
 

Fig. S1, related to Fig. 1. Batch effects correction involving RNA-seq and DNA copy 

number alteration (CNA) datasets. (A) Of the 2334 cases with RNA-seq data used in the 

present study, a portion (including 442 ICGC cases and 778 TCGA cases) were previously 

processed as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium efforts. 

All TCGA cases were previously processed as part of TCGA consortium efforts. ICGC cases 

were part of the PCAWG processing efforts but were not part of TCGA efforts. Combat software 

[1] was used to correct for batch effects represented by the two RNA-seq alignment and 

processing methods (PCAWG versus TCGA). Hierarchical clustering of the top 2000 most 

variable genes was carried out on the combined RNA-seq data both before and after batch 

correction (represented by top and bottom clustering trees, respectively), where pre-Combat 

sample profiles segregate according to processing method and post-Combat sample profiles 



segregate according to cancer type. (B) For cases included as part of the PCAWG consortium 

efforts (including all ICGC cases), gene-level CNA was estimated using WGS. TCGA cases 

(including cases not included in PCAWG) also had gene-level CNA previously estimated using 

SNP array platform. Combat software was used to correct for batch effects represented by the 

two gene-level CNA methods. For the 770 cases in TCGA with both WGS and SNP array gene-

level CNA estimates, the CNA values were collapsed into cytobands, with the post-Combat data 

for both SNP array and WGS estimates being shown here (top and bottom CNA heat maps, 

respectively). For the vast majority of samples, a high cytoband-level CNA inter-profile 

correlations (Pearson’s) was observed between SNP and WGS post-Combat, with the notable 

exception of cases showing little or no global CNA (where noise is essentially being modeled in 

the inter-profile correlation). 



 

 



Fig. S2, related to Fig. 2. Additional information regarding the top set of genes with 

altered expression associated with nearby SSV breakpoint by distance metric method. 

Annotations are provided for the top set of genes associated with altered expression 

(FDR<10%, correcting for cancer type and CNA), according to numbers of associated cases 

(cases with SSV breakpoint within 1Mb, where the case also showed either altered 

expression>0.4SD from the sample median, for genes positively correlated with SSV 

breakpoint, or altered expression <-0.4SD from the median, for genes negatively correlated), 

representation by class and by size (size involving non-translocation SSVs) for the set of SSVs 

associated with altered expression, representation by cancer type for the affected cases, and 

tumor versus normal comparisons. For tumor-normal comparisons, samples with SSVs 

associated with altered expressed (>0.4SD from the median for positively correlated genes, <-

0.4SD for negatively correlated genes) had their normalized expression compared with the 

average normalized expression of corresponding normal adjacent samples (where data were 

available, using TCGA data only). The gene-level average difference in z-normalized values 

between SSV-affected cancer cases and the corresponding normals are represented in the first 

yellow-blue heat map. The second heat map represents cancer versus normal differences for 

the remaining cases that do not appear impacted by SSVs. Genes highlighted by name are 

cancer-associated by COSMIC. 



 



Fig. S3, related to Fig. 2. Addition information regarding genes with altered expression 

associated with nearby SSV breakpoint. (A) Numbers of significant genes (FDR<5% by 

distance metric method), showing correlation between expression and nearby SSV breakpoints, 

based on 2334 cases with RNA-seq data. Linear regression models evaluated significant 

associations when correcting for specific covariates, as indicated. (B) Results of permutation 

testing. In each of 1000 tests, we randomly shuffled the SSV event profiles and computed 

correlations with expression. Numbers of significant genes (p<0.001, distance metric method), 

showing correlation between expression and associated SSV event, are shown, both for the 

actual dataset and for the average of the permuted datasets (using corrections for both cancer 

type and gene-level CNA). (C) For 35283 events of an SSV breakpoint being associated with 

over-expression of a nearby gene (FDR<10% by distance metric method, with corrections for 

cancer type and CNA, and expression>0.4SD from median for the case harboring the 

breakpoint), breakdowns are provided according to cancer type, events involving amplification 

of the same gene (defined as log2 tumor/normal copy ratio >1), and events involving cases with 

low pass WGS data only. For 2195 gene body SSV events associated with gene over-

expression (subset of TCGA cases only), the fraction of events involving a predicted gene 

fusion by RNA-seq analysis [2] is also indicated. (D) Breakdown by SSV class, for all SSVs in 

the dataset, for the 35283 events of an SSV breakpoint being associated with gene over-

expression (from part C), and for the 7865 events of an SSV breakpoint being associated with 

gene under-expression (FDR<10% by distance metric method, with corrections for cancer type 

and CNA, and expression<-0.4SD from median for the case harboring the breakpoint). P-values 

by chi-square test. (E) Breakdown by SSV size for the SSV and SSV breakpoint sets 

represented in part D (excluding translocation SSVs). P-values by chi-square test. (F) Numbers 

of significant microRNAs (FDR<5% by distance metric method), when correcting for cancer type 

and when correcting for both cancer type and CNA. (G) Significance of microRNAs by distance 

metric method, as plotted (Y-axis) versus the percent of cases impacted (expression>0.4SD) by 



nearby SSV breakpoint (within 1Mb) without associated amplification or deletion event (defined 

as log2 tumor/normal ratio >1 or <1, respectively). (H) As examples of significant genes, gene 

expression levels of TERT, MALAT1, CRKL, and FGF4, corresponding to SSVs located in the 

genomic region 1Mb downstream to 1Mb upstream of the given gene. Each point represents a 

single case (closest SSV breakpoint represented for each case). Cases with gene amplification 

are indicated. 

  



 

Fig. S4, related to Fig. 3. Additional information on genes with altered expression 

associated with nearby SSV breakpoint according to cancer type. (A) Heat map of 

differential t-statistics by cancer type, evaluating gene expression alterations with nearby SSV 

breakpoint (red, positive correlation with breakpoint; white, not significant with FDR>10%), for 

1280 genes significant for one or more individual cancer types (FDR<10% by distance metric 

method, correcting for CNA). Genes listed by name are cancer related [3-5]. (B) For each 

cancer type, numbers of DNA methylation probes (Illumina 450K array platform) targeting CpG 

Islands (CGIs) with higher or lower methylation in the given cancer type versus other cancer 

types (FDR<0.001, t-test using logit-transformed data), for which the associated gene also 



shows a positive or negative correlation between expression and nearby SSV breakpoint for 

that same cancer type (FDR<0.1, from part A). Any significance of overlap between the 

differential methylation results and the expression vs SSV results is indicated (p-values by chi-

squared test). (C) Across the 1482 cases with DNA methylation data, with cases ordered by 

cancer type, the DNA methylation as measured by Illumina 450K probes targeting the TERT 

locus. Except for probe cg02545192, which targets a CpG site known to contain a repressive 

element in close proximity to the TERT core promotor [6, 7], the DNA methylation probes 

featured fall within the gene boundaries of TERT. Cases with TERT over-expression (“OE,” 

defined as >0.4SD from the median) are indicated. 



 

Fig. S5, related to Fig. 4. Additional information regarding the top set of CGIs with altered 

methylation associated with nearby SSV breakpoint by distance metric method. 

Annotations are provided for the top set of CGI probes associated with altered methylation 

(FDR<5%, correcting for cancer type and CNA), according to numbers of associated cases 



(cases with SSV breakpoint within 1Mb of the associated gene, where the case also showed 

either altered methylation>0.4SD from the sample median, for CGIs positively correlated with 

SSV breakpoint, or altered methylation <-0.4SD from the median, for CGIs negatively 

correlated), representation by class and by size (size involving non-translocation SSVs) for the 

set of SSVs associated with altered methylation, representation by cancer type for the affected 

cases, Ilumina 450K annotation for promoter-associated CGIs and gene group (1st Exon, Body, 

3’UTR, 5’UTR, TSS200, TSS1500), and tumor versus normal comparisons. For tumor-normal 

comparisons, samples with SSVs associated with altered methylation (>0.4SD from the median 

for positively correlated CGIs, <-0.4SD for negatively correlated CGIs) had their methylation 

beta values compared with the average beta value of corresponding normal adjacent samples 

(where data were available). The cancer minus normal beta value difference between SSV-

affected cancer cases and the corresponding normals are represented in the first purple-cyan 

heat map. The second heat map represents cancer versus normal differences for the remaining 

cases that do not appear impacted by SSVs. CGI probes/genes highlighted by name involve 

genes that had significant mRNA associations with SSV breakpoints (FDR<10% by distance 

metric method, correcting for cancer type and CNA) in the opposite direction from that of the 

CGI. 

 



 



Fig. S6, related to Fig. 4. Additional information on CGIs with altered DNA methylation 

associated with nearby SSV breakpoint. (A) Numbers of significant CGIs (FDR<5% by 

distance metric method), showing correlation between DNA methylation and associated SSV 

event, across the 1482 cases with DNA methylation data. Linear regression models evaluated 

significant associations when correcting for specific covariates, as indicated. Cell proliferation 

covariate represents the average of the normalized values for a set of cell cycle genes from 

Whitfield et al. [8]. (B) Results of permutation testing. In each of 1000 tests, we randomly 

shuffled the SSV event profiles and computed correlations with DNA methylation (using 20K 

probes out of the 111K probes). Numbers of significant probes (p<0.001, distance metric 

method), showing correlation between methylation and associated SSV event, are shown, both 

for the actual dataset and for the average of the permuted datasets (using corrections for both 

cancer type and gene-level CNA). (C) For each of the indicated genomic region windows in 

relation to genes associated with CGIs, numbers of significant CGIs (FDR<5%, correcting for 

both cancer type and gene-level CNA) as taken from main Fig. 4A, broken down by promoter-

associated CGIs (left) and gene body-associated CGIs (right). Gene body-associated denotes 

probes between the ATG and stop codon, irrespective of the presence of introns, exons, TSS, 

or promoters. (D) Breakdown by SSV class, for all SSVs in the dataset, for the 19737 events of 

an SSV breakpoint being associated with higher methylation (FDR<5% by distance metric 

method, with corrections for cancer type and CNA, and methylation>0.4SD from median for the 

case harboring the breakpoint), and for the 16003 events of an SSV breakpoint being 

associated with lower methylation (FDR<5% and methylation<-0.4SD from median). P-values 

by chi-square test. (E) Breakdown by SSV size for the SSV and SSV breakpoint sets 

represented in part D (excluding translocation SSVs). P-values by chi-square test. (F) As 

examples of significant genes, gene expression levels (left) and DNA methylation levels (right) 

for DVL1, TP53, and PTEN, corresponding to SSVs located in the genomic region 1Mb 

downstream to 1Mb upstream of the gene. Each point represents a single case (closest SSV 



breakpoint represented for each case). Cases with gene amplification are indicated. (G) 

Observed association involving CGI methylation probes for genes positively correlated in 

expression with nearby SSV breakpoint (left, by distance metric method; right, by genomic 

region windows method) with genes positively correlated between expression and DNA 

methylation. P-value by chi-square test. (H) DNA methylation of the CpG site cg02545192 

proximal to the TERT core promoter in cases with SSV breakpoint 0-20kb or 20-50kb upstream 

of TERT, in cases with TERT promoter (PM) activation mutation (SNV), and in the rest of cases 

(unaligned). P-values by t-test on logit-transformed methylation beta values. Box plots represent 

5%, 25%, 50%, 75%, and 95%. Points in box plots are colored according to cancer type as 

indicated.  



 



Fig. S7, related to Fig. 5. DNA methylation patterns by cancer type and tissue type. (A) 

For each cancer type, numbers of CGI methylation probes showing correlation between 

expression and nearby SSV breakpoint (FDR<10% by distance metric method, linear model 

correcting for CNA). (B) Heat map of differential t-statistics by cancer type, evaluating CGI 

methylation alterations with nearby SSV breakpoint (red, positive correlation with breakpoint; 

white, not significant with FDR>10%), for 16096 CGI methylation probes significant for one or 

more individual cancer types (FDR<10% by distance metric method, correcting for CNA). (C) By 

normal adjacent tissue available in TCGA datasets, the average DNA methylation (beta) of 

450K probes in normal tissues is shown, with methylation probes broken down by location with 

CpG Islands (CGI), Island “shores,” or “Open sea” (i.e. not associated with CGIs). (D) Similar to 

main Fig. 5C, but comparing methylation of the SSV-harboring tumors to the corresponding 

normal-adjacent tissue (CGI nearby the gene on the other side of the SSV breakpoint), for the 

above SSV-CGI association subsets. P-values by Spearman’s rank correlation. Bars represent 

standard error. (E) Similar to main Fig. 5C, but comparing methylation of SSV-harboring tumors 

to the normal-adjacent tissue to define the categories on the x-axis; methylation of SSV-

harboring tumors was compared with corresponding normal, and all SSV-CGI associations for 

which the cancer-normal beta difference was either greater than 0.4 or <-0.4 were respectively 

examined for the normal tissue differences represented by rearranged region versus unaltered 

region. P-values by Spearman’s rank correlation. Bars represent standard error. 



 



Fig. S8, related to Fig. 6. Additional information regarding global molecular alterations 

associated with the overall burden of structural variation across cancers. (A) Scatter plots 

of total number of SSV events versus overall methylation (median beta of all 450K probes within 

the sample profile), with samples that have only low pass WGS data being plotted separately 

from samples with high pass WGS data. P-values by linear model correcting for cancer type. (B) 

Scatter plots of global SSV index (measuring total number of SSV events, correcting for high 

pass versus low pass WGS) versus overall methylation (median beta of all of the given set of 

CGI probes within the sample profile), with overall methylation separately considered for all 

IlluminaCGI probes (left), for promoter-associated CGI probes (middle), and for gene body-

associated CGI probes (right). P-values by linear model correcting for cancer type. (C) 

Spearman’s correlations between overall structural variation burden and global decrease in 

overall methylation (related to Fig. 6C), when breaking down the SSVs according to class and 

size (size excluding translocation SSVs). (D) Association of global SSV index (measuring total 

number of SSV events, correcting for high pass versus low pass WGS) with patient survival. 

Corrected p-value is from stratified log-rank test according to cancer type. (E) Across the 1482 

cases with DNA methylation data, with cases ranked high to low by global SSV index quartiles, 

selected molecular features are represented, including scoring for a transcriptional signature of 

DNA damage response pathway [9], a DNA methylation-based signature of lymphocytic 

infiltration [10], mRNA markers for T-cells and B-cells (LCK and SYK, respectively), exome 

mutation rate, and number of neoantigens (SNV, single nucleotide variant; Indel, 

insertion/deletion). P-values by linear model correcting for both cancer type and low pass versus 

high pass WGS. (D) Patient age corresponding to the cases in part C. P-values by linear model 

correcting for both cancer type and low pass versus high pass WGS. (E) Gene expression and 

DNA methylation associated with SOX17, corresponding to the cases in part C, as an example 

of a gene with alterations associated with the overall structural variation burden.  
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