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1. Methods 

Here, we provide more details about the workflow of BEER: 

 

The workflow of BEER includes two main parts (Fig. 1a). In the first part, for each ex-pression 

matrix, BEER preprocesses [M1] the data and conducts t-distributed Stochastic Neighbor 

Embedding (tSNE) to transfer the data into one-dimension values. BEER groups cells (default 

number of cells in each group is 10) based on the order of the one-dimension values, and then 

aggregate the expression profiles of each cell in a group to obtain the representative expression 

profile for that group. Next, BEER calculates a Kendall's tau to evaluate the distance of each 

pair of cell group from two batches and identifies all Mutual Nearest (MN) pairs [M2] of cell 

groups in between the two batches. In the second part, BEER directly combines two expression 

matrices [M3], normalizes the data [M4], and conduct PCA to produce a number (default is 50) 

of subspaces. Because two cell groups in a MN-paired cell groups are assumed to be from the 

same cell type, they are supposed to have similar values in each PCA subspace if there is no 

batch effect. Thus, by calculating the correlation between MN-paired cell groups in each 

subspace [M5], BEER identifies those with poor correlation and considers them to have latent 

high batch-effect. Finally, BEER simply removes those PCA subspaces with latent batch effect, 

and no values in the other subspaces are changed 

 

Detailed scripts are in: https://github.com/jumphone/BEER/blob/master/BEER.R  

 

M1 (preprocessing): For each inputted expression matrix, we use “Seurat” package in R to 

conduct normalization. At first, we use the function named “NormalizeData” to normalize 

(“LogNormalize’, scale.factor=10000) the data. Then, we use the function called “ScaleDate” 

to standardize [vars.to.regress = c("nUMI")] the data. Finally, we use “RunPCA” to calculate a 

number (default is 50) of PCA subspaces and use those PCA subspaces to conduct the 

following t-distributed Stochastic Neighbor Embedding (tSNE). 

 

M2 (Mutual Nearest): For the definition of Mutual Nearest, please refer to the Figure 1 of 

Haghverdi et al.’s paper (Batch effects in single-cell RNA-sequencing data are corrected by 

matching mutual nearest neighbors, Nature Biotechnology, 2018) (Haghverdi, et al., 2018). 

 

M3 (Combine Data): We simply combine two expression matrices. Those overlapped genes 

are used to generate the combined matrix. 

 

M4 (Normalization of Combined Data): We use the function named “FindVariableGenes” in 

“Seurat” to identify variable genes (default parameters). For other steps, please refer to M1.  

 

M5 (Correlation Test): For each subspace, we generate two subspace-value lists. The first and 

the second list are prepared for Batch1 and Batch2, respectively. For each MN-paired group, 

we use “quantile” function in R to get five values of each batch, and then append those quantile 

https://github.com/jumphone/BEER/blob/master/BEER.R
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values of Batch1 and Batch2 to the end of the first and the second subspace-value list, 

respectively. After going through all MN-paired groups, we use “cor.test(method=’kendall’)” 

in R to test the correlation between those two subspace-value lists.  
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2. Benchmarks 

2.1 Mouse Cortex Study – Zeisel et al. 

This benchmark has 3,005 mouse brain cells and 3,752 sequenced genes per cell (Zeisel, et al., 

2015). We download the expression matrix (count) from:  

https://storage.googleapis.com/linnarsson-lab-www-blobs/blobs/cortex/expression_mRNA_1

7-Aug-2014.txt 

Cell Types: 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Mouse Oligodendrocytes Study – Marques et al. 

This benchmark has 5,069 mouse oligodendro lineage cells and 2,570 sequenced genes per 

cell (Marques, et al., 2016). In this study, “Newly-formed Oligodendrocytes”, 

“Myelin-forming Oligodendrocytes”, and “Mature Oligodendrocytes” are all defined as 

“Oliodendrocytes”. We download the expression matrix (count) from:  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75330 

Cell Types: 

Type n(Cell) 

astrocytes_ependymal 224 

Oligodendrocytes 820 

microglia 98 

endothelial-mural 235 

interneurons 290 

pyramidal CA1 939 

pyramidal SS 399 

Type n(Cell) 

PPR 76 

OPC 310 

COP 140 

Newly-formed Oligodendrocytes 512 

https://storage.googleapis.com/linnarsson-lab-www-blobs/blobs/cortex/expression_mRNA_17-Aug-2014.txt
https://storage.googleapis.com/linnarsson-lab-www-blobs/blobs/cortex/expression_mRNA_17-Aug-2014.txt
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75330
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3. Competing Tools 

In this study, we compared BEER with four other methods: Combat (Johnson, et al., 2007), 

BBKNN (Park, et al., 2018), Seurat (CCA alignment) (Butler, et al., 2018), and fastMNN 

(Haghverdi, et al., 2018). Combat is built in an R package named “sva” 

(https://bioconductor.org/packages/release/bioc/html/sva.html). BBKNN is downloaded from 

https://github.com/Teichlab/bbknn. Seurat (CCA alignment) is downloaded from 

https://satijalab.org/seurat/install.html. FastMNN is a function in an R package named “scran” 

(http://bioconductor.org/packages/release/bioc/html/scran.html). All scripts of running those 

four methods are shown in https://github.com/jumphone/BEER/tree/master/Benchmark. 

 

  

Myelin-forming Oligodendrocytes 1283 

Mature Oligodendrocytes 2748 

https://bioconductor.org/packages/release/bioc/html/sva.html
https://github.com/Teichlab/bbknn
https://satijalab.org/seurat/install.html
http://bioconductor.org/packages/release/bioc/html/scran.html
https://github.com/jumphone/BEER/tree/master/Benchmark
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4. UMAP Figures in High Resolution 

4.1 BEER (perplexity=30, cell number per group=10) 

 

4.2 Combat 
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4.3 Seurat (CCA alignment) 

 

4.4 fastMNN 
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4.5 BBKNN 

 

 

4.6 BEER (perplexity=5, cell number per group=10) 
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4.7 BEER (perplexity=50, cell number per group=10) 

 

 

4.8 BEER (perplexity=100, cell number per group=10) 
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4.9 BEER (perplexity=30, cell number per group=50) 

 

5.0 BEER (perplexity=30, cell number per group=100) 
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5. Silhouette Plot 

 

 

We use “silhouette” function in R to calculate Silhouette Coefficient, which can be used to 

evaluate the distance between different-type cells. Higher Silhouette Coefficients indicate 

different-type cells are better separated. In the above figure, “Oligodend Merged” means that 

we merge the oligodendrocytes of Batch1 and Batch2 into one cluster (oligodendrocyte is the 

only cell type shared by those two batches) and use all cell types of two batches to draw this plot. 

“Astro & OPC & Microglia” means that we only use astrocytes, OPC, and microglia to draw 

this plot. “Oligidend & Interneuron & Pyramida_SS” means that we use oligodendrocytes, 

interneuron, and pyramidal SS cells to draw this plot. In all these three benchmarks, BEER 

achieves high Silhouette Coefficients.  

6. User Guide of BEER 

GitHub: https://github.com/jumphone/BEER.  

6.1 Requirement 

Please install R (>=3.5), and install two packages: “Seurat” and “pcaPP” 

Please install Python, and install one package: “umap-learn” 

Install R: https://www.r-project.org/ 

Install Seurat (in R): install.packages('Seurat') # version 2.3.4 

Install pcaPP (in R): install.packages('pcaPP') # version 1.9-73 

Install umap-learn (python): pip install umap-learn 

6.2 Usage 

Step1. Load Data 

#################### R script start #################### 

library(Seurat) 

https://github.com/jumphone/BEER
https://www.r-project.org/
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source('https://raw.githubusercontent.com/jumphone/BEER/master/BEER.R') 

#Load Demo Data (subset of GSE70630: MGH53 & MGH54) 

#Download: https://github.com/jumphone/BEER/raw/master/DATA/demodata.zip 

D1 <- read.table(unz("demodata.zip","DATA1_MAT.txt"), sep='\t', row.names=1, header=T) 

D2 <- read.table(unz("demodata.zip","DATA2_MAT.txt"), sep='\t', row.names=1, header=T) 

# "D1" & "D2" are UMI matrix (or FPKM, RPKM, TPM, PKM ...; Should not be gene-centric 

scaled data) 

# Rownames of "D1" & "D2" are gene names 

# Colnames of "D1" & "D2" are cell names 

#################### R script end #################### 

 

Step2. Detect Batch Effect 

#################### R script start #################### 

mybeer <- BEER(D1, D2, CNUM=10, PCNUM=50, CPU=2) 

par(mfrow=c(1,2)) 

plot(mybeer$cor, xlab='PCs', ylab='PCC', pch=16) 

plot(-log(mybeer$fdr,10), xlab='PCs', ylab='-log10(FDR)', pch=16) 

#################### R script end #################### 

 

Step3. Visualization 

#################### R script start #################### 

pbmc <- mybeer$seurat 

 

# Keep batch-effect 

 

ALLPC <- 1:length(mybeer$cor) 

pbmc <- RunUMAP(object = pbmc, reduction.use='pca',dims.use = ALLPC, 

check_duplicates=FALSE) 
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DimPlot(pbmc, reduction.use='umap', group.by='batch', pt.size=0.1) 

 

 

# Remove batch-effect 

PCUSE <- which(mybeer$cor> min(0.7, median(mybeer$cor))  & mybeer$fdr<0.05) 

# Users can set the cutoff of "mybeer$cor" based on the distribution of "mybeer$cor". 

pbmc <- RunUMAP(object = pbmc, reduction.use='pca',dims.use = PCUSE, 

check_duplicates=FALSE) 

DimPlot(pbmc, reduction.use='umap', group.by='batch', pt.size=0.1) 

 

#################### R script end #################### 
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7. BEER with multiple batches 

we provide a new function named MBEER to deal with multiple batches, 

https://github.com/jumphone/BEER#ii-combine-multiple-batches. MBEER implements the 

iteration of "Combine Two Batches". It compares each batch with the batch having the largest 

cell number, with the assumption that the batch having the largest cell number is likely to 

include largest number of cell-types within all batches. In MBEER, users can also define a 

batch as the batch with largest number of cell types by labeling that batch with "MAXBATCH". 

Then, all the other batches will be compared with the “MAXBATCH”.   

 

8. Detect PCs with both batch effects and biological variances 

Users can use the result of BEER to check whether the removed PCs have biological meaning 

or not. If users find those removed PCs have biological meaning, then they can use other 

methods, such as ComBat, to modify those PCs.  

Here is a demo (two oligodendroglima samples) of inspecting whether a PC removed by BEER 

has biological meaning. 

After obtaining the BEER object (default name is “mybeer”) by following the instruction of our 

website (https://github.com/jumphone/BEER), users can use the following command options to 

visualize the batch effect of each PC: 

plot(mybeer$cor, xlab='PCs', ylab="COR", pch=16) 

https://github.com/jumphone/BEER#ii-combine-multiple-batches
https://github.com/jumphone/BEER


 15 

 

The above result shows that PC10 has the strongest “batch effect”. Then, users can use the 

Seurat object of mybeer (2.3.4, not for Seurat 3.0) to extract PC10 related genes. 

TOP=names(sort(mybeer$seurat@dr$pca@gene.loadings[,10], decreasing=TRUE)[1:100]) 

write.table(TOP, file='TOP100.txt', quote=F, row.names=F, col.names=F, sep='\t') 

Finally, users can use some enrichment method to test the biological meaning of those genes. 

Here is the enrichment result (KEGG) of PC10’s signature genes by using ClueGO: 

  

Those above pathways are related to PC10, and may be related to some biological variance that 

is co-occurring with batch effect. 
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