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9. Supplementary Material

9.1 Dynamic unigram simulation experiment

Next we consider a simulation experiment involving the unigram model. We use the same config-

urations of D, V , and N as in the LDA and NMF experiments above. The parameter controlling

the rate of evolution on the simplex, σ2
0 , is set to 1 throughout. During inference, σ2

0 is not

assumed known, and is instead modeled as an InvGamma (1, 1) across all simulation settings.

In the NMF and LDA experiments, we could visualize fitted posteriors over θi and βj as two-

dimensional smoothed scatterplots, since we set K = 2. In contrast, this unigram experiment

involves a V -dimensional parameter µt evolving over time – this precludes any direct analog to

Figure 1 or Supplemental Figure 7. Instead, in Figure 10, we visualize the true µtv against poste-

rior intervals for the one-dimensional p (µtv|x), across all configurations of simulation parameters.

Evidently, MCMC provides accurate posterior estimates, while VB and the bootstrap esti-

mates deviate from the true µtv. First, when the true µtv is small small, the posterior estimates

from VB and the bootstrap are too large. This is not as much a reason for concern as it might ap-

pear at first, however, as the parameters µt are passed through a softmax before being mapped to

probabilities. After this transformation, the difference between, say, µtv = 10−2 and µtv = 10−5

is relatively unimportant. Second, posterior estimates for µtv for large positive values of the pa-

rameter tend to be biased downards, to a degree that can’t be simply explained as an effect of

the prior, as such a strong bias is not present among the MCMC-sampled posteriors.

To simplify the comparison between methods, we can also display the unigram analog of Figure

2 – this is given in Supplementary Figure 11. This display confirms our earlier observation, that

posterior MCMC samples seem more reliable than either those from VB or the bootstrap, when

using generic probabilistic programming for the Dynamic Unigram model, at least in problems

with the dimensions we have considered.
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9.2 Posterior Predictive Checks

Model assessment is important for qualifying interpretations, and can further guide refinements

in subsequent analyses. Indeed, part of the appeal of probabilistic modeling is the ease with

which models can be adapted to better describe the data of interest. We briefly review model

assessment via posterior predictive checks, as they are applied in Section 4.3. In this approach,

some statistics Tk (x) of the data are defined which, in some sense, “characterize” the data. If

the data x∗ simulated from the fitted model have statistics Tk (x∗) with values similar to those

in the observed data Tk (x), then we have evidence that the proposed model approximates the

data well, at least in the sense defined by Tk.

More precisely, simulate data x∗1, . . . , x
∗
S from the posterior predictive probability distribution

p (x∗|x) ≈
∫
p (x∗|θ) p̂ (θ|x) dθ, where x is the original data and p̂ (θ|x) is an estimate of the

posterior. For each of these simulated data sets, the characterizing statistics Tk (xs) are computed.

Graphically comparing the Tk (x) calculated on the true data with the histogram of model-fit

simulated Tk (x∗s) suggests ways in which the posited model fits – the case where the observed

Tk (x) lie in the bulk of the Tk (x∗s) – or fails to fit – the case where Tk (x) lie far from the bulk

of Tk (x∗s) – the data well.

For example, it is common to set Tk (x) = xd or 1
n

∑
i (xid − xd)

2
to see whether simulated

samples approximately match the moments of the dth dimension in the observed data. Alter-

natively, histograms of raw data or raw data subsetted to certain groups can guide evaluation.

This corresponds to setting a multidimensional Tk (x). For example, Tk (x∗s) = (ns1, . . . , nsB)

could count the number of observations in the sth simulated data set falling into histogram bins

b = 1, . . . , B.
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9.3 Comparison with principal coordinates

There is value in comparing this text-modeling based approach to the data from (Dethlefsen

and Relman, 2011) with the analysis carried out in the original publication, based on principal

coordinates analysis (PCoA) using a UniFrac distance. Both approaches accentuate the dramatic

change in microbiome composition immediately following the administration of antibiotics, and

both suggest the overall resilience of the microbiome, in the sense that the community returns to

the preantibiotic state after several days. Further, both distinguish subject F as only making an

incomplete recovery after the first antibiotic treatment.

On the other hand, some findings are more easily accessible when using the probabilistic ap-

proach. For example, the availability of topics with mixed memberships strikes a balance between

the continuous gradient representation of principal coordinate analysis of (Dethlefsen and Rel-

man, 2011) and the discrete clusters provided by standard clustering techniques, which appear

elsewhere in the microbiome literature. This simplifies the taxonomic characterization of different

communities – with principal coordinates, it would be necessary to find species correlated with

the principal coordinate axes, and indeed no visual representations of taxa ever appear in the

figures of Dethlefsen and Relman (2011). Similarly, by studying individual topics, we find there is

more variation within taxonomic families than is ever discussed in the original refernece. Further,

through posterior predictive checks, we can perform model assessment in a way that is not so

straightforwards with PCoA, and more broadly speaking, we by adopting probabilistic methods,

we are able to describe the uncertainty associated with mixed membership and topic estimate.

That said, PCoA enjoys certain advantages over the probabilistic approaches that have been

the focus of this work. Perhaps most importantly, PCoA can be run in seconds, which makes it

much more useful for interactive analysis. Second, by using the UniFrac distance, PCoA is able

to account for the phylogenetic relatedness between taxa, encouraging phylogenetically similar

taxa to play similar roles in the resulting ordination. Finally, the visual representation of samples
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provided by PCoA – simply a two-dimensional scatter of the samples – is more easily digestible

than the simultaneous display of all parameters in probability models.

Broadly speaking, it seems valuable to have both types of tools available for practical scientific

work. Ordination techniques like PCoA are useful for describing the relationship between sets of

samples, in a way that requires little effort in either estimation or display. However, for more richly

structured summaries, which are amenable to uncertainty quantification and model evaluation,

probabilistic methods are ideal. We imagine a workflow in which researchers quickly develop

a sense of their data using ordination, and then refine and critique their analysis using latent

variables models.

9.4 Supplementary Figures

taxonomic families that seem associated with individual topics. Here we
representativeness statistic βkv−

∑
k′ 6=k βk′v across all species v within

that are most associated with a topic are displayed here. The sizes of
species within the family, which can be used to gauge the variability of
with Supplementary Figure ??.
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Page 36 of 50

http://biostatistics.oupjournals.com/

Manuscript Submitted to Biostatistics



For Peer Review

36 REFERENCES

Fig. 6. The analog of Figure 1 in the case that V = 325.
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Fig. 7. The results of the NMF experiment with D = 20 Within each panel, we display the true value
of
√
βv as black points, while linked orange points give associated posterior medians. Note that the axes

are truncated, and for some panels, the posterior medians all lie outside the visible box. Across columns,
we vary and E [N ]. Along rows, we vary the assumed model, the inference procedure, and the true p0 –
these are the three columns of row labels, read from outside in.
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Fig. 8. The analog of Figure 7 when D = 100.
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Fig. 9. A version of Figure 2 for the NMF simulation experiment. The figures are read similarly, except
there are a larger number of experimental configurations – rows now distinguish the assumed model and
shapes represent the true value of p0. Further, while the first row of column labels still gives D, the
second row gives E [N ] instead of N . Note that we also now truncate the x and y axes, and not all points
are visible. For example, most MCMC samples in the last panel in the second row have errors and SDs
larger than what is displayed, and so are missing.
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Fig. 10. A comparison of the posterior p (µtv|x) to the known underlying µtv, in the unigram simulation
experiment. The x-axis for each interval corresponds to the true µtv for one species at one timepoint, while
the vertical intervals cover the 25% to 75% quantiles of samples from the posterior p (µtv|x). Different
panels distinguish between configurations of D, N , V , and posterior sampling schemes. Posteriors from
MCMC sampling seem to correctly recover the true underlying µtv, while discrepancies arise for both
VB and the bootstrap.
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Fig. 11. A simplification of Figure 10, displaying RMSE when using posterior medians to estimate sim-
ulation µtvs (x-axis) and the standard deviations of posterior marginals (y-axis), across experimental
configurations. Generally, MCMC sampled posteriors seem to be the most reliable, across simulation
configurations.

Page 42 of 50

http://biostatistics.oupjournals.com/

Manuscript Submitted to Biostatistics



For Peer Review

42 REFERENCES

Fig. 12. Each credible interval describes an approximate posterior for one βvk. Coupled with Figure 3, this
guides the interpretation of which bacterial taxa are more or less prevalent during antibiotic treatments.
Each row of panels corresponds to one of the four topics, the x-axis indexes species, sorted according
to phylogenetic relatedness, and the y-axis give transformed values of the species probability under that
topic. Only the 750 most abundant species are shown. Note the disappearance of otherwise abundant
species within Topics 2, 4, and to some extent, 1.
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Fig. 13. Each posterior credible interval refers to one µvt. The rows are a subset of times t around the first
antibiotic time course. The first row corresponds to a timepoint from before the treatment, the middle
two from during the antibiotics time course, and the bottom from after the time course was stopped.
Otherwise, this display is read in the same way as Supplementary Figure 12. This view provides one way
of smoothing abundance time series, to see how different species respond to antibiotic treatment.

Fig. 14. As a posterior check, we compare the observed with simulated data quantiles, using a qq-plot.
To reduce overlap, we have introduced a uniform [0, 0.2] jitter on both axes. Further, the points are
semi-transparent – this makes it easy to see that most quantiles map to 0, which is expected, considering
the sparsity of the data. From this view, we see that the LDA model tends to underestimate the overall
number of zeros in the data, while the Dynamic Unigram model matches the observed quantiles almost
exactly.
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Fig. 15. As a posterior predictive check, we compute eigenvalues of data simulated from the fitted LDA
model. The clouds of points summarize the posterior predictive distribution, while the black circles
represent observed data eigenvalues. Note that the y-axis are logged eigenvalues. Evidently, the four-
topic model effectively creates a rank-four approximation of the original data.
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Fig. 16. The eigenvalues displayed in Figure 15 correspond to PCA results computed on posterior pre-
dictive samples, which are aligned and overlaid here. The left pair of panels give scores for each species,
while the right pair provide loadings for each timepoint. The individual posterior samples have been
smoothed into contours, while the posterior medians are displayed as shaded text. The observed data
PCA results, after alignment with posterior samples, are displayed as black text.
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Fig. 17. The analog of Figure 3 for Subject D.

Fig. 18. The analog of Supplementary Figure 12 for Subject D.
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Fig. 19. The analog of Figure 3 for Subject E.

Fig. 20. The analog of Supplementary Figure 12 for Subject E.
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Fig. 21. Rather than displaying all representative species together, as in Figure 4, we can sort species
according to how representative they are of an individual topic. Here, the 15 species most strongly
associated with Topic 1 are given. The panels are to be read from left to right and from top to bottom,
to go in decreasing value of association. Note that the y-axis is on a square root scale.

Fig. 22. The analog of Figure 21 for Topic 2..
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Fig. 23. The analog of Figure 21 for Topic 3.

Fig. 24. The analog of Figure 21 for Topic 4.
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Fig. 25. We can search for entire taxonomic families that seem associated with individual topics. Here we
calculate the average of the topic representativeness statistic �kv �

P
k0 6=k �k0v across all species v within

each Family. Only those families that are most associated with a topic are displayed here. The sizes of
circles represents the number of species within the family, which can be used to gauge the variability of
the estimate. Compare this view with Supplementary Figure 26.
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Fig. 26. All species within the families screened out from Figure 25 are displayed here. Species among the
representatives displayed in Figure 6 are colored according to the topics of they are prototypical. Grey
series still contribute to the average family-topic association measure, but were not among the 50 pro-
totypes for each topic. This view suggests that the Rhodospillaceae, Alcaligenaceae and Parabacteroides
may have a large fractions of representatives from Topics 3, 1, and 2, respectively. Note that as before,
abundances are plotted on a square root scale.




