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Fig. S1, related to Fig. 1. Batch effects correction involving RNA-seq and DNA copy
number alteration (CNA) datasets. (A) Of the 2334 cases with RNA-seq data used in the
present study, a portion (including 442 ICGC cases and 778 TCGA cases) were previously
processed as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium efforts.
All TCGA cases were previously processed as part of TCGA consortium efforts. ICGC cases
were part of the PCAWG processing efforts but were not part of TCGA efforts. Combat software
[1] was used to correct for batch effects represented by the two RNA-seq alignment and
processing methods (PCAWG versus TCGA). Hierarchical clustering of the top 2000 most
variable genes was carried out on the combined RNA-seq data both before and after batch
correction (represented by top and bottom clustering trees, respectively), where pre-Combat

sample profiles segregate according to processing method and post-Combat sample profiles



segregate according to cancer type. (B) For cases included as part of the PCAWG consortium
efforts (including all ICGC cases), gene-level CNA was estimated using WGS. TCGA cases
(including cases not included in PCAWG) also had gene-level CNA previously estimated using
SNP array platform. Combat software was used to correct for batch effects represented by the
two gene-level CNA methods. For the 770 cases in TCGA with both WGS and SNP array gene-
level CNA estimates, the CNA values were collapsed into cytobands, with the post-Combat data
for both SNP array and WGS estimates being shown here (top and bottom CNA heat maps,
respectively). For the vast majority of samples, a high cytoband-level CNA inter-profile
correlations (Pearson’s) was observed between SNP and WGS post-Combat, with the notable
exception of cases showing little or no global CNA (where noise is essentially being modeled in

the inter-profile correlation).
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Fig. S2, related to Fig. 2. Additional information regarding the top set of genes with
altered expression associated with nearby SSV breakpoint by distance metric method.
Annotations are provided for the top set of genes associated with altered expression
(FDR<10%, correcting for cancer type and CNA), according to numbers of associated cases
(cases with SSV breakpoint within 1Mb, where the case also showed either altered
expression>0.4SD from the sample median, for genes positively correlated with SSV
breakpoint, or altered expression <-0.4SD from the median, for genes negatively correlated),
representation by class and by size (size involving non-translocation SSVs) for the set of SSVs
associated with altered expression, representation by cancer type for the affected cases, and
tumor versus normal comparisons. For tumor-normal comparisons, samples with SSVs
associated with altered expressed (>0.4SD from the median for positively correlated genes, <-
0.4SD for negatively correlated genes) had their normalized expression compared with the
average normalized expression of corresponding normal adjacent samples (where data were
available, using TCGA data only). The gene-level average difference in z-normalized values
between SSV-affected cancer cases and the corresponding normals are represented in the first
yellow-blue heat map. The second heat map represents cancer versus normal differences for
the remaining cases that do not appear impacted by SSVs. Genes highlighted by name are

cancer-associated by COSMIC.
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Fig. S3, related to Fig. 2. Addition information regarding genes with altered expression
associated with nearby SSV breakpoint. (A) Numbers of significant genes (FDR<5% by
distance metric method), showing correlation between expression and nearby SSV breakpoints,
based on 2334 cases with RNA-seq data. Linear regression models evaluated significant
associations when correcting for specific covariates, as indicated. (B) Results of permutation
testing. In each of 1000 tests, we randomly shuffled the SSV event profiles and computed
correlations with expression. Numbers of significant genes (p<0.001, distance metric method),
showing correlation between expression and associated SSV event, are shown, both for the
actual dataset and for the average of the permuted datasets (using corrections for both cancer
type and gene-level CNA). (C) For 35283 events of an SSV breakpoint being associated with
over-expression of a nearby gene (FDR<10% by distance metric method, with corrections for
cancer type and CNA, and expression>0.4SD from median for the case harboring the
breakpoint), breakdowns are provided according to cancer type, events involving amplification
of the same gene (defined as log2 tumor/normal copy ratio >1), and events involving cases with
low pass WGS data only. For 2195 gene body SSV events associated with gene over-
expression (subset of TCGA cases only), the fraction of events involving a predicted gene
fusion by RNA-seq analysis [2] is also indicated. (D) Breakdown by SSV class, for all SSVs in
the dataset, for the 35283 events of an SSV breakpoint being associated with gene over-
expression (from part C), and for the 7865 events of an SSV breakpoint being associated with
gene under-expression (FDR<10% by distance metric method, with corrections for cancer type
and CNA, and expression<-0.4SD from median for the case harboring the breakpoint). P-values
by chi-square test. (E) Breakdown by SSV size for the SSV and SSV breakpoint sets
represented in part D (excluding translocation SSVs). P-values by chi-square test. (F) Numbers
of significant microRNAs (FDR<5% by distance metric method), when correcting for cancer type
and when correcting for both cancer type and CNA. (G) Significance of microRNAs by distance

metric method, as plotted (Y-axis) versus the percent of cases impacted (expression>0.4SD) by



nearby SSV breakpoint (within 1Mb) without associated amplification or deletion event (defined
as log2 tumor/normal ratio >1 or <1, respectively). (H) As examples of significant genes, gene
expression levels of TERT, MALAT1, CRKL, and FGF4, corresponding to SSVs located in the
genomic region 1Mb downstream to 1Mb upstream of the given gene. Each point represents a
single case (closest SSV breakpoint represented for each case). Cases with gene amplification

are indicated.
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Fig. S4, related to Fig. 3. Additional information on genes with altered expression

associated with nearby SSV breakpoint according to cancer type. (A) Heat map of

differential t-statistics by cancer type, evaluating gene expression alterations with nearby SSV

breakpoint (red, positive correlation with breakpoint; white, not significant with FDR>10%), for

1280 genes significant for one or more individual cancer types (FDR<10% by distance metric

method, correcting for CNA). Genes listed by nhame are cancer related [3-5]. (B) For each

cancer type, numbers of DNA methylation probes (lllumina 450K array platform) targeting CpG

Islands (CGls) with higher or lower methylation in the given cancer type versus other cancer

types (FDR<0.001, t-test using logit-transformed data), for which the associated gene also



shows a positive or negative correlation between expression and nearby SSV breakpoint for
that same cancer type (FDR<O0.1, from part A). Any significance of overlap between the
differential methylation results and the expression vs SSV results is indicated (p-values by chi-
squared test). (C) Across the 1482 cases with DNA methylation data, with cases ordered by
cancer type, the DNA methylation as measured by lllumina 450K probes targeting the TERT
locus. Except for probe ¢cg02545192, which targets a CpG site known to contain a repressive
element in close proximity to the TERT core promotor [6, 7], the DNA methylation probes
featured fall within the gene boundaries of TERT. Cases with TERT over-expression (“OE,”

defined as >0.4SD from the median) are indicated.
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Fig. S5, related to Fig. 4. Additional information regarding the top set of CGlIs with altered

methylation associated with nearby SSV breakpoint by distance metric method.

Annotations are provided for the top set of CGI probes associated with altered methylation

(FDR<5%, correcting for cancer type and CNA), according to numbers of associated cases



(cases with SSV breakpoint within 1Mb of the associated gene, where the case also showed
either altered methylation>0.4SD from the sample median, for CGls positively correlated with
SSV breakpoint, or altered methylation <-0.4SD from the median, for CGls negatively
correlated), representation by class and by size (size involving non-translocation SSVs) for the
set of SSVs associated with altered methylation, representation by cancer type for the affected
cases, llumina 450K annotation for promoter-associated CGls and gene group (1st Exon, Body,
J'UTR, 5'UTR, TSS200, TSS1500), and tumor versus normal comparisons. For tumor-normal
comparisons, samples with SSVs associated with altered methylation (>0.4SD from the median
for positively correlated CGls, <-0.4SD for negatively correlated CGls) had their methylation
beta values compared with the average beta value of corresponding normal adjacent samples
(where data were available). The cancer minus normal beta value difference between SSV-
affected cancer cases and the corresponding normals are represented in the first purple-cyan
heat map. The second heat map represents cancer versus normal differences for the remaining
cases that do not appear impacted by SSVs. CGI probes/genes highlighted by name involve
genes that had significant mMRNA associations with SSV breakpoints (FDR<10% by distance
metric method, correcting for cancer type and CNA) in the opposite direction from that of the

CGl.
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Fig. S6, related to Fig. 4. Additional information on CGIs with altered DNA methylation
associated with nearby SSV breakpoint. (A) Numbers of significant CGls (FDR<5% by
distance metric method), showing correlation between DNA methylation and associated SSV
event, across the 1482 cases with DNA methylation data. Linear regression models evaluated
significant associations when correcting for specific covariates, as indicated. Cell proliferation
covariate represents the average of the normalized values for a set of cell cycle genes from
Whitfield et al. [8]. (B) Results of permutation testing. In each of 1000 tests, we randomly
shuffled the SSV event profiles and computed correlations with DNA methylation (using 20K
probes out of the 111K probes). Numbers of significant probes (p<0.001, distance metric
method), showing correlation between methylation and associated SSV event, are shown, both
for the actual dataset and for the average of the permuted datasets (using corrections for both
cancer type and gene-level CNA). (C) For each of the indicated genomic region windows in
relation to genes associated with CGls, numbers of significant CGls (FDR<5%, correcting for
both cancer type and gene-level CNA) as taken from main Fig. 4A, broken down by promoter-
associated CGls (left) and gene body-associated CGls (right). Gene body-associated denotes
probes between the ATG and stop codon, irrespective of the presence of introns, exons, TSS,
or promoters. (D) Breakdown by SSV class, for all SSVs in the dataset, for the 19737 events of
an SSV breakpoint being associated with higher methylation (FDR<5% by distance metric
method, with corrections for cancer type and CNA, and methylation>0.4SD from median for the
case harboring the breakpoint), and for the 16003 events of an SSV breakpoint being
associated with lower methylation (FDR<5% and methylation<-0.4SD from median). P-values
by chi-square test. (E) Breakdown by SSV size for the SSV and SSV breakpoint sets
represented in part D (excluding translocation SSVs). P-values by chi-square test. (F) As
examples of significant genes, gene expression levels (left) and DNA methylation levels (right)
for DVL1, TP53, and PTEN, corresponding to SSVs located in the genomic region 1Mb

downstream to 1Mb upstream of the gene. Each point represents a single case (closest SSV



breakpoint represented for each case). Cases with gene amplification are indicated. (G)
Observed association involving CGI methylation probes for genes positively correlated in
expression with nearby SSV breakpoint (left, by distance metric method; right, by genomic
region windows method) with genes positively correlated between expression and DNA
methylation. P-value by chi-square test. (H) DNA methylation of the CpG site cg02545192
proximal to the TERT core promoter in cases with SSV breakpoint 0-20kb or 20-50kb upstream
of TERT, in cases with TERT promoter (PM) activation mutation (SNV), and in the rest of cases
(unaligned). P-values by t-test on logit-transformed methylation beta values. Box plots represent
5%, 25%, 50%, 75%, and 95%. Points in box plots are colored according to cancer type as

indicated.
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Fig. S7, related to Fig. 5. DNA methylation patterns by cancer type and tissue type. (A)
For each cancer type, numbers of CGI methylation probes showing correlation between
expression and nearby SSV breakpoint (FDR<10% by distance metric method, linear model
correcting for CNA). (B) Heat map of differential t-statistics by cancer type, evaluating CGI
methylation alterations with nearby SSV breakpoint (red, positive correlation with breakpoint;
white, not significant with FDR>10%), for 16096 CGI methylation probes significant for one or
more individual cancer types (FDR<10% by distance metric method, correcting for CNA). (C) By
normal adjacent tissue available in TCGA datasets, the average DNA methylation (beta) of
450K probes in normal tissues is shown, with methylation probes broken down by location with
CpG lIslands (CGI), Island “shores,” or “Open sea” (i.e. not associated with CGIs). (D) Similar to
main Fig. 5C, but comparing methylation of the SSV-harboring tumors to the corresponding
normal-adjacent tissue (CGI nearby the gene on the other side of the SSV breakpoint), for the
above SSV-CGI association subsets. P-values by Spearman’s rank correlation. Bars represent
standard error. (E) Similar to main Fig. 5C, but comparing methylation of SSV-harboring tumors
to the normal-adjacent tissue to define the categories on the x-axis; methylation of SSV-
harboring tumors was compared with corresponding normal, and all SSV-CGI associations for
which the cancer-normal beta difference was either greater than 0.4 or <-0.4 were respectively
examined for the normal tissue differences represented by rearranged region versus unaltered

region. P-values by Spearman’s rank correlation. Bars represent standard error.
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Fig. S8, related to Fig. 6. Additional information regarding global molecular alterations
associated with the overall burden of structural variation across cancers. (A) Scatter plots
of total number of SSV events versus overall methylation (median beta of all 450K probes within
the sample profile), with samples that have only low pass WGS data being plotted separately
from samples with high pass WGS data. P-values by linear model correcting for cancer type. (B)
Scatter plots of global SSV index (measuring total number of SSV events, correcting for high
pass versus low pass WGS) versus overall methylation (median beta of all of the given set of
CGl probes within the sample profile), with overall methylation separately considered for all
IluminaCGl probes (left), for promoter-associated CGI probes (middle), and for gene body-
associated CGI probes (right). P-values by linear model correcting for cancer type. (C)
Spearman'’s correlations between overall structural variation burden and global decrease in
overall methylation (related to Fig. 6C), when breaking down the SSVs according to class and
size (size excluding translocation SSVs). (D) Association of global SSV index (measuring total
number of SSV events, correcting for high pass versus low pass WGS) with patient survival.
Corrected p-value is from stratified log-rank test according to cancer type. (E) Across the 1482
cases with DNA methylation data, with cases ranked high to low by global SSV index quartiles,
selected molecular features are represented, including scoring for a transcriptional signature of
DNA damage response pathway [9], a DNA methylation-based signature of lymphocytic
infiltration [10], mMRNA markers for T-cells and B-cells (LCK and SYK, respectively), exome
mutation rate, and number of neoantigens (SNV, single nucleotide variant; Indel,
insertion/deletion). P-values by linear model correcting for both cancer type and low pass versus
high pass WGS. (D) Patient age corresponding to the cases in part C. P-values by linear model
correcting for both cancer type and low pass versus high pass WGS. (E) Gene expression and
DNA methylation associated with SOX17, corresponding to the cases in part C, as an example

of a gene with alterations associated with the overall structural variation burden.
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