
Extending Earth Mover’s Distance to multivariate space
with independent components

The EMD process can be visualized as filling holes by moving piles of dirt. Assume
that P and Q denote two pdfs, and that a proper metric, named ground distance is
defined to measure the distance between the bins i and j (It is common practice to use
the Euclidean distance from i to j as the ground distance. Namely, in the 1D case this
reduces to |i− j|.) Suppose also that a flow f(i, j) is applied to morph P to Q, namely
a (signed) quantity is subtracted from P (i) and added to Q(j) in the process of making
the P and Q distributions more similar.

In this contest, EMD can be formulated and solved essentially as a transportation
problem [1]. Namely, EMD aims at finding the amount of flow f that minimizes the
overall cost of morphing P to Q. Explicitly, the work required to morph P to Q (or
viceversa) given an explicit flow f is,∑

i

∑
j

f(i, j)d(i, j), (1)

where f(i, j) and d(i, j) are respectively, the flow and the ground distance between
P (i) and Q(j) [2]. By solving for the optimal flow and normalizing it with the total flow,
EMD is described as,

EMD(P,Q) =
minf

∑
i

∑
j f(i, j)d(i, j)∑

i

∑
j f(i, j)

.

The normalization operation in the above equation yields the average distance traveled
by unit weight under the optimal flow.

When computing the EMD between two discrete histograms defined on the same
array of bins i = 0, ..., N − 1, the following algorithm may be used

EMD0 = 0,

EMDi+1 = Qi − Pi + EMDi,

EMD =
N∑
i=1

|EMDi|.
(2)

To operate with the EMD in a multidimensional setting under the assumption of
independence, we proceed as follows. Without loss of generality, we initially restrict
ourselves to the 2-D case.

For each metric defined on a probability distribution space with 2 random variables
as α1 and α2, we have,

d(fα, gα) = d(fα1fα2 , gα1gα2) ≤ d(fα1fα2 , fα1gα2) + d(fα1gα2 , gα1gα2) (3)

assuming independence of α1 and α2.
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If the distance on probability distributions is defined in such a way that a common
multiplicative term in one of the variables factorizes and can be integrated to 1 and
disappear, namely

d(X1(x)Y (y), X2(x)Y (y)) = d(X1(x), X2(x)), (4)

then we have
d(fα, gα) ≤ d(fα2 , gα2) + d(fα1 , gα1),

and the distance between the two 2-D distributions is bounded by the sum of the dis-
tances along the two components. In the case of EMD, Equation 4 corresponds to saying
that

(5)min(Cost from F 1
i F

2
j to G1

iF
2
j ) =

∑
j

F 2
j

min(Cost from F 1
i to G1

i )

= min(Cost from F 1
i to G1

i )

The generalization to the n-D case is trivially obtained by using,

d(fα, gα) = d(fα1fα2fα3 , gα1gα2gα3) ≤ d(fα1fα2fα3 , fα1fα2gα3)

+d(fα1fα2gα3 , fα1gα2gα3) + d(fα1gα2gα3 , gα1gα2gα3),

and so on.
Let us now see why Equation 5 holds. Using the algorithm to compute the discrete

1-D EMD as written in eq. 2, we have

EMD0 = 0,

EMDi+1 = F 1
i −G1

i + EMDi,

EMD =
∑
i

|EMDi|.
(6)

Namely, if we have a difference F 1
0 − G1

0 = ∆0, this quantity is displaced to the first
bin k such that F 1

k − G1
k = ∆k with ∆0∆k < 0. If |∆0|≤ |∆k|, then ∆0 is used to fill

the difference in k and contributes with |∆0|k to the EMD. Otherwise, the remaining
quantity |∆0 + ∆k| is displaced to the following bin l such that ∆0∆l < 0, and so on.
The logic is that we are moving ∆0 to the closest bin with a different ∆ sign.

Now, in the 2-D case of Equation 5, we have ∆0,j = (F 1
0 − G1

0)Fj . Since all the
terms on a given row have |∆i,j∆i,k|= (F 1

i − G1
i )

2FjFk > 0, the closest term to ∆0,j

with ∆0,j∆i,l < 0 will be found moving on a straight line on a given column, namely
it will be ∆k,j , and so on. We may see now that displacements along rows are never
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performed, and the 2-D algorithm becomes,

EMD0 = 0,

EMDi+1 = (F 1
i −G1

i )

∑
j

F 2
j

 + EMDi = F 1
i −G1

i + EMDi,

EMD =
∑
i

|EMDi|.

(7)

This property of independent variables also allows us to avoid a subtle problem in han-
dling EMD in our multi-dimensional space. The 1-D EMD is based on a metric (ground
distance) that evaluates the contribution of the quantity ∆ moved between bins i and
j to EMD as |∆||j − i|. Namely, the displacement is measured linearly as |j − i|. How
should we measure the displacement between bins (i, k) and (j, l) corresponding to vari-
ables of a different nature, such as velocity and distance? We have just shown that this
problem is not relevant in the computation of the upper bound Equation 3, since it is
not relevant in the computation of Equation 5. Indeed, for any ground distance such
that the distance between bins in a column is still linear,

ground((i, k), (j, k)) ∝ |j − i|,

we will have
ground((i, k), (j, k)) ≤ ground((i, k), (j, l)),

i.e. minimum displacements are obtained moving along columns (or rows). Indeed, if we
had,

ground((i, k), (j, l)) < ground((i, k), (j, k)), (8)

we would obtain by symmetry (implied by the linearity of displacements on row and
columns)

ground((i, k), (j, l)) + ground((j, l), (2j − i, k)) < ground((i, k), (2j − i, k)), (9)

in contradiction with the triangular inequality.
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