Imidazolium-linked azido-functionalized Guerbet glycosides: multifunctional surfactants for biofunctionalization of vesicles

- Supplementary Material -

Ean Wai Goh,¹ Thorsten Heidelberg,¹* Rusnah Syahila Duali Hussen,¹ Abbas Abdulameer Salman^{1,2} ¹ Chemistry Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia ² current affiliation: College of Pathological Analysis Technologies, Al-Bayan University, Baghdad, Iraq

heidelberg@um.edu.my

Physical Studies

Figure S1. Surface tension behavior of 11

Figure S2. Contact penetration of a mixture of **12** and **11b**₃ (10 %) with water under the optical polarizing microscope; massive formation of myelin figures indicates the lamellar phase

Figure S3. Vesicle size distribution for 12 with 5% 11b₃

Figure S4. Zeta-potential distribution for vesicles of 12 with 5% 11b₃

Experimental

Compounds containing remaining impuities

2-Butyl-octyl $6-[1-(8-azido-3,6-dioxa-octyl)-imidazolium-3-yl]-6-deoxy-\beta-D-glucopyranoside$ bromide (11a₃). A solution of 5a (0.21 g, 0.39 mmol) and 9₃ (88 mg, 0.39 mmol) in xylene (3 mL)was heated to 130 °C. when TLC indicated the absence of starting material the solvent wasevaporated to provide 10a₃ (0.27 g, 91%) as a yellow syrup. ¹H NMR analysis indicated about25-30% remaining 5a as impurity.

The intermediate $10a_3$ (72 mg, 0.09 mmol) was subjected to Zemplen deacetylation in CH₃OH (5 mL) using a catalytic amount of NaOMe. After stirring at rt overnight the catalyst was removed by treatment with Amberlite IR120 (H⁺) and the solvent was evaporated to furnish $11a_3$ (54 mg, 89 %) as yellow syrup. The starting material impurities form $10a_3$ remained.

Peracetate **10a**₃: $[\alpha]_D^{25} = -20$ (c 0.38, CHCl₃). ¹H-NMR (400 MHz, CDCl₃) δ= 10.21 (bs, imidazole), 7.48, 7.37 (2 m_c, 2 H, imidazole), 5.20 (dd~t, H-3), 4.87 (dd, H-2), 4.78-4.62 (m, 2 H, H-6), 4.67 (dd~t, H-4), 4.55 (d, H-1), 4.52 (ddd~m_c, CH₂N_{imidazole}-A), 4.44 (ddd~m_c, CH₂N_{imidazole}-B), 4.06 (ddd~bs, H-5), 3.89 (m_c, 2 H, CH₂O), 3.74-3.52 (m, 11 H, α-CH₂-A, EG-CH₂), 3.36 (t, 2 H, CH₂N₃), 3.30 (dd~m_c, α-CH₂-B), 2.22, 1.97, 1.93 (3 s, 3×3 H, Ac), 1.48 (m_c, β-CH), 1.20 (m_c, 16 H, bulk-CH₂), 0.84 (t, 6 H, CH₃); ³*J*_{1,2} = 8.0, ³*J*_{2,3} = 9.5, ³*J*_{3,4} = 9.5, ³*J*_{4,5} = 9.5, ²*J*₆ = 14.5 Hz. ¹³C NMR (100 MHz, CDCl₃) δ= 170.50, 169.66, 169.14 (CO), 138.44 (imidazole-CHN₂), 122.74, 122.58 (imidazole), 100.93 (C-1), 73.29 / 73.26 (α), 72.03 (C-3), 71.28 (C-5), 70.95 (C-2), 70.25, 70.19, 69.84 (EG-CH₂), 68.77 (CH₂O), 68.22 (C-4), 50.55 (CH₂N₃), 49.90 (CH₂N_{imidazole}), 49.40 (C-6), 37.86 (β), 31.70 (ω-2), 30.95, 30.71, 30.60, 30.36, 29.55 / 29.53, 28.88, 28.73 (bulk-CH₂), 26.67 / 26.51 (γ), 22.88, 22.52 (ω-1), 21.34, 20.40, 20.35 (Ac), 13.95 (ω).

11a₃: IR [ATR, neat] v/cm⁻¹ 3370 (OH), 2925, 2858 (CH), 2106 (N₃). $[\alpha]_D^{25} = -12$ (c 0.24, CH₃OH). ¹H NMR (400 MHz, CD₃OD): δ 9.00 (s, imidazole-CHN₂), 7.73, 7.61 (2 s, 2 H, imidazole), 4.68 (dd, H-6a), 4.48-4.43 (m, 3 H, H-6b, CH₂N_{imidazole}), 4.28 (d, H-1), 3.91-3.89 (m, 2 H, CH₂O), 3.71-3.64 (m, 8 H, EG-CH₂, α -CH₂-A, H-5), 3.43-3.36 (m, 4 H, CH₂N₃, α -CH₂-B, H-3), 3.17 (dd, H-2), 3.08 (dd~t, H-4), 1.60 (m_c, β -CH), 1.32 (m_c, 16 H, bulk-CH₂), 0.93 (m_c, 6H, CH₃); ³*J*_{1,2} = 8.0, ³*J*_{2,3} = 9.5, ³*J*_{3,4} = 9.5, ³*J*_{4,5} = 9.5, ³*J*_{5,6a} = 2.0, ³*J*_{6a,6b} = 14.5 Hz; ¹³C NMR (100 MHz, CD₃OD): δ 138.7 (imidazole-CHN₂), 124.7, 124.1 (imidazole), 105.0 (C-1), 77.7 (C-3), 75.1 (C-2), 74.9 (C-5), 74.29 / 74.26 (α), 72.5 (C-4), 71.6 (2), 71.2 (EG-CH₂), 70.0 (CH₂O), 51.9 (C-6), 51.9 (-CH₂N₃), 51.1 (CH₂N_{imidazole}), 39.64 (β), 33.2, 32.4 / 32.3, 32.1 / 32.0, 30.99, 30.31 / 30.25, 28.03 / 27.96, 24.3 (bulk CH₂), 23.9 (ω -1), 14.6 (ω). HRMS (ESI): Calc. for [M-Br] [C₂₇H₅₀N₅O₇]⁺ 556.3710, 557.3744 (30%); found 556.3727, 557.3757 (34%). 2-Hexyl-decyl $6-[1-(5-azido-3-oxa-pentyl)-imidazolium-3yl]-6-deoxy-\beta-D-glucopyranoside$ bromide (11b₂). A solution of**5b**(0.12 g, 0.20 mmol) and**9**₂ (37 mg, 0.20 mmol) in xylene (2 mL)was heated to 130 °C. when TLC indicated the absence of starting material the solvent wasevaporated to provide 10b₂ (0.14 g, 89%) as a yellow syrup. ¹H NMR analysis indicated about20-25% remaining**5b**as impurity.

The intermediate $10b_2$ (0.12 g, 0.15 mmol) was subjected to Zemplen deacetylation in CH₃OH (5 mL) using a catalytic amount of NaOMe. After stirring at rt overnight the catalyst was removed by treatment with Amberlite IR120 (H⁺) and the solvent was evaporated to furnish $11b_2$ (90 mg, 92 %) as yellow syrup. The starting material impurities form $10b_2$ remained.

Peracetate **10b**₂: $[a]_D^{25} = -20$ (c 0.1, CHCl₃). ¹H-NMR (400 MHz, CDCl₃) $\delta = 10.46$ (s, imidazole), 7.37 (m_c, 2 H, imidazole), 5.23 (dd~t, H-3), 4.90 (dd, H-2), 4.70 (dd, H-6A), 4.70 (dd~t, H-4), 4.63-4.45 (m, 3 H, H-6B, CH₂N_{imidazole}), 4.56 (d, H-1), 4.05 (ddd, H-5), 3.96 (m_c, 2 H, CH₂O), 3.77-3.69 (m, 3 H, EG-CH₂, α -CH₂-A), 3.40 (t, 2 H, CH₂N₃), 3.33 (dd, α -CH₂-B), 2.27, 2.01, 1.97 (3 s, 3×3 H, Ac), 1.52 (m_c, β -CH), 1.24 (m_c, 24 H, bulk-CH₂), 0.87 (t, 6 H, CH₃); ³*J*_{1,2} = 8.0, ³*J*_{2,3} = 9.5, ³*J*_{3,4} = 9.5, ³*J*_{4,5} = 10.0, ³*J*_{5,6A} = 4.0, ³*J*_{5,6B} = 4.5, ²*J*₆ = 14.0, ³*J*_{αB,β} = 6.0, ²*J*_α = 9.5 Hz. ¹³C NMR (100 MHz, CDCl₃) δ = 170.6, 169.8, 169.2 (CO), 138.5 (imidazole-CHN₂), 122.9, 122.6 (imidazole), 101.1 (C-1), 73.5 / 73.4 (α), 72.2 (C-3), 71.4 (C-5), 71.0 (C-2), 70.2 (EG-CH₂), 68.9 (CH₂O), 68.4 (C-4), 50.5 (CH₂N₃), 50.2 (CH₂N_{imidazole}), 49.6 (C-6), 38.0 (β), 31.9 (ω -2), 31.0, 30.8, 30.02 / 30.00, 29.67 / 29.65, 29.59, 29.3 (bulk-CH₂), 26.84 / 26.77 / 26.68 / 26.63 (γ), 22.6 (ω -1), 21.4, 20.52, 20.48 (Ac), 14.1 (ω).

11b₂: $[\alpha]_D^{25} = -13(c \ 0.12, CH_3OH)$. IR [ATR, neat] v/cm⁻¹ 3365 (OH), 2955, 2924, 2855 (CH), 2108 (N₃). ¹H-NMR (400 MHz, CD₃OD) $\delta = 8.55$ (bs, <1 H, imidazole), 7.70, 7.60 (2 d, 2 H, imidazole), 4.63 (dd~bd, H-6A), 4.46 (t, 2 H, CH₂N_{imidazole}), 4.41 (dd, H-6B), 4.24 (d, H-1), 3.89 (t, 2 H, CH₂O), 3.74-3.64 (m, 3 H, CH₂N₃, α -CH₂-A), 3.61 (ddd, H-5), 3.38 (dd~t, H-3), 3.37 (dd, β -CH₂-B), 3.15 (dd, H-2), 3.06 (dd~t, H-4), 1.59 (m_c, β -CH), 1.30 (m_c, 24 H, bulk-CH₂), 0.90 (t, 6 H, CH₃); ³*J*_{1,2} = 8.0, ³*J*_{2,3} = 9.0, ³*J*_{3,4} = 9.0, ³*J*_{4,5} = 9.5, ³*J*_{5,6A} = 2.5, ³*J*_{5,6B} = 7.0, ²*J*₆ = 14.5, ³*J*_{α,β} = 2.0, ²*J*_α = 14.5, ³*J*_{CH2N,CH2O} = 4.5 Hz. ¹³C NMR (100 MHz, CD₃OD) δ = 125.0, 123.9 (imidazole), 105.0 (C-1), 77.8 (C-3), 75.1 (C-2), 74.9 (C-5), 74.3 (α), 72.5 (C-4), 71.4 (EG-CH₂), 69.8 (CH₂O), 51.9 (CH₂N₃), 51.8 (C-6), 51.1 (CH₂N_{imidazole}), 39.7 (β), 33.2 (ω -2), 32.36 / 32.34, 32.30 / 32.28, 31.3, 31.0, 30.88 / 30.87, 30.6 (bulk-CH₂), 28.03 / 28.01 / 27.97 / 27.96 (γ), 23.9 (ω -1), 14.6 (ω). HRMS (ESI): Calc. for [M-Br] [C₂₉H₅₄N₅O₆]⁺ 568.4074; found 568.4056.

Micelle conjugation and reference compound

2-Butyl-octyl $6-\{1-[11-(4-hydroxymethyl-1H-1,2,3-triazole-1-yl)-3,6,9-trioxa-undecyl]-imidazolium-3-yl\}-6-deoxy-β-D-glucopyranoside bromide (14). ¹H NMR (400 MHz, CD₃OD): δ$ 8.95 (s, imidazole-CHN₂), 7.97 (s, triazole), 7.68, 7.56 (2s, 2 H, imidazole), 4.67 (m_c, 3 H, CH₂OH,H-6A), 4.59 (t, 2 H, CH₂N_{trizole}), 4.40 (m_c, 3 H, CH₂N_{imidazole}, H-6B), 4.25 (d, H-1), 3.93-3.90 (m, >2H, CH₂O), 3.66-3.53 (m, >12 H, EG-CH₂, H-5, α-CH₂-A), 3.40-3.35 (m, 2 H, H-3, α-CH₂-B), 3.13(dd, H-2), 3.04 (dd~t, H-4), 1.55-1.48 (m, β-CH), 1.29 (m_c, >14 H, bulk-CH₂), 0.93 (m_c, 6 H, CH₃). $HRMS (ESI): Calc. for [M-Br] <math>[C_{32}H_{58}N_5O_9]^+$ 656.4231, 657.4269 (35%); found 565.4231, 657.4257 (32%).

1,8-Diazido-3,6-dioxa-octane (15). A solution of 1,2-bis-(2-chloroethoxy)-ethane (3.0 mL, 19 mmol) in DMF (50 mL) was treated with NaN₃ (3.7 g, 57 mmol) and the reaction was heated to 80 °C overnight. The solvent was evaporated at reduced pressure and the residue extracted with CH₂Cl₂ to furnish **15** as colourless liquid (3.7 g, 97%). ¹H NMR (400 MHz, CDCl₃): δ 3.68-3.65 (m, 8 H, OCH₂), 3.37 (t, 4 H, CH₂N₃). ¹³C NMR (100MHz, CDCl₃): δ 70.8, 70.2 (-OCH₂), 50.8 (CH₂N₃).

1,8-Bis-(4-hydroxymethyl-1,2,3-triazole-1-yl)-3,6-dioxa-octane (16). A solution of **15** (0.50 g, 2.5 mmol) and propargyl alcohol (0.36 mL, 6.2 mmol) in CH₃OH (20 mL) was treated with Cu(OAc)₂ (70 mg, 0.4 mmol) and sodium ascorbate (0.22 g, 1.1 mmol) under ice-bath cooling. After 30 min the reaction was alowed to warm to rt and stirred overnight. Methanol was evaporated at reduced pressure and the residue was distributed between butanol and water. The organic layer was dried over MgSO₄ and concentrated to furnish crude triazole **16** as yellow liquid (0.58 g, 74%). NMR-analysis revealed that the product contained minor contents of the solvent (ⁿBuOH). ¹H NMR (400 MHz, CD₃OD): δ 7.93 (s, 2 H, triazole), 4.68 (s, 4 H, CH₂OH), 4.55 (t, 4 H, CH₂N_{triazole}), 3.83 (t, 4 H, CH₂O), 3.56 (m, 4 H, EG-CH₂). ¹³C NMR (100 MHz, CD₃OD): 149.1 (triazole-C), 124.9 (triazole-CH), 71.4 (EG-CH₂), 70.5 (CH₂O), 56.6 (CH₂OH), 51.5 (CH₂N). HRMS (ESI): Calc. for [M+Na] [C₁₂H₂₀N₆O₄Na]⁺ 335.1431, 336.1478 (13%); found 335.1431, 336.1457 (14%).

NMR Spectra:

Figure S5. ¹H & APT-¹³C NMR spectra of 9_2

Figure S6. ¹H & APT-¹³C NMR spectra of 9_3

Figure S7. ¹H & APT-¹³C NMR spectra of 9_4

Figure S8. ¹H & APT-¹³C NMR spectra of 5a

Figure S9. ¹H & APT-¹³C NMR spectra of **5b**

Figure S10. ¹H & APT-¹³C NMR spectra of $10a_2$

Figure S11. ¹H & APT-¹³C NMR spectra of 11a₂

Figure S12. ¹H & APT-¹³C NMR spectra of 10a₃

Figure S13. ¹H & APT-¹³C NMR spectra of 11a₃

120

112 104 96 88 80 Chemical Shift (ppm) 32 24 16

8 0

48 40

64 56

72

200

192 184

176

168 160

152

144 136 128

Figure S15. ¹H & APT-¹³C NMR spectra of 11a₄

Figure S16. ¹H & APT-¹³C NMR spectra of **10b**₂

Figure S17. ¹H & APT-¹³C NMR spectra of 11b₂

112 104 96 Chemical Shift (ppm)

88 80

56 48 40

32 24 16 8

72 64

Ó

120

200 192

184 176 168 160

152 144

136 128

Figure S19. ¹H & APT-¹³C NMR spectra of 11b₃

112 104 96 88 Chemical Shift (ppm) 80 72

64 56 48 40 32 24 16 8 0

200 192 184 176 168 160 152 144 136 128 120

Figure S21. ¹H & APT-¹³C NMR spectra of 11b₄

Figure 22. ¹H NMR spectra of 14 obtained by CLICK-coupling in micellar phase

Figure S23. ¹H & APT-¹³C NMR spectra of 15

Figure S24. ¹H & APT-¹³C NMR spectra of 16