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1. A Modified Hidden Potts Model

In this section, we discuss a modified hidden Potts model, as a complement to the hidden

Potts model that is presented in Section 2.2 of the article. We consider the type of cell i

depends on both of its adjacent spins and its location. For example, Equation (2.4) can be

modified to
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where the additional term is an exponential decay with parameter ⌧ and the Euclidean

distance between cell i and its nearest spin q denoted by min{(l,w):plw=q}{dist((x0
i, y

0
i), (l, w)}.

A larger value of ⌧ makes a cell type more likely to be the same with its closest spin, while

a smaller value leads to Equation (2.4), which assumes that the cell types are independent

and identically distributed conditional on their four adjacent spins. Supplementary Figure S3

shows how the choices of ⌧ influence the spatial distribution of the cell types. The location-

dependent hidden Potts model is interesting, especially when the lattice size is considerably

small. However, compared to the original version, it is more computationally intensive.

2. Full Details of MCMC Algorithm

Update of d: We update the projection parameter d by using a random walk Metroplis-

Hastings (RWMH) algorithm. We first propose a new d
⇤ from Ga(d2/⌧d, d/⌧d) and then

accept the proposed value with probability min(1, rd) and the Hastings ratio is
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where the form of Pr(x0
i, y

0
i, zi|P , d) is given by Equation (2.4) in the main manuscript. Note

that the proposal density ratio equals to 1 for this random walk Metropolis update.

Update of P : We first update each plw in the AOI that corresponds to �lw = 1 by using

Gibbs sampling. Then we repeat the same step to update each plw in the background area



that corresponds to �lw = 0. The probability of assigning class q to plw is proportional to
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where Pr(x0
i, y

0
i, zi|P , d) is given by Equation (2.4) in the main manuscript.

Update of ✓: We update each ✓qq0 , q = 1, . . . , Q � 1, q0 = q + 1, . . . , Q, q 6= q
0 by using a

double Metropolis-Hastings (DMH) algorithm. We first propose a new ✓
⇤
qq0 from N(✓qq0 , ⌧ 2✓ )

and then simulate an auxiliary variable P ⇤ starting from P based on the new ✓⇤, where all

the elements are the same as ✓, excluding ✓qq0 . Note that, from P to P ⇤, we only need to

update those spins that correspond to �lw = 1. The proposed value ✓⇤qq0 will be accepted with

probability min(1, r✓) and the Hastings ratio is
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Pr(P ⇤|✓)
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where the form of Pr(P |✓) is given by Equation (2.2) in the main manuscript. As a result,

the normalizing constants can be canceled. Note that the proposal density ratio equals to 1

for this random walk Metropolis update on ✓qq0 .

Update of ✓0: We update each ✓0qq0 , q = 1, . . . , Q� 1, q0 = q + 1, . . . , Q, q 6= q
0 by using a

DMH algorithm. We first propose a new ✓
⇤
0qq0 from N(✓0qq0 , ⌧ 2✓ ) and then simulate an auxiliary

variable P ⇤ starting from P based on the new ✓⇤
0, where all the elements are the same as ✓0,

excluding ✓0qq0 . Note that, from P to P ⇤, we only need to update those spins that correspond

to �lw = 0. The proposed value ✓
⇤
0qq0 will be accepted with probability min(1, r✓0) and the



Hasting ratio is
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where the form of Pr(P |✓) is given by Equation (2.2) in the main manuscript. As a result,

the normalizing constants can be canceled. Note that the proposal density ratio equals to 1

for this random walk Metropolis update on ✓0qq0 .

Update of �: We update � via an add-delete algorithm. Note that we perform the

following steps 20 times within each iteration. We first select an l from {1, . . . , L} and a

w from {1, . . . ,W} at random and then change its value �
⇤
lw = 1 � �lw. Then an auxiliary

variable P ⇤ starting from P based on the new �
⇤ is simulated. All the elements of �⇤

are the same as �, excluding �lw. Note that, from P to P ⇤, we update those spins that

correspond to �
⇤
lw = 1 based on ✓ and update those spins that correspond to �

⇤
lw = 0 based

on ✓0. We finally accept the proposed values with probability min(1, r�) and the Hastings

ratio is

r� =
Pr(P ⇤|�,✓0,✓)

Pr(P |�,✓0,✓)

Pr(P |�⇤
,✓0,✓)

Pr(P ⇤|�⇤,✓0,✓)

Pr(�⇤lw|�⇤)

Pr(�lw|�)
,

where the forms of Pr(P |�,✓0,✓) and Pr(�lw|�) are given by Equation (2.8) and Equation

(2.9) in the main manuscript, respectively. As a result, the normalizing constants in Equation

(2.8) can be canceled.

3. Scalability Test

The scalability test was conducted in R with Rcpp package on a Mac PC with 2.60GHz CPU

and 16GB memory. Within each MCMC iteration, we need to update d, P , ✓, ✓0, and �.

The total number of parameters is 1 + LW + Q(Q � 1)/2 + Q(Q � 1)/2 + LW . Therefore,

the time complexity is at least O(LW + Q
2). For small numbers of class, Q, it reduces to

O(LW ).

We considered three settings of Q (i.e Q = 2, Q = 3, and Q = 4) to generate the simulated



datasets. All the generative models were based on a 50-by-50 lattice. We considered the

true structure of � the same as scenario 2, which is shown in Figure 2(d) of the article.

The AOI is composed of four rectangles with equivalent size. For the case of Q = 2,

we set ✓ = 0.5 and ✓0 = �1.0; For the case of Q = 3, we set ✓ = (✓12, ✓13, ✓23) =

(0.5, 0.7, 1.0) and ✓0 = (✓012, ✓013, ✓023) = (�1.0,�0.5,�1.5); For Q = 4, we set ✓ =

(✓12, ✓13, ✓14, ✓23, ✓24, ✓34) = (0.1, 0.3, 0.5, 0.7, 0.9, 1.1) and ✓0 = (✓012, ✓013, ✓014, ✓023, ✓024, ✓034)

= (�1.0,�0.75,�0.5,�0.25,�1.0,�1.5). The hidden spins P were simulated using the Gibbs

sampler, running 100, 000 iterations with random starting configurations. The observed

points (x,y) were generated from a homogeneous Poisson point process with a constant

intensity � = 4 over the planar space [1, 50]2. Their classes z were assigned according to

adjacent spins. Specifically, for point i, its class was drawn from a multinomial distribution

Mn(�1, . . . ,�Q). The parameters (�1, . . . ,�Q) were inferred from a Dirichlet distribution

Dir(0.1 + ñi1, . . . , 0.1 + ñiQ), where ñiq denotes the number of adjacent spins that belong to

class q. We repeated the above steps to generate 10 independent datasets for each setting of

Q.

For each dataset, we applied the proposed model with the same hyperparameter and

algorithm settings as described in Section 4.1 of the article and the lattice size chosen from

20⇥ 20, 30⇥ 30, 40⇥ 40, or 50⇥ 50. We then ran an MCMC chain with 10, 000 iterations.

Figure S12 shows the runtime of the MCMC algorithm as a function of the lattice size

L ⇥ W . Our observations are three-fold. First, the algorithm is fast for the small lattice

size. For example, the runtime of fitting a 20⇥ 20 lattice size is as short as 60, 90, and 120

seconds for the three cases, respectively. Second, the actual runtime increases approximately

quadratically in L or W , which is consistent with the theoretical lower bound O(LW ). Third,

the runtime di↵erence is relatively small among di↵erent settings of Q. This is because the

time complexity is dominated by the lattice size L⇥W , especially whenQ is small. We further



fit a linear regression for the runtime (per 10, 000 iterations) versus (LW )2 and Q, which has

an R
2 of 0.976. It also indicates the runtime depends mainly on (LW )2, followed by Q in

order of significance. The estimated model was time = �640.6 + 0.0004459(LW )2 + 231.7Q.

This analysis implied that, computationally speaking,our method can be applied to datasets

with a large number of Q.
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Figure S1: Illustration of the ConvPath pipeline: (a) A part of the whole pathological
imaging slide (the median size is 24, 244 ⇥ 19, 261 pixel) from a lung cancer patient and
the tumor region (within the green border) manually labeled by a pathologist; (b) A
randomly chosen sample image (5000 ⇥ 5000 pixel) in the tumor region for image analysis;
(c) The image processing pipeline for cell detection and segmentation (Yi et al., 2017);
(d) The convolutional neural network (CNN) that predicts the type of each individual cell
(https://qbrc.swmed.edu/projects/cnn/); (e) The cell distribution map corresponding to the
sample image as shown in (b), where the cell locations were detected by (c) and the cell
types were predicted by (d), with black, red, and green representing lymphocyte, stromal,
and tumor cells, respectively; (f) The cell distribution map corresponding to the sub-region
of the sample image.



Figure S2: The graphical formulation of the proposed Bayesian hidden Potts mixture model.
Each node in a circle refers to a parameters of the model. Node in a rectangle is observable
data. Circle nodes in the dashed block are fixed hyperparameters. The link between two
nodes represents a direct probabilistic dependence.
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Figure S3: The heatmaps of the probability Pr(z = q|P , d,�) under di↵erent choices of
d and �, in the illustrated 3-by-3 lattice as shown in Figure 1 of the article. The points
represent the hidden spins in the lattice. Black, red, and green indicate class q = 1, 2, and
3, respectively.
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Figure S4: A simulated dataset generated from the log Gaussian Cox process and �

shown in Figure 2(d) of the article (scenario 2): The trace plots of MCMC samples of the
interaction parameters (a) ✓12, (b) ✓13, (c) ✓23, and (d) the number of spins in the AOI (i.e.PL

l=1

PW
w=1 �lw). The red horizontal lines indicate the true values.
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Figure S5: A simulated dataset generated from the log Gaussian Cox process and �

shown in Figure 2(d) of the article (scenario 2): (a) The heatmap of the marginal posterior
probabilities Pr(�lw = 1|·)’s; (b) The map of estimated �̂’s corresponding to the median
model when choosing c = 0.5; (c) The estimated hidden spins P̂MP.
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Figure S6: Simulated datasets generated from the homogeneous Poisson process: The
density plots of MCMC samples of the interaction parameters ✓12, ✓13, ✓23, ✓012, ✓013, and
✓023, under (a) scenario 1 and (b) scenario 2. The red vertical lines indicate the true values
and the intervals between two green dashed lines indicate the 95% credible intervals obtained
by the proposed method.
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Figure S7: Simulated datasets generated from the log Gaussian Cox process: The density
plots of MCMC samples of the interaction parameters ✓12, ✓13, ✓23, ✓012, ✓013, and ✓023, under
(a) scenario 1 and (b) scenario 2. The red vertical lines indicate the true values and the
intervals between two green dashed lines indicate the 95% credible intervals obtained by the
proposed method.
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(d) Scenario 2 - class 1
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Figure S8: Simulated datasets generated from the homogeneous Poisson process: The
average ROC curves for di↵erent values of the threshold on the posterior probabilities of
inclusion on pwl = q, w = 1, . . . ,W, l = 1, . . . , L, for each scenario and class q. The points
under the ROC curves indicate the average false positive rates and true positive rates by
assigning each spin pwl based on its k-nearest neighbors of cells.
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Figure S9: Simulated datasets generated from the log Gaussian Cox process: The average
ROC curves for di↵erent values of the threshold on the posterior probabilities of inclusion on
pwl = q, w = 1, . . . ,W, l = 1, . . . , L, for each scenario and class q. The points under the ROC
curves indicate the average false positive rates and true positive rates by assigning each spin
pwl based on its k-nearest neighbors of cells.



5 10 15 20

5
10

15
20

W

(a) 20⇥ 20

0 5 10 15 20 25 30
0

5
10

15
20

25
30

W

(b) 30⇥ 30

0 10 20 30 40

0
10

20
30

40
W

(c) 40⇥ 40

0 10 20 30 40 50

0
10

20
30

40
50

W

(d) 50⇥ 50

5 10 15 20

5
10

15
20

W

(e) 20⇥ 20

0 5 10 15 20 25 30

0
5

10
15

20
25

30
W

(f) 30⇥ 30

0 10 20 30 40

0
10

20
30

40
W

(g) 40⇥ 40

0 10 20 30 40 50

0
10

20
30

40
50

W

(h) 50⇥ 50

Figure S10: Sensitivity analysis on the choices of lattice size, on a simulated dataset
generated from the homogeneous Poisson process and � shown in Figure 2(d) of the article
(scenario 2): (a), (b), (c), and (d) The heatmaps of the marginal posterior probabilities
Pr(�lw = 1|·)’s obtained by models with di↵erent lattice sizes; (e), (f), (g), and (h) The maps
of estimated �̂’s corresponding to the median models when choosing c = 0.5.
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Figure S11: Sensitivity analysis on the choices of the projection parameter d, on a simulated
dataset generated from the log Gaussian Cox process and � shown in Figure 2(d) of the
article (scenario 2): (a) The observed dot distribution map; (b) The true map of the 50-by-
50 hidden spins P ; (c) The map of the estimated 50-by-50 hidden spins P̂MP by placing a
weakly informative prior on d; (c), (d), and (e): The maps of the estimated 50-by-50 hidden
spins P̂MP by fixing the value of d to 0.1, 1, and 10, respectively.
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(b) Q = 3
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(c) Q = 4

Figure S12: The boxplots of the runtime in seconds (per 10, 000 MCMC iterations) in terms
of the lattice size L⇥W , over multiple simulated datasets generated from the homogeneous
Poisson process, � shown in Figure 2(d) of the article (scenario 2), and the number of classes
(a) Q = 2, (b) Q = 3, and (c) Q = 4.
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Figure S13: Lung cancer case study: (a) The density plots of ✓̂lym,tum (red) and ✓̂0,lym,tum

(green) by fitting the 1, 585 sample images to the hidden Potts mixture model, and ✓̂lym,tum

(black) by fitting the datasets to the homogeneous hidden Potts model; (b) The density plots
of ✓̂str,tum (red) and ✓̂0,str,tum (green) by fitting the 1, 585 sample images to the hidden Potts
mixture model, and ✓̂lym,tum (black) by fitting the datasets to the homogeneous hidden Potts
model.
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Figure S14: Lung cancer case study: The boxplots of (a) ✓̂lym,tum and (b) ✓̂str,tum for each
of the 317 pathological imaging slides, sorted by the median values.
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Figure S15: Lung cancer case study: The boxplots of (a) ✓̂lym,tum and (b) ✓̂str,tum for each
of the 205 lung cancer patients from the National Lung Screening Trial (NLST), sorted by
the median values.



Table S1: Suggested values for hyperparameters e and f of the MRF prior to avoid the phase
transition problem.

Expected prop. of the AOI
exp(e)/(1 + exp(e)) e Maximum allowed value of fmax

1% �4.60 2.30
2% �3.89 1.90
5% �2.94 1.40
10% �2.20 1.10
15% �1.73 0.80
20% �1.39 0.80
25% �1.10 0.70
30% �0.85 0.50
35% �0.62 0.50
40% �0.41 0.30



Table S2: Means and standard deviations (in parentheses) of the areas under the ROC curves
(AUCs) on the posterior probabilities of inclusion on � and the FPRs, recalls (TPRs),
precisions, and F-1 scores of the median models, when choosing e = �2.94 and f = 1.4, over
multiple simulated datasets generated from each point process and each setting of �.

Homogeneous Poisson process Log Gaussian Cox process

Scenario 1 Scenario 2 Scenario 1 Scenario 2

AUC 0.924 (0.171) 0.950 (0.009) 0.903 (0.090) 0.948 (0.010)
FPR 0.111 (0.164) 0.119 (0.028) 0.128 (0.077) 0.126 (0.030)

Recall (TPR) 0.841 (0.138) 0.883 (0.023) 0.804 (0.120) 0.889 (0.015)
Precision 0.941 (0.127) 0.915 (0.018) 0.937 (0.047) 0.911 (0.019)
F-1 score 0.887 (0.135) 0.898 (0.015) 0.862 (0.090) 0.900 (0.010)



Table S3: Sensitivity analysis on the choices of hyperparameters e and f of the MRF prior:
Means and standard deviations (in parentheses) of the precisions, recalls (TPRs), and F-
1 scores of the median models under di↵erent values of e and f , over multiple simulated
datasets generated from the homogeneous Poisson process and � shown in Figure 2(d) of
the article (scenario 2). The values of e are chosen corresponding to the expected proportion
of the AOI equal to 1%, 2%, 5%, and 10%, respectively. The values of f are chosen the
corresponding maximum allowed values fmax, as shown in Table S1.

Values of (e, f) (�4.60, 2.30) (�3.89, 1.90) (�2.94, 1.40) (�2.20, 1.10) (�1.73, 0.80)

Recall 0.831 0.866 0.883 0.875 0.880
(0.134) (0.022) (0.023) (0.020) (0.036)

Precision 0.885 0.917 0.915 0.914 0.896
(0.133) (0.017) (0.018) (0.014) (0.026)

F1-score 0.857 0.890 0.898 0.894 0.887
(0.133) (0.015) (0.015) (0.012) (0.013)



Table S4: Sensitivity analysis on the choices of hyperparameters e and f of the MRF prior:
Means and standard deviations (in parentheses) of the areas under the ROC curves (AUCs)
on the posterior probabilities of inclusion on � under di↵erent values of e and f , over
multiple simulated datasets generated from the homogeneous Poisson process and � shown
in Figure 2(d) of the article (scenario 2). The values of e are chosen corresponding to the
expected proportions of the AOI equal to 1%, 2%, 5%, and 10%, respectively. The values of
f are chosen to one, one half, one quarter, and zero of the corresponding maximum allowed
values fmax, as shown in Table S1.

Values of (e, f) (�4.60, 0.00) (�3.89, 0.00) (�2.94, 0.00) (�2.20, 0.00) (�1.73, 0.00)

AUC 0.619 0.667 0.718 0.723 0.671
(0.020) (0.025) (0.028) (0.036) (0.067)

Values of (e, f) (�4.60, 0.58) (�3.89, 0.48) (�2.94, 0.35) (�2.20, 0.28) (�1.73, 0.20)

AUC 0.637 0.688 0.742 0.737 0.693
(0.021) (0.031) (0.037) (0.063) (0.115)

Values of (e, f) (�4.60, 1.15) (�3.89, 0.95) (�2.94, 0.70) (�2.20, 0.55) (�1.73, 0.40)

AUC 0.709 0.791 0.841 0.838 0.729
(0.027) (0.041) (0.047) (0.092) (0.163)

Values of (e, f) (�4.60, 2.30) (�3.89, 1.90) (�2.94, 1.40) (�2.20, 1.10) (�1.73, 0.80)

AUC 0.937 0.945 0.950 0.948 0.941
(0.011) (0.012) (0.009) (0.008) (0.009)


