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Materials and Methods 

Subjects 

Pregnant Long-Evans females (E9-E10) or litters with a dam (P4) were obtained 

from Charles River Laboratories and housed in a temperature-controlled room on a 12-

hour light-dark cycle (light period: 7am-7pm) with ad libitum access to food and water. 

The pregnant female was checked 2-3 times a day and the day the litter was born was 

marked as P0 (postnatal day 0). The day of eye opening (P14) was used to confirm the 

age of animals. The pups were housed with the dam until P21. On P21, the pups were 

weaned, and littermates were housed together. Electrophysiological recordings were 

performed on 19 male rat pups aged P15-P24 on their day 1 of electrophysiological 

recording. For comparison purposes, the data obtained in the developing animals were 

grouped in two-day age groups of 3-5 animals starting at P15 (P15-16, P17-18, P19-20, 

P21-22, P23-24, see Supplementary Table 1 for number of animals/age group). Three 

adult male Long-Evans rats weighing ~350 g were used to compare the properties of 

neuronal ensembles in developing animals with those of adults. 

 

Surgery and probe implantation 

Surgery was performed under 1-2% isoflurane anesthesia administered intra-nasally. 

A heating blanket was used to maintain body temperature and regular checks were 

performed to ensure the depth of anesthesia. Two 32-site Neuronexus silicon probes (~20 

microns between recording sites, 8 sites/shank, Buz32) attached to moveable microdrives 

were implanted bilaterally above each dorsal hippocampus around 3.0 mm posterior to 

bregma, 1.8 mm lateral to superior longitudinal sinus and 1.5 mm ventral to brain surface. 

One animal had a unilateral implantation of a moveable 64-site Neuronexus silicon probe 

(Buz64) at the same coordinates above the right hippocampus. The reference electrode 

(jeweler’s screw) was implanted posterior to lambda in the cerebellum. The microdrives 

were secured to the skull with dental cement. Overall, the weight of the head mount was 

approximately 4 g and allowed unhampered free movement of the rat pups. After 

recovery from the surgery, the implanted developing rats were fed infant soymilk formula 

and were returned to the home cage for overnight housing with the mother and 

littermates. On the following three days after probe implantation, the probes were slowly 

lowered to the pyramidal layer of the CA1 subfield of the hippocampus while animals 

rested and slept in heated sleep boxes. The pups were separated from the mother for 2-4 

hours on the days the probes were lowered toward the hippocampus and 4-6 hours on the 

days the experimental recordings were performed. The pyramidal layer was identified by 

the presence of prominent 140-250 Hz ripple oscillations, which were observed as early 

as P15, and by electrode depth. Once the probe location was optimized and stable 

recordings were obtained, the behavioral experiment was initiated. The adult rats were 

implanted bilaterally with either two moveable Neuronexus silicon probes (Buz64) or 32 

moveable tetrodes as described earlier (15). 

 

Behavior 

The experiment was performed in one room. Hippocampal activity was recorded 

while the experimentally naïve rat pups slept in a heated high-walled opaque sleep box 

20-20-30 cm for ~1.5 hour (Pre-Run sleep). Subsequently, the rats were placed on a 1-
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meter-long novel linear track for the first time in their life, which they explored well 

without any prior training (de novo Run). Prior to the de novo Run session, rats were kept 

naive to linear tracks.  The location of the sleep box was distinct from that of the linear 

tracks. Track running was followed by another sleep session in the sleep box (Post-Run 

sleep) recorded in the same location as the Pre-Run sleep. A subset of the rats from all 

group ages ran on the same linear track again on the same day (Day1Run2) before they 

were returned to their home cage. On day 2 of the experiment, all developing rats went 

through an additional and similar sleep-run on the same track-sleep protocol. All 

behavioral experiments were performed during the light phase of the day to maximize the 

probability of the animal sleeping. Animals were fed infant soy milk formula to 

supplement the diet they received from the dams. A similar sleep-run-sleep protocol was 

used for the adult animals, with longer sleep sessions (2-4 hours) and linear tracks (1.5 m 

long). 

 

Electrophysiology 

A 128-channel Neuralynx digital recording system (DigiLynx) was used to perform 

the recordings via a multiplexed lightweight cable connected to a head-mountable 

amplifier. Two LEDs (green and red) separated by 1.5 cm built into the headstage 

amplifier were used to continuously track the position of the animal, using an overhead 

camera. A counterbalanced sliding pulley system enabled free movement of the animals 

during the experiment. Wideband local field potentials (1-6000 Hz), >50 microvolts 

putative spike waveforms (600-6000 Hz), LEDs positions and a video of the experiment 

were simultaneously recorded using the DigiLynx system. Following the completion of 

the experiments, the animals were transcardially perfused with 0.9% saline followed by 

4% paraformaldehyde, and the brains were harvested, sectioned and Nissl-stained with 

Cresyl violet to confirm the recordings were in the pyramidal layer of the dorsal 

hippocampal CA1. 

 

Preprocessing and isolation of single units 

Single units were isolated by a manual cluster-cutting procedure using Xclust3 

software (15, 25) in a multidimensional space constituting the amplitude of detected 

spike waveforms on adjacent recording sites. Additionally, inter-spike intervals and 

cross-correlation measures were used to separate putative single units. Putative pyramidal 

units were distinguished from interneurons using autocorrelation, average firing rate and 

spike width. Only well-isolated units were used for further analysis. Animal position was 

extracted as the position of the two LEDs in the behavioral arena. Missing position 

samples were linearly interpolated. 

 

Cluster quality and stability 

Cluster quality was assessed by calculating the isolation distance of the clustered 

units from noise on their respective tetrodes (31). This procedure was followed separately 

for each session (Pre-Run sleep, Run and Post-Run sleep) to study cluster stability. A 

Pearson’s product moment-correlation of age groups with cluster quality was computed 

to determine the relationship, if any, of cluster quality across age groups. To compare 

cluster quality across sessions in age groups, multiple comparisons with appropriate 

corrections for determining statistical significance were performed between each pair of 
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groups. Stability of clusters was also assessed by comparing the peak amplitude of the 

spike waveform for each cluster in the Pre-Run sleep and Post-Run sleep.  

 

Place cell characterization  

For each putative pyramidal unit, the number of spikes (when the speed of the 

animal exceeded 5 cm/s) in non-overlapping 1 cm bins were counted and smoothed by a 

5 cm Gaussian kernel. This was divided by the occupancy (time spent at a speed above 5 

cm/s, smoothed by a 5 cm Gaussian kernel) to determine the firing rate at each location. 

Pyramidal neurons with a peak firing rate exceeding 1 Hz were considered as place cells 

as described earlier (15). 

 

Spatial information and within session stability 

Spatial information (SI; bits/spike) quantifies the extent to which an individual place 

cell’s firing is non-uniform across the spatial experience (conveying information about 

space). It was computed as follows (18): 

 

 

where  is the firing rate of the cell in location j,  is the mean firing rate of the 

cell, and  is the probability of occupancy of location j. Within session stability of 

each place cell was computed by calculating Spearman’s correlation of the place field 

maps derived from the first and the last quarter of laps during the Run session.   

          

Bayesian decoding of spatial location during Run  

Each direction of movement on the linear track was independently analyzed. To 

study the neuronal ensemble representation of space at the behavioral timescale, the 

activity of place-responsive pyramidal cells (with at least 10 spikes during Run) on the 

tracks was binned in 0.5 second non-overlapping bins during active behavior (animal 

velocity exceeding 10 cm/s). We employed a memoryless Bayesian decoding algorithm 

(25, 32). Briefly, according to Bayes’ theorem, 

 

 

 

 

where  is the posterior conditional probability of location given spikes, 

 is the prior probability of location,   is the probability of spikes given 

a location,  is the probability of spikes,  is the jth location on the track out of a 

total of L locations. 
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Assuming that spikes follow Poisson distributions and that place-responsive cells are 

statistically independent (32): 

 

 

 

Therefore, inserting the above equation into Bayes’ theorem, gives: 

 

 

 

where  is a normalization factor such that , where 

is the value of the smoothed averaged place-responsive cell firing of the ith place-

responsive cell at location l, is the number of spikes fired by the ith place-responsive 

cell in the time bin being decoded, is the duration of the time bin (0.5 seconds for active 

behavior on the track and 0.02 seconds for sleep frames) and n is the total number of 

place-responsive cells.  is the prior for location, which was taken as uniform 

across the track. 

For each bin, the location with maximum decoded probability was compared to the 

actual position of the animal and the error in the decoded position was determined. Time 

bins without any spikes were removed from this analysis. To study if the ensemble 

activity decoded the animal position above chance levels, the decoded posteriors across 

space were randomly permuted in time (500 time-bin shuffles) and the error in decoded 

position was recomputed and compared with that of non-shuffled data. 

 

Error in decoding of animal location across the track during Run 

To compare the decoding error across track locations during Run, we calculated the 

error within a moving window of 15 cm starting from the ends of the track. For this 

analysis, the track was folded at the middle, such that locations at equal distance from the 

track ends were averaged together. A Pearson’s correlation between the distance from 

track ends and the median decoding error was computed. 

 

Theta frequency 

Theta frequency was calculated by isolating epochs with active behavior (velocity 

exceeding 10 cm/s) across all channels in the CA1, computing the Hilbert Transform and 

a Fast-Fourier Transform of the concatenated epochs of active behavior, and finding the 

peak frequency within the theta range (4-10 Hz). Additionally, to account for more subtle 

differences in animal velocities which could have been averaged out, we only used the 

theta cycles at animal velocities between 10-15 cm/s to compute the peak theta frequency 

for an age group in 10 channels per animal. 
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Theta sequences 

Theta cycles during active behaviors (velocity exceeding 10 cm/s) were isolated. 

Cycles with a minimum of two neurons and occurring in the middle 2/5th of the track in 

the rat pups (30 cm from the ends of the track) were used for subsequent analyses. A 

window of 400 ms centered on the trough of each theta oscillation matching these criteria 

was extracted, and the Bayesian decoding of the population spike trains was performed to 

determine the virtual location of the animal based on the ensemble neural activity in 20 

ms non-overlapping bins. For each theta cycle, this was centered on the current location 

of the animal (±30 cm) to reveal the difference between the actual and the predicted 

locations. Subsequently, the decoded relative locations were averaged across all theta 

cycles. A 100 ms window centered on the trough of the averaged theta cycle was used for 

computing the quadrant ratio. To study the modulation of theta sequences by the location 

of the animal, by the velocity of the animal, and by the number of cells per cycle, 

increasing thresholds for each of these parameters were set (velocity: 5 cm/s, 10 cm/s, 15 

cm/s, 20 cm/s; location: a minimum distance of 20 cm, 30 cm and 40 cm from the ends of 

the track; minimum number of cells: 2, 3, 4). Animals with less than 30 theta cycles per 

threshold were not considered for this analysis.  

Additionally, to accommodate for increasing theta frequencies with age, theta 

sequences were computed by binning the activity in theta phase (6 phase bins per theta 

cycle), instead of the 20 ms bin in the time domain, followed by Bayesian decoding of the 

ensemble neural activity. To accommodate for changes in theta power across ages, two 

analyses were performed. First, only the theta cycles within the top 25th percentile of the 

distribution of amplitude of theta cycles (peak-to-trough distance) were considered for 

theta sequence analysis. This tested whether theta sequences are absent at the younger 

ages even at the highest theta powers. Second, the theta cycles with the highest amplitude 

were dropped from the analysis at the older age groups (P17-18 onwards) and the theta 

cycles with the lowest amplitude were dropped from the P15-16 group until the average 

theta amplitudes of all age groups were equal or lower than the top 50th percentile of the 

theta amplitudes of the P15-16 group. Theta sequence analysis was performed on these 

restricted cycles to test whether increased theta power with age might account for the late 

emergence of theta sequences. 

 

Quadrant ratio 

The quadrant ratio quantifies the decoded theta sequential structure by adding the 

probabilities in the quadrants ahead (quadrant 1, future) and behind (quadrant 3, past) the 

current location of the animal in space and time and subtracting the other two quadrants 

from their sum. This difference is subsequently normalized by the sum of all probabilities 

in quadrants 1-4. Significance of theta sequences was determined by shuffling the time 

bins within theta cycles (n=500) and re-computing the quadrant ratio. If a group of 

animals had quadrant ratios significantly exceeding the 95th percentile of the shuffled 

distributions for that group, the group was considered to have significant theta sequences. 

Additionally, we calculated the proportion of individual significant animals, the latter 

defined as having an average quadrant ratio above the 95th percentile of the shuffled 

distributions and a spatial extent higher than 5 cm. To study the role of experience on 

theta sequences, an index (the quadrant ratio index) was computed. For each animal and 
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direction, the difference between the quadrant ratio of the data and the 95th percentile of 

the shuffled distributions was computed, and this difference was directly compared across 

the groups (experienced vs. non-experienced). 

 

Properties of theta sequences 

We calculated various properties of theta sequences to determine their representation 

of sequential spatial locations. First, we computed the best fit line of the averaged 

decoded theta sequence from neuronal tuning curves smoothed at 2 cm SD. This was 

determined by fitting all possible lines (in 1 cm steps) to the decoded posteriors and 

computing the ratio of sum of probabilities within 10 cm of the lines on one hand and the 

total sum of probabilities on the other. The fit with the maximal ratio was considered as 

the best fit (25). The encoding score was defined as the ratio for the best fit line and it 

quantifies the quality of encoding. To compute other properties of theta sequences, we 

considered all the lines with scores above the 95th percentile of the distribution of line 

fits, and for those fits the average slope/speed (cm/s), the spatial extent (in cm) and the 

compression ratio (average theta sequence slope divided by animal velocity) were 

computed. 

 

Detection of frames during slow-wave sleep in the sleep box 

Frames were detected during slow-wave sleep periods in the sleep box based on 

animal immobility (velocity below 2 cm/s, set at this value since the rat pups occasionally 

moved/twitched during sleep) and low theta/delta ratio on the LFP (epochs below the 

mean theta/delta ratio, computed on the Hilbert transform for the respective frequencies, 

4-10 Hz for theta and 1-3 Hz for delta, and smoothed with a 10 s Gaussian) to exclude 

epochs of rapid-eye movement sleep. The non-REM sleep epochs were further reviewed 

manually and adjusted to ensure potential spurious detections of theta oscillation were 

excluded from further analysis. For the slow-wave sleep periods, the combined 

population activity of all pyramidal neurons in 1 ms bins was calculated and convolved 

with a Gaussian kernel of 15 ms. Periods when the population activity of at least 5 

distinct place-responsive cells exceeded 2 standard deviations above the mean population 

activity for 100-800 ms during slow-wave sleep were considered as sleep frames for 

sequence analysis. Frames were binned at 20 ms. The number of spikes of each cell in 

each bin were counted and the Bayesian decoding of population spike trains was 

performed to determine the virtual position of the animal. Each direction was considered 

independent and analyzed separately for this analysis. 

 

Detection of frames during on-track awake rest 

Frames of activity were also detected during awake rest periods on the linear track. 

The criteria used for detection of frames during slow-wave sleep were applied during 

awake rest with the exception that animal velocity was kept at under 1 cm/s to prevent 

contamination from run behaviors. 

 

Weighted correlations 

To determine the sequential content within a frame, a product-moment linear 

correlation between time and location was computed, weighted by the associated 

posterior probabilities, . 
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First the weighted mean was computed for location ) and time ) as follows: 

 

 

Following computation of weighted mean for time in an equivalent manner, the next step 

involved computing the weighted covariance (covar): 

 

 

 

And, finally, the weighted correlation (r): 

 

 

 

where  is the jth spatial bin,  is the ith temporal (20ms) bin in the frame,  is the 

Bayesian posterior probability for the jth spatial bin at the ith temporal bin, T is the total 

number of temporal bins and L is the total number of spatial bins. Note that  

and  . 

 

Probability score for stationary frames 

The probability score for stationary frames was computed based on an iterative 

method adapted from previous reports (15, 25) (see also Methods section on Properties of 

theta sequences). A line-fitting algorithm was used to detect the probability score of each 

frame. All possible lines (1 cm steps) were fit to the frame, and the ratio of sum of 

probabilities within 5 cm of the line on the one hand and the whole frame on the other 

hand was computed (probability score). The line maximizing this probability score was 

considered the best fit line for the frame and its associated score was used for comparison 

with shuffles. 

 

Shuffles 

To determine if individual frames significantly represented the experience, two 

types of shuffles were performed for each frame. First, the time bins within a frame were 

randomly permuted (time bin shuffle for theta sequences and trajectory sequences). 

Secondly, for detection of significant stationary frames, the decoded probability vector 

for each time bin of the frame was circularly shifted by a random amount between 1 and 

track length minus 1. This circular shift shuffle was performed for each bin independently 
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(space bin shuffle) as described earlier (25). This shuffle conserves the structure of 

decoded probabilities within a bin, but randomizes any association between bins.  

 

Proportion of significant trajectory events 

The proportions of significant trajectory sequences were calculated by comparing 

the weighted correlation of each individual frame with its respective shuffles (time-bin 

shuffle). Sequences/frames were considered significant if the weighted correlation 

exceeded the 97.5th percentile or was below the 2.5th percentile (for reverse sequences) of 

the shuffled distributions and the decoded spatial extent exceed 15% of track length. The 

proportion was calculated by dividing the number of significant frames by the total 

number of detected frames in that sleep session.  

 

Proportion of significant individual animals with trajectory sequences 

To study the emergence of preplay and replay at the individual animal level, frames 

for each direction were pooled, and the number of significant frames (assessed based on 

their respective shuffles) out of all frames were considered the ‘successes’ out of the total 

frames. A binomial test with α<0.05 indicates significantly higher proportions of 

successes compared to chance. 

 

Proportion of significant stationary frames 

The significant stationary frames depicting individual locations were calculated by 

comparing the probability scores of the frames to their respective circular space-bin 

shuffles. If the probability scores for a frame were higher than the 95th percentile of their 

shuffles and the spatial extent of decoded position was less than 5% of the track length, 

the activity within that frame was considered as significantly stationary and location-

depicting. The proportion of significant stationary frames was calculated by dividing the 

number of significant stationary frames by the total number of detected frames in that 

sleep session. 

 

Bias of awake stationary frames to current location 

To determine if stationary frames during awake rest on the track were biased to 

initiate at the current animal location, the y-intercept of the fitted line was considered the 

starting location of the stationary frame. The differences in the actual position of the 

animal and the starting location were computed. In case of an initiation bias, the 

histogram of these differences should exhibit a peak at 0. To determine if this peak was 

significant, the probability of starting locations occurring within 20 cm of the current 

location of the animal was determined and was divided by the probability of starting 

locations occurring outside 20 cm of the current location. Subsequently, the histogram 

was shuffled (n=500), and this ratio re-determined. If the ratio in the data was higher than 

the 95th percentile of the shuffled distribution, we concluded that there was a significant 

bias to the current location. 

 

Ripple analysis 

Ripple detection was performed by filtering the raw LFP in the 140-250 Hz range, 

during low theta-delta epochs and animal immobility (velocity less than 2 cm/s) in the 

sleep box. The mean ripple power in this band was computed, and periods exceeding 3 
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standard deviations of the mean were considered as hippocampal ripples and used for 

ripple characterization across development. To compute the ripple power within frames, 

the instantaneous ripple power was z-scored by the averaged ripple power. The maximal 

Z-scored ripple power in the frame was considered as its associated ripple power. 

 

Compression ratio 

Time-compression of decoded trajectory sequences relative to their behavioral 

timescale activation was computed by calculating the ratio between the speed of the 

decoded trajectory sequence during sleep/rest/run and the average speed of the animal 

during the Run session. 

 

Sequence score 

The sequence score ( ) was defined as the Z-score of the absolute weighted 

correlation of a frame relative to the distribution of absolute weighted correlations of its 

shuffled frames (28). It was computed as follows: 

 

 

where  is the weighted correlation of the frame and  the weighted 

correlations of its respective shuffles. 

 

Plasticity at the individual animal level 

Sequence scores for frames in both directions were pooled for each animal in the 

Pre-Run sleep and Post-Run sleep, subsequently the sequence scores for the sleeps were 

compared using a ranksum test. 

 

Jump distance 

During the frames, the peak decoded virtual position along the animal’s trajectory 

was computed for each time bin. The median of the absolute differences between peak 

decoded locations in consecutive bins divided by the length of the track was considered 

the median jump distance of that frame, while the maximum of jumps was considered the 

maximum jump distance. To account for the effect of frame length on its value, the 

maximum jump distance was subsequently normalized by the maximum jump distances 

of its respective time-bin shuffles (expressed as a percentile of the shuffled distribution, 

i.e., normalized maximum jump distance). 

 

Proportion of significant frames using two additional criteria for significance 

To determine if frames could simultaneously pass additional two criteria (i.e., in 

addition to the time-bin shuffle), thresholds for weighted correlation and maximum jump 

distance were set, and only frames matching these criteria were compared to their 

respective shuffles. In this regard, only the frames with the top 70th percentiles of frames 

as assessed by weighted correlations and bottom 70th percentiles of maximum jump 

distances were analyzed, and their weighted correlation compared to shuffles as described 

before. A percentile was used rather than a fixed threshold since the weighted correlation 

was observed to be correlated to the extent of the frames. These criteria effectively used 
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only the best ~50% of the data for further quantification. These criteria were empirically 

set based on significance in frames from adult animals. 

 

Simultaneous two-feature comparison of absolute weighted correlations and maximum 

jump distances between frames and shuffles 

We additionally simultaneously quantified and compared the weighted correlations 

and maximum jump distances of frames in a session (slow-wave sleep or awake rest) 

with that of their respective time-bin shuffles (n=500). The data and the corresponding 

shuffles had the same frame lengths. All detected frames in the sleep were used for this 

analysis. To simultaneously study weighted correlations and maximum jump distance of 

frames, increasing thresholds for weighted correlations and decreasing thresholds for 

jump distance were independently applied to a particular sleep session, and the 

proportion of frames passing both thresholds were calculated (33). The values of the 

thresholds for these features were: 0 to 0.9 in steps of 0.1 for weighted correlation, and 

0.1 to 1 in steps of 0.1 between successive thresholds for maximum jump distance. The 

number of all shuffles with proportion of frames less than the data passing those 

thresholds were counted and divided by the total number of shuffles (n=500). This value 

was subsequently subtracted from 1 to be expressed as a P-value, with significance set at 

P<0.05. The P-values were plotted as a pseudo-colored significance matrix.  

 

Simultaneous two-feature comparison of sequence scores and median jump 

distances/normalized maximum jump distances between Pre-Run sleep and Post-Run 

sleep frames 

Single features of trajectory sequences do not completely describe their properties. 

Therefore, we simultaneously compared the two most sensitive features between Pre-Run 

sleep and Post-Run sleep frames, sequence score and jump distance, to reveal any 

potential differences not observed in our analysis on the proportion of significant frames. 

All detected frames in the sleep were used for this analysis. Because Pre-Run and Post-

Run sleep frames of different lengths had differing sequential content, we computed the 

jump distance using the median jump distance value, which does not depend on the frame 

length. We obtained similar results using the normalized jump distance value, which also 

does not depend on the length of the frame. To simultaneously study sequence score and 

median jump distance of frames, increasing thresholds for sequence score and decreasing 

thresholds for jump distance were independently applied to a particular sleep session, and 

the proportion of frames passing both thresholds were calculated. The values of the 

thresholds for these features were: no threshold (i.e., all frames), 0 to 2.8 in steps of 0.4 

for sequence score, and 0.125 to 1 in steps of 0.125 between successive thresholds for 

median jump distance. A one-tailed Z-test of two proportions (Post-Run sleep>Pre-Run 

sleep) was performed for each set of thresholds (72 sets in total) between the Post-Run 

sleep and the Pre-Run sleep proportion of frames exceeding the respective thresholds. 

The resultant Z-score for each set of thresholds was expressed as a P-value, with 

significance set at P<0.05. The P-values were plotted as a pseudo-colored matrix. 

Additionally, to ensure sequences without large maximum jumps were plastic, we 

simultaneously compared the sequence scores and normalized maximum jump distances 

between Pre-Run and Post-Run sleep, using a similar statistical method. The maximum 

jump distance was normalized (by computing a percentile of it relative to its frame-
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matched time-bin shuffles) for comparison across sleeps because a relationship between 

frame length and maximum jump distances was observed in our data. 

 

Equalizing decoding errors on and across track 

To account for the age-dependent decrease in decoding errors during the Run on 

observing sequential structure in the sleep, we removed the neurons with the highest 

spatial information in the P23-24 group until its median decoding error and distribution 

of decoding errors across the track matched that of the P15-16 group. Subsequently, we 

performed the same sleep analysis on this error-matched dataset. 

 

Controlling for differences in experience within a Run session 

Laps were considered as runs across the track (at velocities exceeding 10 cm/s) 

covering a minimum of 0.7 of the track length. Although we did not observe a correlation 

of number of laps run by the freely behaving animals and/or lap incidence with age, we 

nonetheless controlled for these factors by two methods. First, we used only the first 17 

laps during the Run (i.e., the observed average number of laps in the group with the least 

number of laps) for quantification and analysis of theta sequences and sleep sequences 

for groups with higher number of laps (P15-16, P21-22 and P23-24) and all laps in the 

remaining groups (P17-18 and P19-20). To further control for the role of experience 

during Run on sequence plasticity, we only studied plasticity in the subset of animals 

with similar lap properties (i.e. P15-16: 3 animals, P21-22: 2 animals and P23-24: 2 

animals for number of laps and P15-16: 3 animals, P17-18: 3 animals, P21-22: 1 animal, 

P23-24: 2 animals for lap incidence) at the individual animal level. 

 

Generation of Poisson surrogate datasets 

To determine if differences in firing rates across cells could account for the 

observation of trajectory sequences and stationary frames at various ages, the mean firing 

rate of each neuron within all frames in Pre-Run sleep was computed. Subsequently, 

surrogate datasets (500 datasets) were generated with each corresponding cell exhibiting 

the same mean firing rate, but otherwise random firing characteristics (according to a 

homogenous Poisson process). The absolute weighted correlations of each iteration of 

these surrogate datasets were compared to the real data using a Wilcoxon’s ranksum test. 

Furthermore, we shuffled one surrogate dataset and determined if significant trajectory 

sequences and stationary frames could be detected, using the same methods/shuffle 

procedures as those used for trajectory sequences and stationary frames in the real data. 

Additionally, a two-feature comparison of the Poisson was performed as in the real data 

(described in the earlier sections) to determine if any spurious trajectory sequences were 

detected due to firing rate inhomogeneity across hippocampal neurons.   

 

Statistical tests 

To determine the relationship of age to various ensemble properties, a product-

moment linear Pearson’s correlation or an omnibus test (one-way analysis of variance; 

ANOVA) was performed followed by posthoc Tukey’s tests for multiple comparisons. 

Parametric statistical tests (one-sample and two-sample Student’s t-tests) were performed 

on data that did not violate the normality assumption. Otherwise, non-parametric 

statistical tests (Kruskal-Wallis ANOVA followed by posthoc Dunn’s tests, Wilcoxon's 
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ranksum test or the Wilcoxon signed rank test) were performed. A P<0.05 was 

considered significant. ***P<0.001, **P<0.01, *P<0.05, ns=not significant. P-values 

smaller than 10-10, were presented as P<10-10. 

 

Examples in figures 

For plotting purposes only, a smoothing of 2cm SD was applied to the raw tuning 

curves in Figure 1H, a moving window (20 ms advanced in steps of 5 ms) was used for 

displaying theta sequences in Fig. 2. Similarly, a moving window (20 ms advanced in 

steps of 10 ms) was used for displaying sequences in awake rest and sleep (Figs. 3, 4, 

S8). Frame durations provided with the frames were rounded up to the nearest 20 ms. 
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Fig. S1. Across-development micro-features of animal behavior during Run on the track. (A) Total 
distance travelled per track length in a lap is unaffected by age (P>0.05, ANOVA). (B-C) Average number 
(B) and incidence (C) of laps scored during de novo Run session exhibit a U-shaped relationship with age 
(P<0.05, ANOVAs). Although some variability was observed across groups, the number of laps (R=0.22; 
P=0.15) and incidence (R=0.02; P=0.91) did not exhibit significant correlations with age. (D) Head sweeps 
at two velocity thresholds during running do not change with age (P>0.05, ANOVAs). *P<0.05, ns=not 
significant. 
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Fig. S5. Neuronal ensemble activity during sleep frames has similar temporal dynamics across development. (A) Increased 
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Fig. S8. Neuronal ensemble temporal organization observed in sleep exceeds that of surrogate stochastic 
datasets with conserved neuronal firing rates. (A) Pre-Run sleep frames in P17-18 and older animals have 
significantly higher weighted correlations compared to their respective Poisson-distribution surrogate datasets (500 
iterations; 500/500 iterations were significantly higher as depicted by the ranksum P-values in the insets; P<10-10, 
binomial test for significant iterations). In contrast, at P15-16, the Poisson distributions had significantly higher 
structure than the Pre-Run sleep data in 7/500 iterations (P<0.05, binomial test for Pre-Run sleep>Poisson). This 
indicates that neuronal sequential structure exceeds the one resulting from neuronal firing rate dynamics starting at 
P17-18 (cumulative proportions for one example surrogate Poisson dataset and the Pre-Run sleep dataset are 
plotted). (B) Poisson surrogates lack significant sequential structure above chance levels at all tested age groups. 
Proportion of significant frames were either at or below chance levels, Pre-Run/Post-Run sleep: P15-16, 
P=0.008/0.003; P17-18, P=0.127/0.010; P19-20, P=0.595/0.009; P21-22, P=0.107/0.962; P23-24, P=0.041/0.004; 
adult, P=0.089/0.902, t-tests. (C) Proportions of Poisson-surrogate stationary frames are at or below chance 
beginning at P17-18 (Pre-Run/Post-Run sleep: P15-16, P=0.041/0.067; P17-18, P=0.112/0.220; P19-20, 
P=0.534/0.553; P21-22, P<0.001/0.027; P23-24, P<0.001/0.001; adult, P<0.001/0.001, t-tests) and below 
proportion of stationary frames during Pre-Run sleep at P15-16 (P=0.001/0.001, t-tests). (D) Two-feature compari-
son of firing-rate matched Poisson surrogate datasets for Pre- and Post-Run sleep show no difference at any age, 
demonstrating the observed plasticity is not due to changes in firing rates. Data are means ± SEM. 
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met first in Pre-Run sleep at P17-18. 
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Fig. S10. Controlling for changes in micro-features of behavior on the track across 
development. (A) Proportions of trajectory sequences in sleep when only the first 17 Run laps 
for each animal were used for computation of spatial tuning curves (for animals belonging to 
groups with higher average number of laps). Note similar results compared to Fig. 4B when all 
Run laps were analyzed. (B) Right panel: Proportion of significant individual animals in sleep 
when only animals with similar number of laps from each group matching the P23-24 group (n=3, 
2, 2 animals/group). Left panel shows the average number of laps in the animals analyzed. (C) 
Right panel: Proportion of significant individual animals in sleep when only animals with similar 
Run lap incidence were separately analyzed (n=3, 3, 1, 2 animals/group). Left panel shows the 
average lap incidence in the animals analyzed. Note all animals between P15-P22 showed no 
plasticity at the individual animal level (Fig. 4B) regardless of the experience during the first Run 
session. Data are means ± SEM. ***P<0.005, *P<0.01, *P<0.05, ns=not significant. 
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Fig. S11. Higher decoding error in the middle of the track does not account 
for lack of preplay and replay at P15-16. (A) Decoding error during Run is 
higher in the middle of the track in the P15-16, P19-20 and P23-24 groups and 
uniform for the remaining age groups as assessed via correlation between 
distance from boundary and median decoding error. (B-C) Decoding analysis 
performed after removing top 50% of the cells with the highest spatial informa-
tion in P23-24 animals. This procedure increased the decoding error of P23-24 
animals to the level of P15-16 animals (B) and resulted in datasets (i.e., 
P23-24ds) having a similar distribution of decoded errors across the track as the 
P15-16 animals (C). Multiple-way ANOVA: age (P15-16 vs. P23-24ds), P>0.05; 
location on track P<10-10; interaction between age vs. location P>0.05. (D) 
Proportion of significant trajectory frames in sleep across the three groups. Note 
that, despite controlling for these two factors (i.e., median decoding error on 
track and distribution of decoding errors across the track), we observed preplay, 
replay and plasticity during sleep in P23-24ds animals. This indicates that 
increased decoding error alone could not account for the lack of preplay and 
replay at P15-16. Data are medians ± SE (A-C) and means ± SEM (D). 
***P<10-10, **P<0.01, *P<0.05, ns=not significant.
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Fig. S12. Development of ripple (140-250 Hz) activity and of ripple-associated trajectory-depicting sequential activity. (A) 
Examples of ripples at P15 and at P23. (B-E) Age-related increases in ripple: mean power (B; in standard deviations above mean), 
duration (C), proportion of doublets (D; within 200 ms), and incidence at various thresholds (E). P<10-10, ANOVAs (B-E). (F) Increase in 
median ripple power coinciding with an increase in multiunit activity in frames with significant trajectory-depicting sequences (left panel) 
and significant location-depicting ensembles (right panel). (G) Sleep frames with high ripple power (>3 standard deviations above mean) 
exhibit similar proportions of significant proportions of trajectory sequences compared with those of all sleep frames (see Fig. 4B; paired 
t-tests). ***P<0.005, **P<0.01, *P<0.05, ns=not significant.
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Fig. S13. Stationary frames during awake rest and sleep on the track. (A) Proportion of stationary, individual location-depicting frames is 
transiently higher during awake rest compared to sleep early in development (P19-22). (B) Distribution of on-track locations decoded from 
stationary frames in Pre-Run sleep, Awake rest and Post-Run sleep across age groups with significant proportions of stationary frames are 
similarly distributed across the track (Kolmogorov-Smirnov tests between all pairs of brain states, P>0.05; in addition, we tested individual animals 
separately and found no significant differences in any animal at any age). (C) Correlation of changes in proportion from Pre-Run to Post-Run 
sleep with proportion across track during awake rest. No group at any age showed a significant correlation. (D) Change in the proportions of 
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in the Pre-Run sleep (C) and Post-Run sleep (D). Based on the observed relationship between max jump 
distance and frame length (A), we subsequently normalized the jump distance of a frame relative to its shuffles 
before comparing it between Pre- and Post-Run sleep. These quantifications were performed on data from the 
adult rats group. For (A-B) red line indicates the running mean.
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Fig S15. Development of trajectory sequences assessed using 
more stringent criteria for maximum jump distance and weighted 
correlation. (A) Proportion of significant trajectory sequences 
calculated by applying two additional criteria for significance in 
addition to the time-bin shuffle (as a proportion of all detected 
frames). A significant frame would additionally belong to the top 70th 
percentile of sleep distribution of weighted correlations and bottom 
70th percentile of maximum jump distances. Approximately 50% of all 
frames across different age groups met these additional stringent 
criteria. Thus, extended preplay and replay occur significantly above 
chance levels first at P19-20. (B) Maximum jump distance for the 
significant frames in (A). Note a reduction in maximum jumps starting 
at P17-18 (partial trajectory sequences), compared to P15-16. Data 
are means ± SEM. ***P<0.005, **P<0.01, *P<0.05, ns=not significant.
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Fig. S16. Two-feature direct comparison of Pre-Run sleep and Post-Run sleep trajectory 
sequences. Significance matrices for direct comparisons between the proportion of frames 
passing more rigorous thresholds of sequence scores and normalized maximum jump distances. 
This comparison reveals that trajectory sequences in Post-Run sleep first become stronger than 
Pre-Run sleep first at P23-24 (left panels), when they appear adult-like. A similar comparison 
between sleep firing-rate matched Poisson-distribution datasets for Pre-Run sleep and Post-Run 
sleep did not reveal a difference. Note the normalized max jump is used to control for the effect of 
frame length on maximum jump (see Fig. S14). Red squares indicate area of significance with low 
normalized jumps.
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Fig. S17. Comparison of the developmental profile of trajectory sequences 
during sleep in the sleep box and awake rest on the track. Proportion of 
Pre-Run sleep, Awake rest (de novo Run) and Post-Run sleep trajectory sequences 
across development. Note awake replay first increases above Pre-Run sleep 
(preplay) at P23-24 (paired t-tests). Data are means ± SEM. **P<0.01, *P<0.05, 
ns=not significant. 
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P15
P15
P16
P17
P17
P18
P19
P19
P20
P20
P21
P22
P22
P22
P23
P24
P24
Adult
Adult
Adult

Age # of neurons # of frames

60
42
67
30
55
57
41
35
36
37
58
28
44
42
55
41
65
44
61
56
50
79

1209/1501
1198/1648
1214/1737
518/987

984/1072
826/629
669/856

755/1003
441/377
827/1162

1639/1351
435/689

921/1057
859/742

1357/1945
1494/1364
1619/1458
1025/1163
1653/1638
4887/1136
2937/2083
6753/2430

Table S1. Details of neuronal recordings across ages. Table contains 
details of Day 1 of the experiment: animal age, number of neurons 
simultaneously recorded, number of detected frames in Pre-Run 
sleep/Post-Run sleep, and number of Run sessions.

Day 1

# of Run sessions

2
2
2
1
1
2
1
1
2
2
2
2
2
2
1
2
2
2
2
2
2
2
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