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1 Simulation protocol

1.1 System preparation

1.1.1 Trypsin

A crystal structure of trypsin bound to benzamidine was downloaded (PDB ID: 3PTB).1 Co-
ordinates were prepared by removing crystallographic ligands except for benzamidine. Prime
(Schrödinger, Inc.) was used to model in missing side-chains. The crystallographic benzamidine
was removed and placed at least 10 Å from the binding site. Hydrogen atoms were added, and
protein chain termini capped with the neutral groups acetyl and methylamide. Titrateable residues
were left in their dominant protonation state at pH 7.0.

Internal waters were added with Dowser,2 then the prepared structure was solvated with in a
(70 Å)3 box of TIP3P waters, solvated with 0.15 M NaCl, and neutralized by removing sodium
ions using Dabble.3 Final system dimensions were 70 × 70 × 70 Å3, including about 9700 waters,
16 sodium ions, and 26 chloride ions. The protein had a minimum clearance of 10.8 Å to the edge
of the simulation box.

1.1.2 β2AR

Simulations of the β2 adrenergic receptor were based on the crystal structure of the carazolol-β2AR
complex (PDB ID: 2RH1).4 The T4 lysozyme fusion protein comprising intracellular loop 3 was
deleted, along with co-crystallized ligands other than cholesterol. As with the trypsin system, Prime
was used to model in missing-side chains, add hydrogen atoms, and add neutral capping groups
to protein chain termini. Titrateable residues were left in their dominant protonation state at pH
7.0, except for Glu1223.41 and Asp792.50, which were protonated. A palmitoylation was added to
Cys341.5

The prepared protein structure was aligned on the transmembrane helices to the Orientation of
Proteins in Membranes (OPM) database6 and internal waters added with Dowser. Ten dihydroal-
prenolol ligands (protonated at the tertiary amine nitrogen as is predicted at pH 7.0) were placed
above and below the protein on the Z axis so that they would be in water rather than lipid.

The software Dabble3 was used to insert the system into a palmitoyl-oleoyl-phosphatidylcholine
(POPC) bilayer, solvate with 0.15 M NaCl in explicit TIP3P waters, and remove sodium ions until
the system is neutral. Final system dimensions were 75 × 75 × 115 Å3, including about 105 lipids,
14000 waters, 24 sodium ions, and 38 chloride ions. The solute had a minimum clearance of 10.6
Å to the edge of the simulation box.
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1.2 MD simulation force field parameters

We used the CHARMM36 parameter set for protein molecules, lipid molecules, and salt ions,
and the CHARMM TIP3P model for water; protein parameters incorporated CMAP terms.7–10

Parameters for benzamidine were in the CHARMM General Force Field,11 and the ParamChem
server12,13 used to assign parameters from this force field to dihydroalprenolol. Full parameter sets
are available upon request.

1.3 MD simulation protocol

Simulations were performed on GPUs using the CUDA version of PMEMD (Particle Mesh Ewald
Molecular Dynamics) in Amber16.14 Prepared systems were minimized, then equilibrated as follows:
The system was heated using the Langevin thermostat from 0 to 100 K in the NVT ensemble over
12.5 ps with harmonic restraints of 10.0 kcal · mol −1· Å−2 on the non-hydrogen atoms of lipid,
protein, and ligand, with initial velocities sampled from the Boltzmann distribution. The system
was then heated to 310 K over 125 ps in the NPT ensemble with semi-isotropic (for β2AR) or
anisotropic (for trypsin) pressure coupling and a pressure of one bar. Further equilibration was
performed at 310 K with harmonic restraints on the protein and ligand starting at 5.0 kcal· mol
−1·Å−2 and reduced by 1.0 kcal·mol−1·Å−2 in a stepwise fashion every 2 ns, for a total of 10 ns of
additional restrained equilibration.

Production simulations were conducted in the NPT ensemble at 310 K and 1 bar, using a
Langevin thermostat with a collision frequency of 1.0 ps−1 and Monte Carlo barostat with a pressure
relaxation time of 1.0 ps and 0.4 ns between volume change attempts. These simulations were run
for a total of tsim ns: for trypsin, tsim = 10 ns, and for β2AR, tsim = 40 ns.

Simulations used periodic boundary conditions and a time step of 4.0 fs, with hydrogen mass
repartitioning.15 Bond lengths to hydrogen atoms were constrained using SHAKE. Non-bonded
interactions were cut off at 9.0 Å, and long-range electrostatic interations were computed using
the particle mesh Ewald (PME) method with an Ewald coefficient β of approimately 0.31 Å and
B-spline interpolation of order 4. The FFT grid size was chosen such that the width of a grid cell
as approximately 1 Å. Trajectory snapshots were saved every 200 ps.

2 Adaptive sampling protocol

2.1 Trajectory preparation

Before featurizing, trajectories were reimaged into a common periodic box with CPPTRAJ.16 To
reduce the size of these trajectories and to simplify later system building, lipids, waters, and ions
were removed from these reimaged trajectories. In order to avoid biasing the model due to the
restraints on the ligand during equilibration, we omitted the 10 ns equilibration and reimaged only
the tsim ns of production trajectory.

2.2 Featurization and dimensionality reduction

We featurize with the multi-ligand contact featurizer, implemented as a custom featurizer for MSM-
Builder.17 Each entry in the feature vector is the log of the minimum distance between heavy atom
i on the ligand and residue j on the receptor, for a total of ij features per ligand. Treating ligand
atoms separately captures ligand orientation, and using all protein residues yields ligand-protein
interactions and weak capture of protein conformation. The log of the distance is used as ligands far
from the protein (floating in solvent or stuck in the membrane) should be regarded as less distinct.
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We did not set a distance cutoff or threshold as others have done18 as dimensionality reduction
will remove any unimportant features and we did not want to arbitrarily remove data that could
be useful to the model.

Since the number of features is quite high, the dimensionality of the dataset is reduced by
projecting the feature vectors into a space accounting for the slowest evolving coordinates in time
using time independent component analysis (tICA).19 The number of tICs retained is a user-
configurable parameter, but for the trials described in this paper it was set to 15. As the timescales
of transition we are interested in is small, we set the tICA lag parameter τ = 1 ns for the β2AR
system and τ = 0.2 ns (equivalent to no lag) for the trypsin-benzamidine system. These choices are
fairly arbitrary. Another implementation20 retained only 3 tICA components using an unspecified
lag time, while other work did not reduce dataset dimensionality at all.18

2.3 Clustering

Initial geometric clustering is performed using the Mini-batch KMeans algorithm,21 selected for
its parallelism and speed on large datasets. We fit to a large number of clusters as many will be
combined with each other in the next step—1000 microstate clusters for the β2AR system, and
100 for the trypsin system. The larger value for the β2AR system was selected due to the system
featuring a membrane in which the ligands may partition.

In order to cluster kinetically, a microstate Markov State Model is created and Robust Perron
Cluster Analysis (PCCA+)22 is used to lump quickly transitioning microstates into macrostates.
We build both models with a lag time τ = 5 ns. For the β2AR system we fit to 50 macrostates, and
for the less complex trypsin system, 20. When choosing the number of macrostates, it is better to
have too many than too few, as lumping a meaningful state with an unimportant one could result
in failure to resample the meaningful state. Too many macrostates means that some microstates
that truly represent the same macrostate could be treated separately and both resampled—a much
more minor type of error.

2.4 Markov State Model construction

The final Markov State Model needs to be a single connected component whose transition matrix is
non-singular in order for the equilibrium populations to be defined and macrostates to be assignable.

If every frame in one simulation is assigned to the same cluster, and that cluster is not otherwise
seen in the remaining simulations, the resulting transition matrix can be singular. To avoid this
problem, we initialize the counts matrix with all values of 1×10−6. This does not have a major effect
on the model’s eigenvalues or implied timescales, and allows our sampling to explore disconnected
regions of protein-ligand space.

We also do not require the model to be ergodic—that is, we omit the usual trimming step where
only the maximal strongly ergodic subgraph of the data is used to build the MSM. This prevents
discarding of uncommon or disconnected clusters, and enables resampling scores to be defined for
all clusters.

The Markov State Model used to determine which states to resample is typically quite far from
converged. As sampling is by definition lacking at the beginning of the trial, the MSM contains
quite a bit of error at this point, but for our purposes this is alright as we are using it as means of
evaluating our discretized state space for what to resample.

Note that it is important that the desired number of macrostates exceeds the number of sam-
plers, as otherwise resampling becomes complicated.
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2.5 Scoring functions

For the counts scoring function, the assigned cluster data was counted to determine the number
of frames assigned to each cluster. The population scoring function uses built-in functionality in
MSMBuilder, where the equilibrium populations are accessible as an attribute of the MSM. The
hub scores scoring function is also implemented in MSMBuilder as a function that takes a MSM as
a parameter.

2.6 System building

Candidate simulation frames were aligned on either protein backbone (trypsin) or transmembrane
helices (β2AR) to the initial prepared system using the python interface to VMD.23

What constitutes the “bulk solvent” as determined by manual inspection is usually a combina-
tion of several macrostates—one where the ligand is in the water, and several where it is near the
lipid or protein. To automatically identify solvent, the top three macrostates with either the high-
est hub scores, largest equilibrium populations, or largest count (depending on the chosen scoring
function) are designated as the bulk clusters.

To ensure diversity in sampling, the top N scoring clusters (corresponding to the number of
sampling simulations) are always resampled. To resample these clusters, a simulation frame where
a ligand assigned to the desired cluster is present is chosen at random. Water, lipid, and ions have
already been removed from the trajectories, so the frame contains only the protein (in whatever
conformation the ligand is associating with), and ligand(s). In the case of multiple ligands, ligands
not assigned to the cluster of interest have their coordinates zeroed to mark them as available for
the greedy step.

The remaining ligands are placed greedily in each of the N simulation systems with the following
algorithm: while there are ligands left to place, select a cluster to sample that has not already
been selected for this system with selection probability inversely proportional to either hub score,
population, or count. Select a simulation frame where a ligand is assigned to the cluster. If the
ligand is too close to the edge of the simulation box, is within 2.5 Å of protein or is within 10.0 Å
of another placed ligand, reject it and try another cluster. If 20 rejections have happened, select a
ligand from the bulk solvent cluster, repeatedly choosing simulation frames for the ligand position
if it would be placed too close. If this fails 50 times, place the solvent ligand without the closeness
criteria (in practice, this rarely to never happens).

Ligands placed in solvent are forbidden from being too close to the edges of the simulation box,
as this can result in crashes during MD simulation. The minimum allowed distances to the protein
and other ligands are user-configurable parameters.

The system with placed ligands is then inserted into a lipid membrane (if applicable), solvated
with a water box of desired size, and ions added. The system is then parameterized and is ready
to be simulated. This final assembly step is performed by Dabble.

3 Analysis

3.1 Density calculation

For the cholesterol location sampling plots, a map of ligand density was constructed as follows: the
simulation box was divided into a 1 Angstrom grid, and the value of each grid square incremented
for each frame of simulation where any ligand atom was in the square. The grid values were divided
by the total number of frames, yielding a normalized measurement of where the ligand goes that is
roughly analogous to the density maps produced by X-ray crystallography. The ligand density grid
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was then summed over each cholesterol position, using a box-like approximation for the locations
as they are oriented nearly exactly along the Z axis of the simulation box.

For the “within 5 Å of protein” plots, the ligand density grid was summed over grid locations
that are within 5 Å of protein.

4 Supplementary Figures
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Supplementary Figure 1: Slowest four implied timescales vs. MSM lag time τ for MSMs built with
10, 50, and 1000 macrostates. To allow testing of longer lag times and avoid possible sampling
biases, both traditional MD runs of the β2AR system were used to train the models.
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Supplementary Figure 2: Relationship between cluster count and its hub score for both runs of
the β2AR system with the hub scores criterion, for all clusters and rounds. Counts have been
normalized within each round to allow for comparison.
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Supplementary Figure 3: Overlaid are seven independent simulation frames assigned to the bound
cluster obtained after 80 rounds of adaptive sampling with the hub scores criterion on the trypsin-
benzamidine system. Benzamidine is shown in blue sticks. The three loops forming the binding
pocket are shown for all frames in orange, green, and yellow, with key residues Asp189 and Trp215
shown as sticks.
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Supplementary Figure 4: At top, cumulative number of binding events observed for dihydroal-
prenolol to β2AR over all trials. Below, each trace corresponds to a single trial with 20 independent
simulations and an individual simulation length of 40 ns. Binding events are defined as the ligand
going from RMSD over 3 Å to less than 2 Å.
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Supplementary Figure 5: At top, cumulative number of binding events observed for benzamidine
binding to trypsin. Below, each trace corresponds to a single trial with 10 independent simulations
and an individual simulation length of 10 ns. Binding events are defined as the ligand going from
RMSD greater than 3 Å to less than 2 Å.
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Supplementary Figure 6: Total simulation time required per binding event for all conditions for
the β2AR (top) and trypsin (bottom) systems. The total number of binding events in the run was
divided by the total aggregate simulation time run. The number of binding events in the run is
shown above each bar. Runs for β2AR as shown individually, while mean values are shown for
trypsin due to lack of binding events in some trials.
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Supplementary Figure 7: Sampling over time of regions within 5 Å of β2AR by dihydroalprenolol,
in units of the mean number of ligands in the region. As there are ten dihydroalprenolol ligands in
the simulation box, this value can be greater than one. Shaded areas indicate the standard error
of the mean.
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Supplementary Figure 8: Sampling over time of regions within 5 Å of trypsin by benzamidine, in
units of the mean number of ligands in the region. This is equivalent to the probability of finding
a benzamidine ligand in the region. Shaded areas indicate the standard error of the mean.
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Supplementary Figure 9: Sampling of the intracellular vestibule region on β2AR, which is the
intermediate state in the binding pathway of dihydroalprenolol to this receptor, over time. For the
ligand to be in the vestibule, following alignment to the initial structure, at least half of the ligand
heavy atoms (9 of 18) need to be in the box defined by −10 < x < 10 and −10 < y < 10 and
12 < z < 27.
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Supplementary Figure 10: Total time spent in the crystallographic pose (as defined by RMSD to
crystal structure less than 2 Å) over time for trypsin-benzamidine (top) and the β2AR system
(bottom). For clarity, only trials with binding events are plotted.
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