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Supplementary Methods 1 

EMM compartmental transition algorithm.  2 

For each time step t, the number of individuals moving through disease compartments both 3 

within and between grid cells (see Fig. 2) was estimated using disease transmission parameters. We 4 

predicted the likely movement between disease compartments per time step, by drawing randomly 5 

from a binomial distribution. We describe this process below, using as an example the movement of 6 

individuals moving from Exposed to Infectious compartments within grid cells.  7 

 8 

1. We determined the probability that a number of individuals were likely to move from the Exposed 9 

to Infectious compartments as: 10 

(௧ܧ	within	infections	௜݇)݌ 11  = 	 ቀா೟௞೔ቁ	ߙ௧௞೔(1 −  ௧)ா೟ି௞೔ 12ߙ

 13 

where ki represents the number of individuals that enter the Infectious compartment, Et the 14 

number of Exposed individuals at time t, and αt the transition probability at time t. 15 

2. Using Equation 1, we determined for any value of ki the probability of ki individuals that move 16 

into the Infectious compartment, i.e., we computed the probability of the number of people, 17 

between 0 and the total number of individuals in the Exposed compartment, entering the 18 

Infectious compartment at time step t. We then drew randomly from this probability distribution 19 

to choose ki individuals that moved into the Infectious compartment, thereby weighting the choice 20 

towards the more likely outcomes given α. 21 

3. Once the number of people that will be infected in the next time step ki was determined, then ki 22 

individuals were removed from the Exposed compartment and added to the Infectious 23 

compartment. 24 

4. This process continued (per time step) until the number of individuals in the Exposed 25 

compartment equalled zero. 26 

 27 

The same process was applied to every compartment change using the respective transition 28 

probabilities (i.e., substituting α in the above example). Movement of individuals between respective 29 

Exposed and Infectious compartments between grid cells was also modelled similarly, but stopping 30 

movements if the exposed or infectious number dropped to zero but with no change to susceptible 31 

numbers. Due to the high morbidity from this disease, individuals in the Infectious compartment were 32 

deemed less likely to travel and were awarded a travel probability that was half of the expected rate 33 

for non-symptomatic individuals.  34 

 35 
 36 

(Equation 1) 
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Force of zoonotic infection, λz algorithms. 37 

The force of infection for zoonotic host to human transmission, λz was estimated per grid cell, 38 

per time step t, as follows:  39 ݖߣ௧ =  ܪߢ

 40 

where κ = spill-over risk, and H = probability of zoonotic host presence per grid cell. Spill-over event 41 

probability, ߢ per person, per time step is given by:  42 

ߢ 43  = ቀ ைௌ೓்ቁ 44 

 45 

where O = number of historic outbreaks, Sh = number of historically susceptible individuals and T = 46 

total time when infections could have occurred. Note: Above we are estimating the probability of an 47 

individual being involved in a spill-over event directly from an animal host, which is distinct from the 48 

overall risk of contracting the disease.  49 

 50 
Force of infection, λ algorithms.  51 

The force of infection for human-to-human transmission, per grid cell and per time step t, was 52 

estimated as: 53 ߣ௧ = ௧ܫߚ	 +  ௧ܨߚ
 54 

where β = effective contact rate, It = number of individuals in Infectious compartment at time step t, 55 

and Ft = number of individuals in Funeral compartment at time step t. For simplicity we assumed that 56 

βI and βF were the same (hereafter referred to as β). When t = 0, β is given by:  57 

ߚ 58  = ݉ ∗ ቀோబே஽ቁ 59 

 60 

where R0 = basic reproduction number, m = mobility, N = population size per time step, and D = 61 

duration in days that an individual is infectious. In this context, m was used to modify the ideal free 62 

gas model of human movement with distances travelled which are spatially variable across the 63 

landscape. We calculated a two-dimensional collision frequency c, per person per grid cell (1) as 64 

follows:  65 

 66 ܿ =  2ݍݐΔݒ݊		

 67 

where n = number of individuals, v = walking velocity, ∆t = time period and q = interaction sphere 68 

radius. In the context of our simulation, vΔt represents daily walking distance. Then we defined m as 69 

(Equation 2) 

(Equation 3) 

(Equation 4) 

(Equation 5) 

(Equation 6) 
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the inverse deviation from a mean of c such that areas with more movement have a higher effective 70 

contact rate. However, when t > 0 we redefined β as follows: 71 

ߚ 72  = ݉ ∗ ቀோ೐ே஽ቁ 73 

 74 

where Re = effective reproduction number, m = mobility, N = population size per time step, and D = 75 

duration in days that an individual is infectious. Re is related to R0 but due to changes in human 76 

behaviour and health care responses, Re may be lower and decline over time, in addition to the 77 

implicit reduction in R as the pool of susceptibles decreases during an outbreak. We assume that the 78 

effective reproduction number reduces on a daily basis due to increasingly strong health care 79 

responses over time. 80 

So initially, when t = 1: 81 ܴ௘ = ܴܽ଴ 

 82 

where Re = effective reproduction number at t = 1, a = decay rate, and R0 = basic reproduction 83 

number. However, when t >1: 84 

 85 ܴ௘௧ାଵ = ܴܽ௘௧  
 86 

where ܴ௘௧=  effective reproduction number at time t, and a = decay rate. We define decay rate a per 87 

grid cell, from the empirical relationship between wealth and health outcomes. Using either direct or 88 

derived empirical estimates of the gradient of the change in Re over time from (3, 4, 5, 6), we fitted an 89 

exponential decay curve between estimates of per captia Gross Domestic Product measured as 90 

Purchasing Power Parity (from 2) and the gradient of Re change per day. The starting Re decay value a 91 

per grid cell, was given by: 92 

 93 ܽ =  GDPି௪ଶ	ݔ	1.024

 94 

where the best estimate for exponent w2 was -0.848, GDP = Gross Domestic Product from (7), 95 

pseudo r2 = 0.76, and n = 8.  96 

 97 

The poverty-weighted Case Fatality Rate (wCFR) per grid cell, was given by: 98 

 99 wCFR = 0.21	ln	( 1GDP)ି௪ଵ 

(Equation 7) 

(Equation 8) 

(Equation 9) 

(Equation 10) 

(Equation 11) 
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where the best estimate for exponent w1 was -0.0239, GDP = Gross Domestic Product from (7), 100 

pseudo r2 = 0.9081, and n = 20.  101 

 102 

  103 
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Supplementary Figures104 

 105 

Supplementary Figure 1. Comparison of AUC scores for predicted risk versus observed risk of 106 

known Ebola outbreaks. Black dots represent four different lots of ten thousand randomisations of 107 

the risk surface, whiskers 95% confidence intervals, while red dots are AUC values on the raw 108 

predictive surface. The x-axis represents the predicted size of the endemic areas with randomisations 109 

of the risk surface happening 10-40 degrees around the equator.  110 
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 111 
 112 
Supplementary Figure 2. Present-day host occurrence probability. Maps represent occurrence 113 
probability H of EBOV host and other infection source species estimated from boosted-regression 114 
trees (BRT) models. Probability of species occurrence per grid cell (0.0416°) is represented on a 115 
linear color scale where green is most suitable (p(H) = 1) and white unsuitable (p(H) = 0) where (A) 116 
Epomophorus gambianus gambianus; (B) Epomops franqueti; (C) Hypsignathus monstrosus; (D) 117 
Rousettus aegyptiacus; (E) Gorilla spp.; (F) Pan spp.; (G) Cephalophus spp.; and (H) all species 118 
combined. Axis labels indicate degrees in a World Geodetic System 84 projection. Filled black circles 119 
represent GBIF (8) occurrence records.  120 
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121 
  122 

Supplementary Figure 3. Response curves from boosted-regression trees (BRT) models of 123 
EBOV host species occurrences. Each plot represents the shape of the normalized fitted functions 124 
for each variable where (A) Epomophorus gambianus gambianus; (B) Epomops franqueti; (C) 125 
Hypsignathus monstrosus; and (D) Rousettus aegyptiacus. The relative percentage contribution of 126 
each variable to the model in terms of variance explained is given in parenthesis, where only the top 127 
eight variables of the model are included for each species. Variable abbreviations are defined in 128 
Supplementary Table 2.  129 
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 130 

 131 

 132 
Supplementary Figure 4. Distributions of relative frequency of EBOV cases per year. Violin 133 
plots represent the empirical observed (n=23 outbreaks) data of log total number of cases per year 134 
from 1967-2016 (9), and log total number of cases per year (n=2500 runs) from EMM simulations for 135 
present day environmental and demographic conditions. 136 
  137 
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 138 

 139 
Supplementary Figure 5. Sensitivity plots of input parameters for (a) total number of annual log 140 
EVD cases, and (b) mean annual spill-overs. Black dots show the response values per simulation 141 
and are jittered for greater clarity. Red dots represent the median values for each parameter value, and 142 
red lines join the medians to aid interpretation of any trend. Parameters are as follows: illness length - 143 
mean number of days in the infectious compartment; R0 – basic reproductive number; incubation - 144 
mean number of days in the exposed compartment; CFR - mean case fatality rate per illness; 145 
immunity - mean immunity to re-infection where 1 is totally immune; cases per year - mean spill-over 146 
rate constant; host distance - mean daily distance (m) travelled by host reservoir species; density - 147 
mean number of reservoir host individuals per grid cell; w2 - shape of the effective reproductive 148 
number (Re) decay curve, where low values represent a less curved, more linear negative relationship; 149 
and w1 - shape of the CFR~poverty curve, where lower values represent a less curved, more linear 150 
negative relationship. 151 
  152 



SI - Redding et al. Modelling future disease emergence under global change 

10 
 

 153 

 154 
Supplementary Figure 6. Future host occurrence probability.  Maps represents H2070 of EBOV 155 
host and other infection source species estimated from boosted-regression trees (BRT) models under 156 
the medium outlook RCP6 scenario. Probability of species occurrence per grid cell (0.0416°) is 157 
represented on a linear colour scale where green is most suitable (p(H) = 1) and white unsuitable 158 
(p(H) = 0) for all species combined. Axis labels indicate degrees in a World Geodetic System 84 159 
projection. 160 
 161 
 162 
 163 
  164 

Probability 
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 165 
Supplementary Figure 7. Relative changes from present day to 2070 from host suitability grids 166 
using 32 different climate models. The host + non-host surfaces (see methods) were recreated using 167 
the same methods as for the present study but for all available climate models (n=32), with the climate 168 
model (HadGem2-AO) used in the present study highlighted in red. For panel (A) the points represent 169 
the mean change per grid cell in suitability from present day to 2070 versus the mean shift in non-zero 170 
points. For panel B the comparison is the number of grid cells that increase in value versus those that 171 
decrease in value. 172 

  173 
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Supplementary Tables 174 

Supplementary Table 1. Seroprevalence of EBOV in reservoir host species. Species assignments 175 
followed the taxonomy in (10). Prevalence was measured as the proportion of positive results per 176 
sample and raw prevalence data was transformed to a rank within each study. Direct prevalence 177 
comparisons were not possible due to methodological differences. We estimated the most important 178 
EBOV host species as those that appear as the top two ranks in all sources. We identified four 179 
candidate bat species hosts: Epomops franqueti, Epomophorus gambianus gambianus, Hypsignathus 180 
monstrosus, and Rousettus aegyptiacus. N represents sample size; Hipp Hipposideridae; Molo 181 
Molossidae; Ptero Pteropodidae; CI Côte d'Ivoire; SL Sierra Leone; LR Liberia; GH Ghana; CG 182 
Congo; and GA Gabon.  183 

 184 
Family Species Country N Prevalence Rank Source 

Hipp Hipposideros sp. CG, SL, LR 98 0.04 4 (11) 

Molo Mops condylurus CI, SL, LR, CG 37 0.05 4 (11) 
Ptero Eidolon helvum GH 252 0.004 - (12) 

Ptero Epomophorus gambianus 
gambianus 

GH 37 0.38 2 (13) 

Ptero Epomops franqueti GH 27 0.37 2 (13) 
Ptero Epomops franqueti GA, CG 11 0.07 2 (14) 
Ptero Epomops franqueti GA, CG 805 0.04 2 (15) 

Ptero Epomops franqueti CI, SL, LR, CG 62 0.08 3 (11) 
Ptero Hypsignathus monstrosus GH 16 0.44 1 (13) 
Ptero Hypsignathus monstrosus GA, CG 17 0.24 1 (14) 
Ptero Hypsignathus monstrosus GA, CG 125 0.07 1 (15) 

Ptero Hypsignathus monstrosus CI, SL, LR, CG 70 0.16 2 (11) 
Ptero Micropteropus pusillus GA, CG 197 0.02 4 (15) 

Ptero Micropteropus sp. CG 40 0.03 4 (11) 
Ptero Myonycteris torquata GA, CG 58 0.07 3 (14) 
Ptero Myonycteris torquata GA, CG 573 0.03 3 (15) 

Ptero Myonycteris torquata CI, SL, LR, CG 307 0.01 5 (11) 
Ptero Nanonycteris veldkampii GH 4 0.25 3 (13) 
Ptero Rousettus aegyptiacus GA, CG 307 0.08 1 (15) 

Ptero Rousettus aegyptiacus CG 2 1.00 1 (11) 

  185 



SI - Redding et al. Modelling future disease emergence under global change 

13 
 

Supplementary Table 2. Details of bioclimatic and land use variables used to estimate 186 
probability of EBOV host presence, H. Nine most orthogonal (<75% correlation) bioclimatic 187 
variables were chosen from (16).  For analysis, all variables were reduced in latitudinal extent to 85° 188 
N, 58° S and resampled to a 0.0416° grid cell size using a World Geodetic System 84 projection. 189 
LULC is a categorical dataset where the most predominant land use-land cover type in each grid cell 190 
is given within the following categories: Evergreen needle leaf forest; Evergreen broadleaf forest; 191 
Deciduous needle leaf forest; Deciduous broadleaf forest; Mixed forest; Closed shrublands; Open 192 
shrublands; Woody savannah; Grassland; Permanent wetlands; Cropland; Urban and built-up; 193 
Cropland/natural vegetation mosaic; Snow and ice; Barren or sparsely vegetated; and Water bodies.  194 

 195 
No. Variable Description Original 

Spatial 
Extent 

Original Spatial 
Resolution (cell 
size at equator) 

Temporal 
Resolution 

Source

1 BIO2 Mean Diurnal Temperature 
Range 

Global 1km 2012 (16) 

2 BIO5 Maximum Temperature of 
Warmest Month 

Global 1km 2012 (16) 

3 BIO6 Minimum Temperature of 
Coldest Month 

Global 1km 2012 (16) 

4 BIO7 Temperature Annual Range Global 1km 2012 (16) 
5 BIO10 Mean Temperature of 

Warmest Quarter 
Global 1km 2012 (16) 

6 BIO11 Mean Temperature of Coldest 
Quarter 

Global 1km 2012 (16) 

7 BIO12 Annual Precipitation Global 1km 2012 (16) 
8 BIO13 Precipitation of Wettest 

Month 
Global 1km 2012 (16) 

9 BIO14 Precipitation of Driest Month Global 1km 2012 (16) 
10 ALT Digital Elevation Model Global 1km 2008 (17) 
11 LULC Land Use-Land Cover  Global 500m  2001-2012 (18) 
  196 
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Supplementary Table 3. Estimates of global daily walking distances, vΔt. Estimates of daily 197 
walking distances were collected from the literature per country. Daily step numbers were converted 198 
to distance (km) using an average step length of 1.41m (19). As studies have suggested that daily 199 
walking distance is stratified among income categories (20), countries were assigned to income bands 200 
based on per capita Gross Domestic Product (GDP) (measured as Purchasing Power Parity from 2) 201 
such that the poorest countries were given a value of 1 and the richest 4. A mean estimate of walking 202 
distance was calculated for each band. Countries were then assigned a walking distance corresponding 203 
to their GDP band. No estimates were found for band 3 ($1600 - $35000), so countries in this band 204 
were given daily walking distances halfway between bands 2 and 4. 205 

 206 
Country Steps Distance 

(km) 
GDP 
band

 

GDP PPP  
Per capita 

(lower 
bound) 

$ 

GDP PPP 
Per capita 

(upper 
bound) 

$ 

Mean 
km 
Per 

GDP 
Band 

Source 
 

Niger - 7 1 0 1600 9.6 (21) 
Central African 
Republic 

- 8 1 0 1600 9.6 
(21) 

Chad - 15 1 0 1600 9.6 (21) 
Mali - 13.2 1 0 1600 9.6 (21) 
Niger - 4.8 1 0 1600 9.6 (21) 
South Africa 12471 8.85 2 1600 13000 8.5 (22) 
Tanzania - 8.3 2 1600 13000 8.5 (23) 
Australia 9695 6.88 4 35000 128530 5.6 (24) 
Japan 7168 5.08 4 35000 128530 5.6 (24) 
Switzerland 9650 6.85 4 35000 128530 5.6 (24) 
United States 5117 3.63 4 35000 128530 5.6 (24) 

 207 
  208 
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Supplementary Table 4. Collated epidemiological data on EBOV outbreaks. Data on 19 locations 209 
that have experienced EBOV outbreaks or importations and have data on either Case Fatality Rate 210 
(CFR) (3, 25, 26, 27-31) or on Effective Reproductive Number change (5, 26, 27, 32-34) (Re gradient 211 
per week). The latter data was either taken directly from tables or text from within literature sources 212 
or estimated (Spain, United Kingdom, Nigeria, United States) from descriptions of outbreak events 213 
detailed in the sources. Child mortality data for the year of outbreak is taken from World Bank 214 
Development Indicators (2) 215 

 216 

Location County Year
ln GDP per capita 

for year
CFR Re gradient per week

United States Texas 2014 4.74 0.3 0.5
Guinea  2014 3.09 0.707 0.113636
Sierra Leone  2014 3.31 0.69 0.076923
Liberia  2014 2.99 0.723 0.04
Germany  2014 4.66 0
Spain Madrid 2014 4.53 0 0.5
United Kingdom London 2014 4.59 0 3
Nigeria  2014 3.77 0.666667 0.533333

Mali  2014 3.24 0.75

Congo, Dem. Rep.  1976 2.72 0.88 0.105

Gabon  1994 4.14 0.61

Congo, Dem. Rep.  1995 2.72 0.81

Gabon  Early-1996 4.17 0.68
Gabon  Late-1996 4.17 0.75
Gabon  2001–2002 4.15 0.82
Congo, Rep.  2001–2002 3.58 0.76
Congo, Rep.  Early-2003 3.6 0.89
Congo, Rep.  Late-2003 3.6 0.83
Congo, Rep.  2005 3.65 0.75

 217 
 218 

 219 

  220 
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Supplementary Table 5. List of all 32 climate models used in analysis. List of all models (36) used 221 
to construct the host niche models with columns of name, origin and the ocean and atmosphere 222 
resolutions of the model. 223 
 
 
Model Name 

Institute and Country 
of Origin 

Ocean horizontal 
resolution (°lat x °lon) 

Atmosphere horizontal 
resolution (°lat x °lon) 

ACCESS-1.0 
CSIRO-BOM, 
Australia 1.0×1.0 1.9×1.2 

ACCESS-1.3 
CSIRO-BOM, 
Australia 1.0×1.0 1.9×1.2 

CESM1-BGC 
NSF-DOE-NCAR, 
USA 1.1×0.6 1.2×0.9 

CESM1-CAM5 
NSF-DOE-NCAR, 
USA 1.1×0.6 1.2×0.9 

CanESM2 CCCMA, Canada 1.4×0.9 2.8×2.8 
CCSM4 NCAR, USA 1.1×0.6 1.2×0.9 
MRI-CGCM3 MRI, Japan 1.0×0.5 1.1×1.1 
GFDL-CM3 NOAA, GFDL, USA 1.0×1.0 2.5×2.0 
CanCM4 CCCMA, Canada 1.4×0.9 2.8×2.8 
IPSL-CM5A-LR IPSL, France 2.0×1.9 3.7×1.9 
IPSL-CM5A-MR IPSL, France 1.6×1.4 2.5×1.3 
IPSL-CM5B-LR IPSL, France 2.0×1.9 3.7×1.9 
BCC-CSM1-1 BCC, CMA, China 1.0×1.0 2.8×2.8 
BCC-CSM1-1-M BCC, CMA, China 1.0×1.0 1.1×1.1 

GISS-E2-H 
NASA/GISS, NY, 
USA 2.5×2.0 2.5×2.0 

GISS-E2-H-CC 
NASA/GISS, NY, 
USA 1.0×1.0 1.0×1.0 

GISS-E2-R 
NASA/GISS, NY, 
USA 2.5×2.0 2.5×2.0 

GISS-E2-R-CC 
NASA/GISS, NY, 
USA 1.0×1.0 1.0×1.0 

EC-EARTH EC-EARTH, Europe 1.0×0.8 1.1×1.1 
MIROC-ESM JAMSTEC, Japan 1.4×0.9 2.8×2.8 
MIROC-ESM-CHEM JAMSTEC, Japan 1.4×0.9 2.8×2.8 
MPI-ESM-LR MPI-N, Germany 1.5×1.5 1.9×1.9 
MPI-ESM-MR MPI-N, Germany 0.4×0.4 1.9×1.9 
GFDL-ESM2G NOAA, GFDL, USA 1.0×1.0 2.5×2.0 
GFDL-ESM2M NOAA, GFDL, USA 1.0×1.0 2.5×2.0 
FGOALS-g2 LASG, China 2.8 x 2.8 0.5x1 
HadGEM2-AO NIMR-KMA, Korea 1.0×1.0 1.9×1.2 
HadGEM2-CC MOHC, UK 1.0×1.0 1.9×1.2 
HadGEM2-ES MOHC, UK 1.0×1.0 1.9×1.2 
MIROC5 JAMSTEC, Japan 1.6×1.4 1.4×1.4 

CSIRO-Mk3-6-0 
CSIRO-QCCCE, 
Australia 1.9×0.9 1.9×1.9 

NorESM1-M NCC, Norway 1.1×0.6 2.5×1.9 
 224 

  225 
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