

Supplemental Figure S1. Overview of PaTrmD homodimer bound to SAM. (A, B) Two orthogonal views of *Pa*TrmD-SAM structure showing the dimer architecture and SAM-binding active site. The polypeptide chain is shown as a cartoon. Bound SAM molecules are represented by spheres. (**C**) Close-up of the domain arrangement and active site of *Pa*TrmD. Each subunit of the *Pa*TrmD dimer contains two domains: N-terminal domain harbouring the active site (NTD, residues 1-165) in yellow, and C-terminal domain (CTD, residues 178-252) in cyan. The linker loop or "lid" (residues 166-177) between NTD and CTD is unstructured in *Pa*TrmD-SAM and its likely path is indicated by a red dotted line. Bound SAM is shown as magenta sticks with an unbiased *Fo-Fc* electron density (grey) map contoured at 3.0 σ overlaid on the model. Three loops that are involved in substrate binding are coloured in black: "cover loop" (residues 93-96), "wall loop" (residues 117-124) and "bottom loop" (residues 138-146), following nomenclature proposed previously (Ito et al. 2015).

Ito T, Masuda I, Yoshida K, Goto-Ito S, Sekine S, Suh SW, Hou YM, Yokoyama S. 2015. Structural basis for methyl-donor-dependent and sequence-specific binding to tRNA substrates by knotted methyltransferase TrmD. *Proc Natl Acad Sci U S A* **112**: E4197-4205.

	1	Νβ1	Να1	20	Na2		NB2	40	Να3'		Nβ2'	60 	Nβ3'
P. aeruginosa	MDKRWV	G – – VVSIFP	MFRA	ISDYG	TSRAV	KOGLL	т т с	WNP	RVYT	EDRHO	TVDDR	PFGGG	PGMVMK
E. coli	WW I	G IISLFP	MFRA	ITDYGV	TGRAV	KNGLL	S I Q S	WSP	RDFT	HDRHR	TVDDR	PYGGG	PGMLMM
H. influenzae	MW I	G – – VISLFP	MFKA	ITEFGV	TGRAV	KHNLL	K V E C	WNP	RDFT	FDKHK	TVDDR	PYGGG	PGMLMM
P. phymatum	MQF	D IVTLFP	MFRAI	LTDWG	TSRAA	KQERY	G R I	WNP	RDFT	TDNYR	TIDDR	PYGGG	PGMVML
S. aureus	M K I	D Y LTLFP	MFDG	/ L N H S	MKRAQ	ÐNNKL	Q IN I	VNF	RDYA	INKHN	Q V D D Y	PYGGG	OGMVLK
B. henselae	MKF	QARVLTLYP	MFPGI	FLGCS	AGOAL	KQGIW	SLEI	VQI	RDFA	LDKHH	SVDD	PAGGG	AGMVMR
M. abscessus	MKI	D VVTIFP	-YLQI	PVRQS	PGKAI	DAGLV	D V A V	HDL	RRWT	HDVHK	SVDDS	PYGGG	PGMVMK
A. aeolicus	MSSNPLRF	F VLTIFPE	IISC	YSEYG	VKOAI	KKKKV	EVYF	JDL	REFA	P K G	QVDDV	PYGGI	PGMVLK
A. phagocytophilum	MIF	N – – V LTIFP 🤇	MFPGI	PLGVSN	LGSAL	KKGLW	ΤINV	FDI	RAFA	NNKHN	TVDD	PYGGG	PGMLLR
	ΝαΞ	80		N _{\$} 3		100	Nq4		N	β4	120		No 5
					Cover loop	0	U		_		/all_loop		
P. aeruginosa	IKPLEGAL	A D A R Q A A G G F	K	A KV I Y L	SPQGR	QLTQA	GVR	LAE	EEAL	ILIAG	RYEGI	DERFI	E E
E. coli	VQPLRDAI	HAAKAAAGE -	GI	АКУ ТҮЦ	SPQGR	KLDQA	GVSE	LAT	NQKL	ILVCG	RYEGI	DERVI	Q T
H. influenzae	VQPLRDAI	H T A K A A A G E -	GI	ΑΚΫΙΥΙ	SPQGR	KLDQG	GVTE	LAQ	NQKL	ILVCG	RYEGI	DERLI	Q T
P. phymatum	ARPLEDAI	NAAKAAQAEÇ	GIGG	ARVVMM	SPQGA	TLNHD	KVMR	FAA	EPGL	ILLCG	RYEAL	DORLI	D R
S. aureus	PEPVFNAM	EDLDVTE	QI	ARVILM	CPQGE	PFSHQ	KAVE	LSK	A D H I	VFICG	HYEGY	DERIR	T H
B. henselae	ADVLAAAL	D S C P N	D	SPRLLM	SPRGR	LLNQA	YARS	LAR	SSG	HLVCG	RFEGV	DERII	E A
M. abscessus	PTVWGDAL	DEICTS	E	TL LV V P	TPAGY	ΡFTQE	TAW	WST	EDHL	VIACC	RYEGI	DQRVA	DDAATR
A. aeolicus	PEPIYEAY	D Y V V E N Y G	K I	PFVLIT	EPWGE	KINQK	LVNE	LSK	KER I	MIICG	RYEGV	DERVK	K
A. phagocytophilum	ADVIGRCI	DEVLSLHP	N !	r klim f t	SERGV	SFTQD	IAR	TMN	F D N 🔳	TLCC	RFEGI	DERVV	D F
	Να5 Νβ5	140	Not	6 🔭	**					180 🗡		С	β1 Cβ2
		Bottom loop			160		\sim	\sim	\sim				_ کا ک
P. aeruginosa	HVDEEWSI	GDYVLSGGEI	PAMV		RILPG	AGHA	DBAE	EDS	FTDG	<u>L</u> L	DCPHY	TRPEV	YADKR
E. coli	EIDEEWSI	GDYVLSGGE	PAMT	LIDSVS	RFIPG	V LGHE	A SA 1	EDS	FAEC	<u>D</u> <u>B</u>	DCPHY	TRPEV	LECMEV
H. influenzae	EIDEEWSI	GDYVLTGGE	PAMT	LIDAVA	RFIPG	V LG K Q	ASAE	EDS	FADE	<u>L</u> L	DCPHY	TRPEV	LECLTV
P. phymatum	VVDEEVSL	GDFVLSGGE	PAMA		RHLPG	V L N D A	QSAV	QDS	FVDC	<u>L</u> L	DCPHY	TRPEE	YDGVRV
S. aureus	LVTDEISM	GDYVLTGGE	PAMT	A T D A I V	RHIPG	V L G N E	QSHQ	DDS	FSDC	<u>D</u> <u>H</u>	FPQ	TRPRE	FKELT
B. henselae	RELEEVSI	G D Y I L S G G E I	AAUV	LLDAIV	RULPG	VMGNE	ISAK	CDS	FENG	<u>D</u> E	BHBQ	TRPAV	FECRG
M. abscessus	MRVRDVST	GDYVLNGGEA	AALV	IIEAVI	RIVPG	V LG N A	LSAC	EDS	HSEC	MASLL	EGPS	TRPPS	WREMD
A. aeolicus	IVDMEISL	GDFILSGGE		VIDAVS	RVLPG	VISEP	QSIQ	EDS	FQNR	W	GYDV	TRPRE	YREMKV
A. phagocytophilum	YKLQDVS	G D Y V L S G G E I	AMV	TCV	RMVPG	V IGNA	ESLK	QBS	M E – 😋	S 🖬	EXEQ	TRPAS	WKCMEV
	200 Cal' 🔭	* * * _{Ce}	👗 📫	220	Δ _c	α2'	-		240 c	α2	* *	. 252	
					0			0		1		252	
P. aeruginosa	PEVLLSGN.	EHIRRWRL	QALGI	RIWERR	ADLL –	– – – D S	r s l s	GEE	QKLL.	A E Y	IRQRI	DS	
E. coli	PPVLLSGN	AEIRRWRLI	QSLG	RTWLRR	PELL-	E N	LALI	EEQ	ARLL	A E F	KTEHA	QQQH	🗈 D G M A
H. influenzae	PPVLMSGH.	EEERKWRL	QSLQI	RWLRR	PELL-	E G	LALI	DEQ	RKLL	K E A	QAEHN	IS	
P. phymatum	PDVLLGGH	A E E E Q W R F	EALRI	NUWLER	PDLIV	QARKN	KLLS	RAD	EAWL	A S L	AKDAS	KH	
S. aureus	PDVLLSGN	ANDAWRHE	QKLII	RHYNKR	PDLI –	E K	YPLI	NA D	KQI L	ERY	KIGLF	KG	
B. henselae	PPVLTSGH	KAMANWRQQ	QAESI	LURQRR	PDLY-					A L Y	NKNRÇ	KT	
M. abscessus	PPVLLSGD	AKLAANKA	QSRQI	RHIERR	PDLL -			- G F	DSPT	GEH	GGDGI	5	
A. aeolicus	PEELLSGH	IKLLELWKLW	HRIEI	N HV K KOR	PDLI-	P	KDLI	EĹĒ	KDIL	NSÍLS	GKSFF	EWLKD	кныг
A. phagocytophilum	PEVLLTGN	IGELEKNRR N	ASLS	IAAR	PDLL-				K	DRY	GENDV	Е	

Supplemental Figure S2. Sequence alignment of TrmD orthologs. Amino acid sequences of TrmD from nine bacteria (Pseudomonas aeruginosa, Escherichia coli, Haemophilus influenzae, Paraburkholderia phymatum, Staphylococcus aureus, Bartonella henselae, Mycobacterium abscessus, Aquifex aeolicus, and Anaplasma phagocytophilum) were aligned by the program MUSCLE and visualized by the software Geneious. The level of amino acid conservation is indicated by shading from black (identical in eight or nine sequences) to grey (conserved in six or seven) to white (low or no conservation). Residue numbers corresponding to PaTrmD are listed above the sequence. Secondary structural elements defined in PaTrmD crystal structure are shown above the sequences (only α-helices and β-strands are shown). Secondary structural elements are labeled in different colors corresponding to their domain regions: N-terminal domain (NTD: yellow) and C-terminal domain (CTD: cyan). The flexible interdomain linker between NTD and CTD is indicated by wave line in brown color. Three active-site loops (cover loop, wall loop and bottom loop) are highlighted in magenta dashed box. In PaTrmD, the amino acids involved in SAM binding are indicated by star in red (side-chain interacting), green (mainchain interacting), and magenta (stacking interacting), respectively. tRNAinteracting residues determined in H. influenzae structure (PDB ID: 4YVI) are highly conserved in the selected sequences and indicated by blue circle (G36-interacting), orange circles (G37-interacting) and purple (anti-codon branch-interacting), while G37-interacting catalytic residues are indicated by triangles.

Supplemental Figure S3. The simulated annealing omit maps for SFG and SAM. The polypeptide chain is shown as a cartoon. Chain A of the *Pa*TrmD dimer is colored green and chain B is colored blue. The maps for SFG and SAM are indicated.

Supplemental Figure S4. The active site of *Pa***TrmD with bound SAM.** (A) Closeup view of the active site showing the SAM-protein interactions. The polypeptide chain is shown as a cartoon with strands as arrows and helices are coils, whereas the residues involved in ligand binding are shown as sticks. Chain A of the *Pa*TrmD dimer is colored yellow and chain B is colored grey. Residues from Chain B are marked by asterisks. The SAM molecule is shown as a magenta stick. Water molecules are shown as red spheres. The omit *Fo-Fc* electron density for the SAM molecule is shown as a grey mesh contoured at 3.0 σ . Hydrogen bonds formed between *Pa*TrmD and SAM are indicated by yellow dashed lines while the stacking interactions are illustrated as cyan dashed lines. Cover loop, wall loop and bottom loop are highlighted in black. (B) Orthogonal view of (A) showing interface interactions. The unstructured interdomain linker in chain B (grey) is modeled as a black dotted line. The salt bridge formed between NTD and CTD is indicated as an orange dashed line.

Supplemental Figure S5. Comparison of the binding modes of SAM and its analog SFG. (A) Chemical structures of SAM and sinefungin (SFG). (B) Active site of *Pa*TrmD-SFG (green in chain A and grey in chain B) was superimposed on to the active site of *Pa*TrmD-SAM (yellow in chain A and white in chain B) to compare the ligand-binding modes. Active-site ligands and the residues involved in ligand binding are shown as sticks. Loop regions (residues 159-182) in chain B containing the interdomain linker are shown as carton, where a salt bridge formed between ARG159 and ASP174 is indicated as an orange dashed line. Hydrogen bonds are shown as green dashed lines. Residues TYR120 and SER175 only form hydrogen bonds with SFG but not SAM. The stacking interactions between adenosine ring and proline residues (PRO94 and PRO149) are conserved in both structures but do not show in this figure to facilitate visualization. Residues from Chain B are marked by asterisks.

Supplemental Figure S6. The linear detection of the MTase-Glo with respect to initial velocity and concentration of *Pa*TrmD. Reaction initial velocity was determined by varying the concentration of *Pa*TrmD under the fixed concentration of tRNA^{Leu(GAG)} and SAM. *Pa*TrmD concentrations in the reaction were varied from 0 to 100 nM. The data points represent mean \pm SD (n=3).

Supplemental Figure S7. The overlaid CD spectra of native *Pa*TrmD and refolded *Pa*TrmD.

Supplemental Figure S8. The anomalous absorption edge showing the absorption at K edge of manganese.