
the alignments of 99 vertebrate species to the human
genome.

Mappability float Mappability is a measure of how unique a location in
the genome is based on the surrounding 100bp region.
Low mappability may cause issues during alignment
and lead to false positives/negatives during variant
calling.

GERP rsScore float The GERP rejected substitutions score identifies sites
in the genome that are under some functional con-
straint measured by the absence of substitutions at
the site.

Gnomad Exome AF float GnomAD is a population frequency database. This
value corresponds to the allele frequency in the exome
portion of the dataset.

Gnomad Exome Hom
alt allele count

float GnomAD is a population frequency database. This
value corresponds to the number of homozygous alter-
nate calls in the exome portion of the dataset.

Gnomad Exome
Hemi alt allele count

float GnomAD is a population frequency database. This
value corresponds to the number of hemizygous alter-
nate calls in the exome portion of the dataset.

Gnomad Exome total
allele count

float GnomAD is a population frequency database. This
value corresponds to the number of alleles called in
the exome portion of the dataset.

4

Feature Label Feature Type Description
Gnomad Genome AF float GnomAD is a population frequency database. This

value corresponds to the allele frequency in the genome
portion of the dataset.

Gnomad Genome
Hom alt allele count

float GnomAD is a population frequency database. This
value corresponds to the number of homozygous alter-
nate calls in the genome portion of the dataset.

Gnomad Genome
Hemi alt allele count

float GnomAD is a population frequency database. This
value corresponds to the number of hemizygous alter-
nate calls in the genome portion of the dataset.

Gnomad Genome to-
tal allele count

float GnomAD is a population frequency database. This
value corresponds to the number of alleles called in
the genome portion of the dataset.

Type single This value stores the type of variant (SNV, insertion,
or deletion).

HGMD assessment
type

multiple HGMD is a database storing germline mutations re-
lated to human inherited disease. This value corre-
sponds to the assessment of how damaging the muta-
tion was.

HGMD association
confidence

multiple HGMD is a database storing germline mutations re-
lated to human inherited disease. This value corre-
sponds to how confident the assessment of the muta-
tion was.

ClinVar Classifica-
tion

multiple ClinVar is a database storing relationships between hu-
man variation and phenotype. This value corresponds
to the classification of how damaging a particular vari-
ant was.

Ensembl Regulatory
Feature

multiple Ensembl regulatory features contains information re-
garding if a variant is impacting annotating promoters,
enhancers, etc.

variant attribute multiple This value contains whether a variant lies in a simple
repeat or other low complexity region in the genome.

RVIS Score float reduce The Residual Variation Intolerance Score is a measure
of how intolerant to variation a particular gene is in
the human genome.

GHIS Score float reduce The Genome-wide Haplo-Insufficiency Score is a mea-
sure of gene haploinsufficiency calculated in Stein-
berg et al., 2015 (https://doi.org/10.1093/nar/
gkv474).

HIS Score float reduce This Haplo-Insufficiency Score is a measure of
gene haploinsufficiency calculated in Huang et al.,
2010 (https://doi.org/10.1371/journal.pgen.
1001154).

Essentiality multiple Essentiality is a measure of how essential a gene is for
humans based on comparison to orthologs in mouse
defined in Georgi et al., 2013 (https://doi.org/10.
1371/journal.pgen.1003484).

ADA Boost Splice
Prediction

float reduce ADA Boost Splice Prediction is a measure of the im-
pact of a variant on splicing using adaptive boosting
from Jian et al., 2014 (https://doi.org/10.1093/
nar/gku1206).

5

Feature Label Feature Type Description
Random Forest Splice
Prediction

float reduce Random Forest Splice Prediction is a measure of the
impact of a variant on splicing using random forest
from Jian et al., 2014 (https://doi.org/10.1093/
nar/gku1206).

Meta Svm Prediction multiple Meta SVM is a method to predict deleteriousness of a
variant in a transcript using Support Vector Machines
as defined in Dong et al., 2015 (https://doi.org/10.
1093/hmg/ddu733).

PolyPhen HV Predic-
tion

multiple PolyPhen predicts the impact of amino acid substitu-
tions on a protein. This is the PolyPhen2 score based
on HumVar as defined in Adzhubei et al., 2014 (https:
//doi.org/10.1002/0471142905.hg0720s76).

PolyPhen HD Predic-
tion

multiple PolyPhen predicts the impact of amino acid substitu-
tions on a protein. This is the PolyPhen2 score based
on HumDiv as defined in Adzhubei et al., 2014 (https:
//doi.org/10.1002/0471142905.hg0720s76).

Provean Prediction multiple PROVEAN (PROtein Variant Effect ANalyzer) pre-
dicts where an amino acid substition or indel im-
pacts biological function as defined by Choi, 2012
(https://doi.org/10.1145/2382936.2382989).

SIFT Prediction multiple SIFT predicts whether an amino acid substitution im-
pacts protein function as defined by Kumar et al., 2009
(https://doi.org/10.1038/nprot.2009.86).

Effects multiple Effects includes the predicted impact on a transcript
such as non-synonymous, possible frameshift, etc.

Affected Regions multiple Affected regions includes the regions of a transcript
that are impacted by the variant such as interior cod-
ing exon, 5’ UTR intron, etc.

Table 1: Codicem feature metadata. This table shows the feature
name, feature type, and a brief description of each feature that was
fed into the models from Codicem.

3 Hyperparameter Tuning

3.1 Tuning method

For each classifier, a selection of hyperparameters were tested based on recommendations from sklearn and
imblearn. We performed a brute-force search over the entire hyperparameter space using the GridSearchCV
method of sklearn. This method tries every combination of hyperparameters and selects the method with
the best performance as defined by the user. For defining performance, we performed stratified 10-fold cross
validation (StratifiedKFold in sklearn) on the training data and optimized for best F1-score (see https:

//scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html for more info).

3.2 Tuning results

Table 2 shows the classifiers, hyperparameters, tested values, and the final tuned value for our tests.

6

Classifier Hyperparameter Tested Values Tuned Value

RandomForest (sklearn)

class weight [’balanced’] balanced

max depth [2, 3, 4] 4
max features [’sqrt’, ’log2’] sqrt
min samples split [2, 3] 2
n estimators [100, 200, 300] 300
random state [0] 0

LogisticRegression (sklearn)

C [0.01, 0.1, 1.0, 10.0,
100.0]

0.01

class weight [’balanced’] balanced
max iter [200] 200
penalty [’l2’] l2
random state [0] 0
solver [’newton-cg’, ’liblin-

ear’]
liblinear

BalancedRandomForest (im-
blearn)

max depth [2, 3, 4] 4

max features [’sqrt’, ’log2’] sqrt
min samples split [2, 3] 2
n estimators [100, 200, 300] 200
random state [0] 0

EasyEnsembleClassifier (im-
blearn)

n estimators [10, 20, 30, 40, 50] 50

random state [0] 0

Table 2: Hyperparameters tested. Each classifier is shown on the left. For each classifier, we selected
hyperparameters and test values for those parameters based on recommendations provided by the developers
of each method. The selected tuned value (based on 10-fold cross validation optimizing for F1 score) for
each hyperparameter is shown on the right.

7

4 External Tools

4.1 Exomiser

4.1.1 Installation

We followed the instructions on the Exomiser website (http://exomiser.github.io/Exomiser/manual/7/
installation/) to install Exomiser CLI v.11.0.0. We downloaded the latest files for hg19 (https://data.
monarchinitiative.org/exomiser/latest/1811_hg19.zip). Additionally, we downloaded data stores
for ReMM v0.3.1 (https://zenodo.org/record/1197579/files/ReMM.v0.3.1.tsv.gz) and CADD v1.3
(https://krishna.gs.washington.edu/download/CADD/v1.3/whole_genome_SNVs.tsv.gz and https://

krishna.gs.washington.edu/download/CADD/v1.3/InDels.tsv.gz) for use by Exomiser.

4.1.2 Execution

Exomiser was run twice using two different final prioritization algorithm: hiPhive and hiPhive (human only).
Here is the templated command we used to run exomiser:

java -Xms2g -Xmx4g -jar exomiser-cli-11.0.0.jar --analysis [ymlFN]

The ymlFN parameter is a templated file with parameters for the VCF filename, the HPO terms, and the
output path. The template for the hiPhive execution is available at https://github.com/HudsonAlpha/

VarSight/blob/master/ExomiserTemplates/hiPhive-template.yml and the template for the hiPhive
(human only) is available at https://github.com/HudsonAlpha/VarSight/blob/master/ExomiserTemplates/
hiPhive_human-template.yml. These templates were populated with the corresponding information for
each patient using the same variants and HPO terms as were used in the VarSight classifiers.

4.2 Phen-Gen

4.2.1 Installation

We followed the instructions on the Phen-Gen website (http://phen-gen.org, click on “DOWNLOAD”)
to download Phen-GenV1 and followed directions in the README file to install and run Phen-Gen.

4.2.2 Execution

Phen-Gen takes the HPO terms and VCF file as input to the algorithm. For the HPO terms, we created
a plain-text file with one HPO term per line as instructed. We used the same pre-filtered VCF file as was
used in all other external tools.

Phen-Gen also requires extra parameters that were not need by other tools, specifically requiring a
pedigree file with sex information, mode of inheritance, and the predictor type. For the pedigree file, we
simply created a one-member pedigree with the corresponding sex field populated with the annotated sex
of the patient. For mode of inheritance, we selected dominant as this tended to rank more variants than
recessive. Finally, we selected the predictor type to be “genomic” as opposed to “coding” only. Here is the
templated command we used to run Phen-Gen:

perl phen-gen.pl input_phenotype=[hpoFN] input_vcf=[vcfFN] \

input_ped=[pedFN] inheritance=0 predictor=0

hpoFN is the filename of the HPO file, vcfFN is the filename of the VCF file, and pedFN is the filename
of the pedigree file.

4.3 DeepPVP

4.3.1 Installation

We followed the instructions on the GitHub README (https://github.com/bio-ontology-research-group/
phenomenet-vp) to download the distribution file for DeepPVP v2.1.1 (https://github.com/bio-ontology-research-group/

8

phenomenet-vp/releases/download/v2.1.1/phenomenet-vp-2.1.zip). We downloaded all datasets re-
quired by their instructions including the v2.1 data file (http://bio2vec.net/pvp/data-v2.1.tar.gz),
CADD v1.3 with annotations (http://krishna.gs.washington.edu/download/CADD/v1.3/whole_genome_
SNVs_inclAnno.tsv.gz), and DANN (https://cbcl.ics.uci.edu/public_data/DANN/data/DANN_whole_
genome_SNVs.tsv.bgz). We then ran their pre-processing of CADD script (http://www.bio2vec.net/pvp/
generate.sh) and moved data to the correct directories.

We created a fresh installation of Python v2.7.16 and followed the instructions to pip install -r

requirements.txt to install all required Python packages. However, we found the program was crashing
due to incompatibilities between the versions of Keras and Theano. To fix the issue, we updated to Keras
v2.2.4 and the issue was resolved. Due to the relatively high performance of DeepPVP compared to other
external tools, we do not believe this change influenced DeepPVP’s performance.

4.3.2 Execution

DeepPVP requires a VCF file and the HPO terms to execute. Here is the templated command used to run
DeepPVP:

phenomenet-vp -y [pythonPath] -p [csv-HPO] -f [vcfFN] -of [outFN]

pythonPath is the path to our fresh Python install, csv-HPO is a comma-separated list of HPO terms for
the patient, vcfFN is the filename of the VCF file, and outFN is the filename for storing the output.

9

5 Results Extended

5.1 Ranking Boxplot

Figure 2 shows the rankings from our experimental results in a boxplot format.

Figure 2: Results Boxplot. This image shows the rankings from our experiments in a boxplot format (see
Table 3 and 4 in main paper for summarized results). Each reported variant rank is a red circle on the
corresponding method with an overlayed, standard boxplot for all rankings for the method. Note, the values
in the figure represent only the ranking of reported variants in the test set.

10

6 Codicem Filtering

The following sections describes the filter that was passed to Codicem for generating the test and training
set variants. Figure 3 shows the sequential order of filters, and the following subsections briefly describes
each filter unit’s purpose.

6.1 Total Depth filter

The total depth filter is primarily a QC-related filter intended to remove variant calls with total coverage.
This filter only passes variants that have at least 8 reads overlapping the locus. Figure 4 shows a visualization
of the filter.

6.2 Percentage of Reads Supporting Allele filter.

This filter is also a QC-related filter intended to remove variant calls with low support for the alternate allele.
The filter only passes variants with more than 15% of the reads supporting the alternate allele. Figure 5
shows a visualization of the filter.

6.3 Population Allele Frequency filter.

This filter removes variants that have a high population frequency. There are three general ways for a
variant to pass this filter: 1) be a rare variant in GnomAD AND a rare variant in ExAC; 2) be semi-rare
in GnomAD, semi-rare in ExAC, AND have a high-confidence damaging annotation from HGMD; or 3) be
semi-rare in GnomAD, semi-rare in ExAC, AND have a ClinVar classification labeling it as pathogenic, likely
pathogenic, or a drug response. Additionally, there is one variant from the gene F5 (rs6025) allowed through
this filter. Note that this specific variant has a very high alternate allele frequency because the reference
allele is actually the disease-causing mutation. Figure 6 shows a visualization of the filter.

6.4 HGMD, ClinVar, CADD, and Effects filter

This filter removes variants that are not predicted or annotated to have an effect on a transcript. A variant
can pass this filter in any of four ways: 1) have an HGMD accession, 2) have a ClinVar accession, 3) have
an effect that is predicted to modify a transcript, or 4) have a very high CADD score. Figure 7 shows a
visualization of the filter.

6.5 Gene Has Associated Disease filter

This filter removes variants for which there is no annotated disease name in HGMD, OMIM, or ClinVar. If
any of those annotations for the variant has a disease name, then the variant will pass this filter. Figure 8
shows a visualization of the filter.

6.6 Red Herring filter

This filter removes variants that are sequencing artifacts. Our analysts found that some variants are not
found in population databases, but show up frequently (> 20% of samples) in our sequencing data. These
variants are believed to be sequencing artifacts, so Codicem maintains a database of these variants to filter
out during analysis. Figure 9 shows a visualization of the filter.

6.7 Repeats filter

This filter removes variants that are polymorphic repeats and/or artifacts from sequencing. It filters out
any variants that are found in repeat tracks if there is no associated entry in HGMD or ClinVar. Figure 10
shows a visualization of the filter.

11

Figure 3: Filter overview. This high level image shows the sequential order of filtering, descriptions of
sub-filters can be found in other sections.

12

Figure 4: Total Depth filter. This filter is primarily a QC-related filter that only passes variants with at
least 8 reads covering the locus.

Figure 5: Percentage of Reads Supporting Allele filter. This filter is primarily a QC-related filter that only
passes variants with at least 15% of the locus’ reads supporting the alternate allele.

13

F
ig

u
re

6:
P

op
u

la
ti

on
A

ll
el

e
F

re
q
u

en
cy

fi
lt

er
.

T
h

is
fi

lt
er

is
p

ri
m

a
ri

ly
d

es
ig

n
ed

to
fi

lt
er

o
u

t
va

ri
a
n
ts

w
it

h
a

h
ig

h
p

o
p

u
la

ti
o
n

fr
eq

u
en

cy
.

It
re

li
es

m
o
st

ly
on

G
n

om
A

D
an

d
E

x
A

C
to

d
et

er
m

in
e

al
le

le
fr

eq
u

en
ci

es
.

V
a
ri

a
n
ts

th
a
t

a
re

o
n
ly

se
m

i-
ra

re
a
re

a
ll

ow
ed

th
ro

u
g
h

if
th

er
e

a
re

a
p

p
ro

p
ri

a
te

H
G

M
D

o
r

C
li

n
V

ar
an

n
ot

at
io

n
s

su
p

p
or

ti
n

g
th

em
.

A
d

d
it

io
n

a
ll

y,
o
n

e
va

ri
a
n
t

in
g
en

e
F
5

(r
s6

0
2
5
)

is
a
ll

ow
ed

th
ro

u
g
h

b
ec

a
u

se
th

e
re

fe
re

n
ce

a
ll

el
e

is
a
ct

u
a
ll

y
th

e
ra

re
,

p
at

h
og

en
ic

al
le

le
.

14

Figure 7: HGMD, ClinVar, CADD, and Effects filter. This filter is primarily designed to filter out variants
that are not predicted or annotated to have an effect on a transcript.

15

Figure 8: Gene Has Associated Disease filter. This filter removes variants for which there is no annotated
disease name in HGMD, OMIM, or ClinVar.

Figure 9: Red Herring filter. This filter removes variants that are commonly found through sequencing, but
do not appear in population databases like gnomAD or ExAC. These variants are believed to be sequencing
artifacts, so they are labeled as “Red Herring” variants and filtered out.

16

Figure 10: Repeats filter. This filter removes variants found in repeat tracks if there is no associated entry in
HGMD or ClinVar. These variants are generally considered polymorphic and/or sequencing artifacts unless
there are annotations from disease databases.

17

Figure 11: Unknowns filter. This filter removed variants with an “Unknown” effect on transcription if there
is not additional support for that variant through either CADD or HGMD.

18

6.8 Unknowns filter

This filter removes variants that have an “Unknown” effect on transcription if there isn’t additional support
for that variant through either CADD or HGMD. If CADD is greater than 10 or there is an HGMD accession
tied to the variant, it will pass this filter. Figure 11 shows a visualization of the filter.

6.9 Near Splice filter

This filter removes near splice variants that do not have additional annotated or predicted support indicating
that the variant would impact splicing. If a variant is a “Near Splice Site Alteration”, that variant will only
pass the filter if one of the following is true: 1) both splice predictions algorithms predict an impact on
splicing, 2) ClinVar has a pathogenic or likely pathogenic annotation, or 3) CADD is relatively high. Figure
12 shows a visualization of the filter.

19

F
ig

u
re

12
:

N
ea

r
S

p
li

ce
fi

lt
er

.
T

h
is

fi
lt

er
re

m
ov

es
“
N

ea
r

S
p

li
ce

S
it

e
A

lt
er

a
ti

o
n

”
va

ri
a
n
ts

th
a
t

a
re

n
o
t

su
p

p
o
rt

ed
to

b
e

d
el

et
er

io
u

s
b
y

sp
li

ce
p

re
d

ic
ti

o
n

al
go

ri
th

m
s,

C
li

n
V

ar
an

n
ot

at
io

n
s,

or
C

A
D

D
p

re
d

ic
ti

o
n

s.

20

