
Alternative measures

As shown in detail in S3 Appendix1, for the 4-D Earth Mover’s distance, we are able,
under the assumption of statistical independence of the variables, to provide only an up-
per bound and not a complete computation. For theoretical completeness, we introduce
here two other ways to compute the difference between probability density functions for
which such a complete computation is possible, namely the Kullback-Leiber and Jensen-
Shannon divergences. Despite this theoretical property, these two divergences do not
provide results as good as those obtained using the Earth Mover’s Distance.

Kullback-Leibler divergence

Assuming that P andQ are two probability distributions, the KullbackLeibler divergence
from Q to P is denoted by DKL (P‖Q) and evaluates the difference between distributions
P and Q [1].

Although KullbackLeibler divergence is often confused as a way of measuring the
distance between two probability distributions, it is, mathematically speaking, not a
(distance) metric, since it is not symmetric,

DKL (P‖Q) 6= DKL (Q‖P ) ,

neither does it satisfy the triangular inequality, i.e. it is not in general true that

DKL (P‖Q) ≤ DKL (P‖R) +DKL (R‖Q) ,

where R denotes a (third) probability distribution.
However, it is not uncommon to use Kullback-Leibler divergence in machine learning

as a way to evaluate the information gain achieved, if Q is used instead of P . Explicitly,
it is defined as

DKL (P‖Q) = Σi

(
P (i) log

(
P (i)

Q(i)

))
. (1)

An inherent issue with implementations of Kullback-Leibler divergence is related to
the empty bins in the probability mass functions. Namely, provided that some values
are never observed in the data set, the relating probability values turn out to be 0
due to the empirical approach. While P (i) = 0 does not represent a problem, since
limx→0+ x log x = 0 and thus the corresponding terms may be set to 0; terms with
Q(i) = 0 are undefined.

Nevertheless, in practice there are several workarounds for such cases. Here, we
choose to apply a small offset of 10−10 on all values in the empirical pdf. Since the number
of observations in our data set is ≈ 104, for any Q(i) 6= 0 we have Q(i) � 10−10, and
thus adding the offset removes the diverging terms without modifying the distribution
Q(i) in a significant way2.

1Refer to main track for the link.
2Obviously, after adding the offset, the distribution Q(i) is newly normalized in order to preserve∑
i Q(i) = 1.
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In addition, although Kullback-Leibler divergence is often utilized on univariate ran-
dom variables, adaptation of Equation 1 to the multivariate case is straightforward,
particularly thanks to the independence relation. Namely, as explained in the forthcom-
ing sections, Kullback-Leibler divergence of two probability density functions concerning
a multivariate random variable with independent components can be written as the sum
of divergences along each dimension.

Jensen-Shannon divergence

As explained in the previous section, the term in Equation 1 has an asymmetric na-
ture, which disqualifies it from being a true metric. In order to evaluate the impact
of this asymmetry on performance, we propose contrasting the recognition results ob-
tained using Kullback-Leibler divergence to those obtained employing Jensen-Shannon
divergence.

In particular, Jensen-Shannon divergence is based on Kullback-Leibler divergence,
but it is symmetric and has always a finite value. Namely, a reference distribution M is
derived from P and Q appearing in Equation 1, such that,

M(i) =
1

2
(P (i) +Q(i)) . (2)

By expressing the divergence of P and Q as the sum of their individual (Kullback-
Leibler) divergences in relation to the (same) reference distribution in Equation 2, the
Jensen-Shannon divergence term DJS (P‖Q) boils down to,

DJS (P‖Q) =
1

2
DKL (P‖M) +

1

2
DKL (Q‖M) . (3)

It may be shown that, provided base 2 is used for the logarithm, DJS assumes values3

in [0, 1]. Furthermore,
√
DJS is a proper metric (i.e. it satisfies also the triangular

inequality).
Concerning the extension of the univariate case onto multivariate random variables,

the proof provided in the next section can be generalized to the Jensen-Shannon diver-
gence. Namely, Jensen-Shannon divergence of two probability density functions con-
cerning a multivariate random variable with independent components can be written as
the sum of divergences along each dimension. The details are found in the last section
of this document.

Extending Kullback-Leibler divergence to multivariate space with inde-
pendent components

Remember that Kullback-Leibler divergence of two discrete probability distributions as
P and Q is defined in Equation 1 quantifies the divergence “from P to Q”. Without loss

3The only case, which could lead to a problem in Equation 3, is when a given bin is empty in both
distributions (i.e. in both P and Q). However, from a practical point of view, this does not pose a
problem for computing the divergence, since it is immanent to disregard the “unobserved” values.
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of generality, let us assume that α is a multivariate random variable, with components
α1 and α2,

α =
[
α1 α2

]T
.

Let us denote the multivariate probability distribution of α by fα. Provided that α1

and α2 are independent, fα can be decomposed into the following product,

fα = fα1fα2 .

Suppose gα is another joint probability distribution relating the same random variable
α and is also decomposed as gα = gα1gα2 .

According to Equation 1 and under the assumption of independence of α1 and α2,
Kullback-Leibler divergence from gα to fα can be written as follows,

DKL (fα‖gα) =
∑
α1,2

(
fα1fα2 log

(
fα1fα2

gα1gα2

))
.

Here the logarithmic term can be broken down as,

DKL (fα‖gα) =
∑
α1,2

(
fα1fα2

[
log

(
fα1

gα1

)
+ log

(
fα2

gα2

)])
.

The summation terms can be rearranged such that

DKL (fα‖gα) =
∑
α1

fα1

∑
α2

(
fα2 log

(
fα2

gα2

))
+
∑
α2

fα2

∑
α1

(
fα1 log

(
fα1

gα1

))
.

Here the inner summation terms can be identified as Kullback-Leibler divergences on
univariate random variables α2 and α1, respectively,

DKL (fα‖gα) =
∑
α1

fα1DKL (fα2‖gα2) +
∑
α2

fα2DKL (fα1‖gα1) .

By moving these divergence terms out of summation, we obtain,

DKL (fα‖gα) = DKL (fα2‖gα2)
∑
α1

fα1 +DKL (fα1‖gα1)
∑
α2

fα2 .

Note that the terms
∑

α1
fα1 and

∑
α2
fα2 are the integrals of the pdfs and thus integrate

to 1. Therefore, they can simply be omitted,

DKL (fα‖gα) = DKL (fα2‖gα2) +DKL (fα1‖gα1) .

This result can be generalized to any number of dimensions of α

α =
[
α1 α2 . . . αn

]T
,

as follows,

DKL (fα‖gα) =
n∑
i=1

DKL (fαi‖gαi) .

Thus, Kullback-Leibler divergence of two probability density functions concerning a
multivariate random variable with independent components can be written as the sum
of divergences along each dimension.
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Extending Jensen-Shannon divergence to multivariate space with inde-
pendent components

The proof provided in the previous section could be immediately extended to DJS if the
reference distribution

hα =
1

2
(fα + gα) , (4)

had independent variables. Nevertheless, following the notation of previous section, we
see that

hα =
1

2
(fα1fα2 + gα1gα2) , (5)

cannot in general be factorized. The solution is to define the DJS for multivariate space
with independent components with respect to a factorized reference distribution,

hfα =
1

4
(fα1 + gα1) (fα2 + gα2) . (6)

Using this definition, we still have a divergence with the same properties as DJS , for
which the divergence of two probability density functions concerning a multivariate
random variable with independent components can be written as the sum of divergences
along each dimension.
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Results relating alternative measures

We see that both using Kullback-Leibler divergence and Jensen-Shannon divergence
acceptable recognition rates are obtained only at stage-1 of hierarchical recognition.

Hierarchical stage-1

Results of Kullback-Leibler divergence for stage-1 of hierarchical recognition

Table 1: Kullback-Leibler divergence, hierarchical stage-1, α = 1 (in %).

Work Leisure

G
ro

u
n
d

tr
u
th Work 81.30 18.70

Leisure 41.94 58.06

Table 2: Kullback-Leibler divergence, hierarchical stage-1, α = 1 (in %) with detailed
confusion rates.

Work Leisure

G
ro

u
n

d
tr

u
th

Colleagues 81.30 18.70
Families 35.14 64.86
Couples 35.34 64.66
Friends 49.04 50.96

Results of Jensen-Shannon divergence for stage-1 of hierarchical recognition

Table 3: Jensen-Shannon divergence, hierarchical stage-1, α = 1 (in %).

Work Leisure

G
ro

u
n
d

tr
u
th Work 78.72 21.28

Leisure 39.57 60.43
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Table 4: Jensen-Shannon divergence, hierarchical stage-1, α = 1 (in %) with detailed
confusion rates.

Work Leisure

G
ro

u
n

d
tr

u
th

Colleagues 78.72 21.28
Families 35.80 64.20
Couples 30.11 69.89
Friends 45.32 54.68

Hierarchical stage-2

Results of Kullback-Leibler divergencefor stage-2 of hierarchical recognition

Table 5: Kullback-Leibler divergence, hierarchical stage-2, α = 1 (in %).

Families Couples Friends

G
ro

u
n

d
tr

u
th

Families 12.81 67.76 19.43
Couples 5.09 80.63 14.29
Friends 6.75 73.16 20.10

Results of Jensen-Shannon divergence for stage-2 of hierarchical recognition

Table 6: Jensen-Shannon divergence, hierarchical stage-2, α = 1 (in %).

Families Couples Friends

G
ro

u
n

d
tr

u
th

Families 33.54 34.93 31.52
Couples 18.46 52.63 28.91
Friends 21.55 40.28 38.17
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Non-Hierarchical

Results of Kullback-Leibler divergence for non-hierarchical recognition

Table 7: Kullback-Leibler divergence, non-hierarchical, α = 1 (in %).

Colleagues Families Couples Friends

G
ro

u
n

d
tr

u
th

Colleagues 70.45 1.96 24.33 3.25
Families 27.28 13.99 50.81 7.92
Couples 24.69 6.66 61.60 7.06
Friends 37.21 7.70 49.68 5.41

Results of Jensen-Shannon divergence for non-hierarchical recognition

Table 8: Jensen-Shannon divergence divergence, non-hierarchical, α = 1 (in %).

Colleagues Families Couples Friends

G
ro

u
n

d
tr

u
th

Colleagues 76.53 6.26 12.37 4.83
Families 32.19 30.28 30.28 7.26
Couples 28.14 17.29 44.74 9.83
Friends 40.66 20.26 31.00 8.08
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