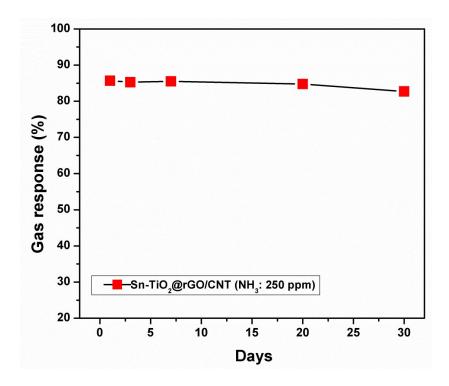
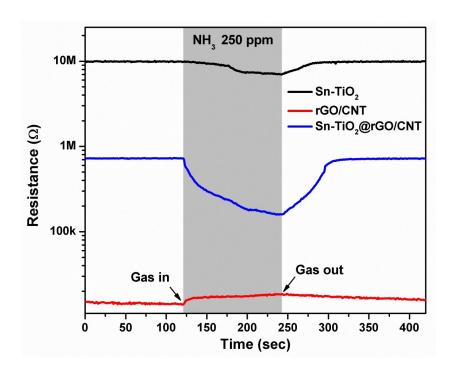
Supporting Information

Ultra-high selective room temperature ammonia gas sensor based on tintitanium dioxide/reduced graphene/carbon nanotube nanocomposites by solvothermal method


Yotsarayuth Seekaew, Weeraphat Pon-On and Chatchawal Wongchoosuk*

Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900


Thailand

*Corresponding author. Tel.: +662-562-555; Fax: +662-942-8029.

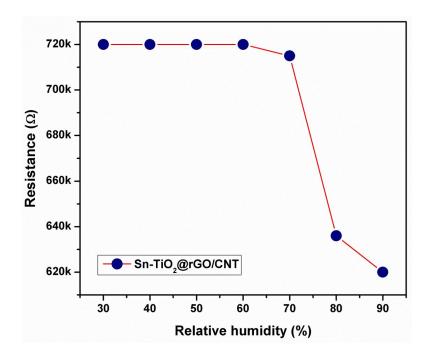

E-mail: chatchawal.w@ku.ac.th (Chatchawal Wongchoosuk)

Figure S1: Stability of the Sn-TiO₂@rGO/CNT nanocomposite gas sensor (nanocomposite I) toward 250 ppm ammonia for 30 days at room temperature.

Figure S2: Changes in resistance of Sn-TiO₂, rGO/CNT and Sn-TiO₂@rGO/CNT nanocomposite I gas sensors to 250 ppm ammonia at room temperature.

Figure S3: Resistance of the Sn-TiO₂@rGO/CNT nanocomposite gas sensor (nanocomposite I) as a function of relative humidity (%RH) at room temperature.