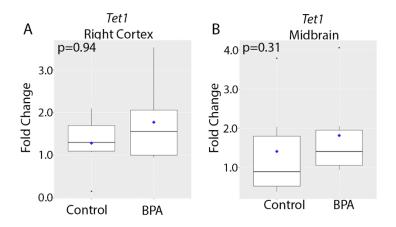
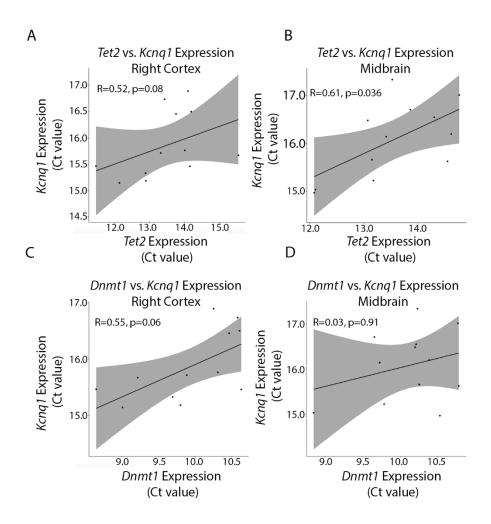
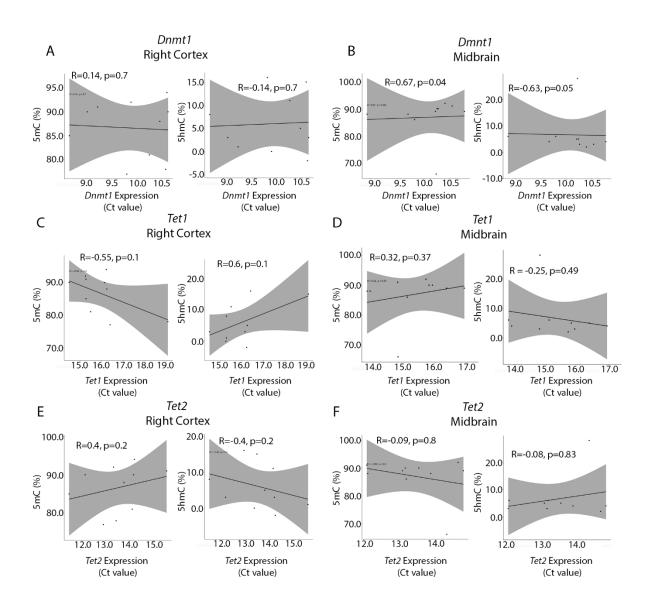
Supplementary Table 1: qRT-PCR primer sequences

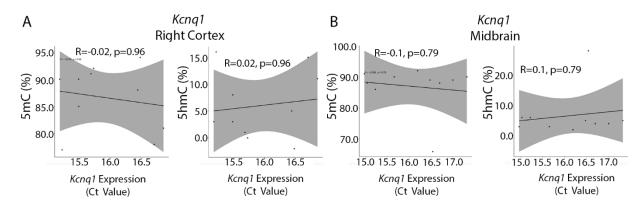

Gene	Forward	Reverse	
Kcnq1	CATCACCCATGTGTCACAGC	CCGTGCTTGCTGGAATTTCT	
Pde10a	CGGGACATCGAGCTATTCCA	ACTGCATGCTTCCAGTTGTG	
Ppp1r9a	GCGGGCCTATTCTTCCTAGT	GCTGCTTGAAGCTTGGTCTT	
Dnmt1	AGAGACGAGGATGAGAGGGA	GGTGAGTTGATCTTCGGGAT	
Tet1	ACCGTGGTGTGTACGTTGAT	GTTCATCCTCGGGACAATTT	
Tet2	GACTGCTGTTTGGGTCTGAA	GGTGACCACCACTGTACTGC	
β-actin	GCTCCTTCGTTGCCGGTCCA	ATACAGCCCGGGGAGCATCG	
18S	GCCCTGTAATTGGAATGAGTCCACTT	GTCCCCAAGATCCAACTACGAGCTTT	
Gapdh	GCCTGCTTCACCACCTTCTT	CATGGCCTTCCGTGTTCCTA	

Supplementary Table 2: Primer sequences for Kcnq1 pyrosequencing


Primer	Sequence		
Forward PCR	TGGGAGTTGAGTATTTAGATAGGTA		
Reverse PCR	AAACCATTTAACAAAAACTATCCCTCAACA		
Sequencing	AAAACTATCCCTCAACAA		

Supplementary Table 3: Tet1 Summary Statistics


		N	Mean (sd)	Median (range)	Mann-Whitney test
					$(\alpha = 0.05)$
Right	Control	6	16.319 (1.39)	15.951 (15.252-19.055)	0.94
Cortex	BPA	6	15.759 (0.772)	15.759 (14.498-16.389)	
Midbrain	Control	6	15.824 (1.286)	16.037 (13.902-17.229)	0.31
	BPA	6	15.17 (0.796)	15.357 (13.803-15.912)	


Supplementary Figure 1: *Tet1* expression in the brain at 10 months of age in animals exposed to control vs. BPA. Box plots depicting qRT-PCR data for *Tet1* in the right cortex (A) and midbrain (B). Data were analyzed using a two-sided non-parametric Wilcoxon test.

Supplementary Figure 2: Correlations between expression of *Tet2* (A-B) and *Dnmt1* (C-D) and *Kcnq1* expression in the right cortex (A,C) and midbrain (B,D). Correlation analyses were assessed with a Spearman Correlation Test using the ggpubr package in R. Ct values have been normalized to the average Ct value of the three housekeeping genes.

Supplementary Figure 3: Correlations between expression of *Dnmt1* (A-B), *Tet1* (C-D), *Tet2* (E-F) and levels of 5mC (left) and 5hmC (right). Correlation analyses were assessed with a Spearman Correlation Test using the ggpubr package in R. Ct values have been normalized to the average Ct value of the three housekeeping genes.

Supplementary Figure 4: Correlations between expression of *Kcnq1* and levels of 5mC (left) and 5hmC (right) in the right cortex (A) and midbrain (B). Correlation analyses were assessed with a Spearman Correlation Test using the ggpubr package in R. Ct values have been normalized to the average Ct value of the three housekeeping genes.