

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their combination: a network meta-analysis of randomized controlled trials

bmjopen-2018-024595 Research 11-Jun-2018 Hu, Zhi-Chao; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Tang, Li; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Li, Xiaobin; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Zheng, Gang; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Feng, Zhen-Hua; The Second Affiliated Hospital and Yuying Children's
11-Jun-2018 Hu, Zhi-Chao; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Tang, Li; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Li, Xiaobin; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Zheng, Gang; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Feng, Zhen-Hua; The Second Affiliated Hospital and Yuying Children's
Hu, Zhi-Chao; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Tang, Li; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Li, Xiaobin; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Zheng, Gang; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Feng, Zhen-Hua; The Second Affiliated Hospital and Yuying Children's
of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Tang, Li; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Li, Xiaobin; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Zheng, Gang; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Feng, Zhen-Hua; The Second Affiliated Hospital and Yuying Children's
 Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Tang, Qian; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Xuan, Jiang-Wei; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Shen, Zhi-Hao; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.; Hainan Medical College, Haikou, Hainan, China. Ni, Wenfei; 1. Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. 2. The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. 3. Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, 325027, China., Wu, Ai-Min; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, 325027, China., Wu, Ai-Min; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics
Calcium, Vitamin D, Fractures, network meta-analysis
TOUXHMSaZNaZMIZWOU

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59 60

	BMJ Open
1	Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their
2	combination: a network meta-analysis of randomized controlled trials
3	Zhi-Chao Hu ^{1,2,3} , Li Tang ^{1,2,3} , Xiao-Bin Li ^{1,2,3} , Gang Zheng ^{1,2,3} , Zhen-Hua Feng ^{1,2,3} , Qian Tang ^{1,2,3} ,
4	Jiang-Wei Xuan ^{1,2,3} , Zhi-Hao Shen ^{1,2,3} , Wen-Fei Ni ^{1,2,3} and Ai-Min Wu ^{1,2,3,*}
5	
6	Affiliations:
7	1. Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of
8	Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
9	2. The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
10	3. Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang,
11	325027, China.
12	*Correspondence author:
13	Ai-Min Wu, email: aiminwu@wmu.edu.cn
14	Ai-Min Wu and Wen-Fei Ni contributed equally to this paper.
15	Phone: +86 0577 88002814;
16	Fax: +86 057788002823;
17	
18	
19	
20	
21	
22	
	1
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

23	Abstract
24	Objective Inconsistent findings in regard to association between different concentrations of vitamin D,
25	calcium or their combination and the risk of fracture have been reported during the past decade in
26	community-dwelling older people. This study was designed to compare the fracture risk using different
27	concentrations of vitamin D, calcium or their combination.
28	Design A systematic review and network meta-analysis.
29	Data sources Randomized controlled trials in PubMed, Cochrane library, and EMBASE databases
30	were systematically searched from the inception dates to December 31, 2017.
31	Outcomes Total fracture was defined as the primary outcome. Secondary outcomes were hip fracture
32	and vertebral fracture. Due to the inconsistency of the original studies, an inconsistency model was
33	used to pool the confounder-adjusted relative risk (RR).
34	Results A total of 29 randomized trials involving 45647 participants fulfilled the inclusion criteria.
35	There was no evidence that the risk of total fracture was reduced by using different concentrations of
36	vitamin D, calcium or their combination compared with placebo or no treatment. No significant
37	associations were found between calcium, vitamin D, or combined calcium and vitamin D supplements
38	and the incidence of hip, or vertebral fractures.
39	Conclusions The use of supplements that included calcium, vitamin D, or both was not found to be
40	better than placebo or no treatment in terms of risk of fractures among community-dwelling older
41	adults. It means the routine use of these supplements in community-dwelling older people should be
42	treated more carefully.
43	Prospero registration number CRD42017079624
44	Keywords: Calcium; Vitamin D; Fractures; network meta-analysis
	2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
-	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
29	
30	
31	
32	
33	
34	
35	
36 37	
37	
57	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

45 Strengths and limitations of this study

- This systematic review and meta-analysis combined the evidence from randomized controlled trials
- 47 of total fractures, hip fractures and vertebral fractures in older people, examining association between
- 48 different concentrations of vitamin D, calcium or their combination and the risk of fracture
- Our findings may not support the routine use of these supplements in community-dwelling older
- 50 people.
- This work does not necessarily preclude any benefit of vitamin D and calcium supplementation in
- 52 older, frail individuals.
- Potential missing data and meta-biases, heterogeneity, which may limit the quality of evidence.

54 Introduction

55 Clinical fractures of the elderly represent a worldwide public health problem that leads to illness and 56 social burden. The patients with osteoporosis in the EU were estimated to be 27.5 million in 2010, and 57 3.5 million new fragility fractures were sustained¹. In Asia, the average cost of osteoporotic fractures accounted for 18.95% of the countries' 2014 GDP/capita and increased annually²⁻⁴. The overall 58 59 prevalence of osteoporosis or low bone mass in non-institutional population over the age of 50 in the USA was estimated at 10.3% and 43.9%, respectively, which means that 10.2 million elderly people 60 61 had osteoporosis and 43.4 million people had low bone mass in 2010⁵. With the demographic trend of 62 ageing and the predicted increase in life expectancy, the cost of fracture treatment is expected to rise. 63 Dietary allowances for calcium range from 700 to 1200 mg/d and vitamin D of 600-800 IU/d have long been recommended for the prevention of osteoporotic fractures in the elderly⁶⁷. The supplements 64 65 of calcium and vitamin D are commonly taken to maintain bone health. 66 However, the previous RCTs and meta-analyses concerning vitamin D, calcium, or their combination

67	for fractures yielded different efficacy outcomes. For instance, two meta-analyses demonstrated
68	calcium or vitamin D supplementation alone has a small benefit on bone mineral density (BMD), but
69	no clinically important to prevent fractures ^{8 9} , while an updated meta-analysis and a pooled analysis
70	found calcium plus vitamin D supplementation can significantly reduce hip fractures by 30% and total
71	fractures by 15% ¹⁰¹¹ . Two RCTs reported that low dose of vitamin D supplementation (less than 800
72	IU/d) can reduce the incidence of falls ¹² and may prevent fractures without adverse effects ¹³ , but other
73	RCTs showed no significant reduction in the incidence of hip or other peripheral fractures ^{14 15} and its
74	possible effects were seen only in patients with initial calcium insufficiency. What's more,
75	Bischoff-Ferrari et al ¹⁶ illustrated that high-dose vitamin D supplementation (800 IU/d or higher) not
76	only reduced the risk of falls and hip fractures, but also prevented non-vertebral fractures. In contrast, a
77	study reported annual high-dose oral vitamin D resulted in an increased risk of falls and fractures ¹⁷ . On
78	the other hand, low-dose calcium supplementation (less than 800mg/d) effectively led to a sustained
79	reduction in the rate of bone loss ¹⁸ and turnover. Although it was also reported that the high dose of
80	calcium (800 mg/d or higher) was associated with a lower risk of clinical fractures ¹⁹ . The high-dose
81	calcium with high-dose vitamin D can't prevent fractures according to the evidence from reported RCT
82	²⁰ , but a meta-analysis supported their combination can prevent bone loss and significantly reduce the
83	risk of hip fractures and all osteoporotic fractures ²¹ . Thus, it's a challenging to conclude a
84	dose-response relation between the intakes of vitamin D, calcium, or their combination and the main
85	outcomes in these heterogeneous literatures.
86	Therefore, this study was designed to compare the fracture risk using different concentrations of
87	vitamin D, calcium or their combination, and comprehensively evaluate the optimal concentration to
88	guide clinical practice and public prevention in community-dwelling older people.

89 Methods

90 Search strategy and selection criteria

91 This review and meta-analysis is based on the Preferred Reporting Items for Systematic Reviews and 92 Meta-Analysis (PRISMA) extension statement for network meta-analysis. Our meta-analysis was 93 registered prospectively in PROSPERO (CRD42017079624) and the Checklist PRISMA 2009 94 (Supplementary Table 1) will be used and check our final reports ²².

We restricted our meta-analysis to the inclusion criteria should meet following details: (1) RCTs; (2) Interventions must be one of the following three: vitamin D only, calcium only, both vitamin D and calcium; (3) Complete outcome data of fracture; (4) Trials enrolling adults older than 50 years and living in their communities; Exclusion criteria were (1) Non-randomized trials; (2) Observational and experimental studies; (3) Case reports, case series, case control studies and reviews; (4) Calcium or vitamin D combined with other therapies (eg: hormones, exercise); (5) Trials in which vitamin D analogues (eg: calcitriol) or hydroxylated vitamin D were used; (6) Trials in which dietary intake of calcium or vitamin D (eg: from milk) was evaluated; (7) Patients suffering from illness or long-term use of certain drugs affecting the stability of the calcium metabolism, such as metabolic bone disease, bone tumour and so on.

Participants must be randomly assigned to two or more following groups: (1) high calcium (800 mg/d or higher) only; (2) low calcium (less than 800 mg/d) only; (3) high vitamin D (800 IU/d or higher) only; (4) low vitamin D (less than 800 IU/d) only; (5) high calcium (800 mg/d or higher) + high vitamin D (800 IU/d or higher); (6) high calcium + low vitamin D (less than 800 IU/d); (7) low calcium (less than 800 mg/d) + high vitamin D; (8) low calcium + low vitamin D; (9) placebo. The interventions should be compared with placebo.

60

BMJ Open

1		
2		
3	111	Two authors independently searched the electronic literature database of PubMed, Embase,
4		1 2 7 7 7
5 6	112	Cochrane database on December 31, 2017. Related articles and reference lists were searched to avoid
7	112	Commane database on December 31, 2017. Related articles and reference lists were searched to avoid
8		
9	113	original miss. The reference studies of previous systematic reviews, meta-analysis, and included studies
10		
11	114	were manually searched to avoid initial miss. After 2 authors assessed the potentially eligible studies
12		
13	115	independently, any disagreement was discussed and resolved with the third independent author.
14		
15	116	Data collection and assessment of risk of bias
16	110	Data concerton and assessment of fisk of blas
17 18		
19	117	Two reviewers independently extracted data, and the third reviewer checked the consistency between
20		
21	118	them. A standard data extracted form was used at this stage, including the authors, publishing date,
22		
23	119	country, participant characteristics; doses of calcium, vitamin D, or their combination; dietary calcium
24		
25	120	intake; baseline serum 25-hydroxyvitamin D concentration; and trial duration. For continuous
26	120	indake, basenne serum 25-nyuroxyvitanini D concentration, and that duration. For continuous
27		
28	121	outcomes, the mean, SD (standard deviation) and participant number will be extracted. For
29		
30	122	dichotomous outcomes, we extracted the total numbers and the numbers of events of both groups. The
31 32		
33	123	data in other forms was recalculated when possible to enable pooled analysis.
34		
35	174	We would be Calendary with a filing tool to account with him a filing had at disc. The tool has seen
36	124	We used the Cochrane risk of bias tool to assess risk bias of included studies. The tool has seven
37		
38	125	domains including random sequence generation, allocation concealment, blinding of participants and
39		
40	126	personnel, blinding of outcome assessment, incomplete outcome data, selective reporting and other bias.
41		
42	127	The classification of the judgment for each domain was low risk of bias, high risk of bias, or unclear
43	/	The elastification of the jaughtent for each domain was few fish of olds, ingli fish of olds, of allefeat
44 45	120	nisk of bigg and two outbang in demondently such statistic statistic statistic
45	128	risk of bias and two authors independently evaluated the risk of studies.
47		
48	129	Data synthesis and statistical analysis
49		
50	130	The data was extracted and input into the STATA software (version 12.0; StataCorp, College Station,
51		
52	131	TX, USA) for network meta-analysis. And we generated network plots for each outcome to illustrate
53	191	12, 002, for network meta-analysis. The we generated network plots for each outcome to mustiale
54	4.9.5	
55	132	which interventions had been compared directly in the included studies. Network meta-analysis is an
56		
57		6
58		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4	
5 6 7 8	
9 10 11 12 13	
14 15 16 17	
18 19 20 21 22	
23 24 25 26 27	
28 29 30 31	
32 33 34 35 36	
37 38 39 40	
41 42 43 44 45	
46 47 48 49	
50 51 52 53 54	
55 56 57 58	
59 60	

133	extension of standard meta-analysis to compare multiple treatments based on randomized controlled
134	trial evidence, which forms a connected network of comparisons. Treatment effect estimates from
135	network meta-analysis exploit both the direct comparisons within trials and the indirect comparisons
136	across trials. Relative risk (RR) was calculated for dichotomous outcomes while weighted mean
137	difference (WMD) for the continuous both with 95%CI for direct comparisons or 95%CrI for indirect
138	comparisons. Our network was a closed triangular circular network including both direct and indirect
139	evidences. The model (which was proposed by Anna Chaimani, downloaded from www.mtm.uoi.gr)
140	we used was fit for all kinds of networks. To the only one triangular circular, we used ifplot command
141	proposed by Anna Chaimani to evaluate the consistency of direct and indirect estimates. Then the
142	operational model was chosen according to the inconsistency test, which was the basis of forest maps'
143	calculation. We used the surface under the cumulative ranking probabilities (SUCRA) to indicate which
144	treatment was the best one. The funnel plot was used to identify possible publication bias if the number
145	of studies was larger than 10. Patient and public involvement
146	Patient and public involvement
147	No patients were involved in setting the research question or the outcome measures, and no patients
148	were involved in developing plans for design or implementation of the study. Furthermore, no patients
149	were asked to advice on interpretation or writing up of results. Since this meta-analysis used
150	aggregated data from previous trials, it is unable to disseminate the results of the research to study
151	participants directly.
152	Result
153	Data Retrieval

155	Embase (2688), Cochrane Data base (34). Based on our review of the title and abstract, 99 full-text
156	papers were reviewed and 29 studies met inclusion criteria (Figure 1).
157	Study and Patient Characteristics
158	The characteristics of all 29 included studies were summarized and shown in supplementary Table
159	2. And the detailed data of outcomes was collected in supplementary Table 3. The papers had similar
160	distributions of sex, age, country, intervention and all of them were community-dwelling older people.
161	Hansson et al ²³ did not report the residential status of participants, although a previous meta-analysis
162	classified this status as community ²⁴ . The trial by Hansson et al ²³ was included, but a sensitivity
163	analysis was performed that excluded that trial (supplementary Figure 1). Inkovaara et al ²⁵ did not
164	report whether the data represent the number of fractures or participants with fracture. The trial by
165	Massart et al ²⁶ was included, which adult maintenance hemodialysis patients were the participants. We
166	suspected that the maintenance hemodialysis or the underlying disease might result in the imbalance of
167	calcium in the body. Patients on haemodialysis may also be receiving 1,25-dihydroxyvitamin D, which
168	may affect their response to vitamin D supplementation. The data were included, but a sensitivity
169	analysis was performed that excluded both of two trials (supplementary Figure 2).
170	supplementary Figure 3 and supplementary Figure 4 showed the assessment of the risk of bias.
171	All studies were randomized; 21 were double-blind, placebo-controlled trials; 16 trials described an
172	adequate random sequence generation process; and 13 trials described the methods used for allocation
173	concealment. Only one study showed low quality ²⁵ , so we also made a sensitivity analysis by excluding
174	that trial (supplementary Figure 2). No obvious publication bias was reported according to the
175	supplementary Figure 5, supplementary Figure 6 and supplementary Figure 7.
176	Primary outcome: total fracture
	0

177	For estimating the vitamin D, calcium or their combination efficacy against total fractures, we
178	looked at data from 27102 individuals from 22 studies. Pooled estimates included 18 studies with one
179	treatment, 1 study with two treatments, and 3 studies with three treatments.
180	The inconsistency between direct and indirect evidence based on both comparisons of consistency
181	and inconsistency model was found according to inconsistency test (supplementary Figure 8), so we
182	adopted an inconsistency model to deal with this problem.
183	The network plot of comparisons on total fractures was shown in Figure 2A. The forest plot for the
184	network meta-analysis was shown in Figure 3A. We also made ranking graph of distribution of
185	probabilities on total fractures in supplementary Figure 9. The direct and indirect comparisons
186	indicated no differences among the vitamin D, calcium or their combination that remained in the main
187	network. Neither do the statistical differences between interventions and placebo. Based on SUCRA,
188	high calcium plus low vitamin D group (0.726) ranked the first, the second was high calcium plus high
189	vitamin D group (0.642) and the last was low calcium plus high vitamin D group (0.217). In a separate
190	sensitivity analysis, we excluded Inkovaara's ²⁵ and Massart's ²⁶ studies (supplementary Figure 2).
191	However, there was still no significant association of vitamin D, calcium or their combination with
192	total fracture.
193	Secondary outcomes: hip fracture and vertebral fracture
194	A total of 42531 individuals were included from 17 studies for evaluate the drug efficacy against hip
195	fractures. Pooled estimates included 14 studies with one treatment, 1 study with two treatments, and
196	two studies with three treatments.
197	We adopted an inconsistency model to deal with this problem according to inconsistency test
198	(supplementary Figure 10). The network plot of comparisons on hip fractures was shown in Figure
	9

1	
2	
2	
1	
-	
5	
0	
/	
8	
9	
3 4 5 7 8 9 10 11	
11	
12	
13	
12 13 14 15	
15	
16	
17	
18	
19	
20	
21	
22	
22	
∠_))∕l	
∠4 ว⊑	
25	
20	
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
28	
29	
30	
31	
32	
33 34 35 36	
34	
35	
36	
37	
38	
39	
40	
41	
41	
42 43	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

199	2B. The forest plot for the network meta-analysis was shown in Figure 3B. We also made ranking
200	graph of distribution of probabilities on hip fractures in supplementary Figure 11. The direct and
201	indirect comparisons indicated no differences among the vitamin D, calcium or their combination that
202	remained in the main network. Neither do the statistical differences between drug experimental groups
203	and placebo. Based on SUCRA, high calcium plus high vitamin D group (0.791) ranked the first, the
204	second was placebo or no treatment group (0.6753) and the last was high calcium group (0.198).
205	A total of 17612 individuals were collected from 12 studies involving vertebral fractures. Pooled
206	estimates included 10 studies with one treatment, and two studies with three treatments.
207	We adopted an inconsistency model to deal with this problem according to inconsistency test
208	(supplementary Figure 12). The network plot of comparisons on vertebral fractures was shown in
209	Figure 2C. The forest plot for the network meta-analysis was shown in Figure 3C. We also made
210	ranking graph of distribution of probabilities on vertebral fractures in supplementary Figure 13. The
211	direct and indirect comparisons indicated no differences among the vitamin D, calcium or their
212	combination that remained in the main network. Neither do the statistical differences between drug
213	experimental groups and placebo. Based on SUCRA, high calcium plus high vitamin D group (0.825)
214	ranked the first, the second was high calcium group (0.649) and the last was high vitamin D group
215	(0.186). In a separate sensitivity analysis, we excluded Hansson's study ²³ (supplementary Figure 1).
216	However, there was still no significant association of vitamin D, calcium or their combination with
217	total fracture.
218	Discussion
219	Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture.
220	We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses
	10

221 of vitamin D with calcium on fractures.

Results of this meta-analysis showed that calcium, calcium plus vitamin D, and vitamin D supplementation alone were not significantly associated with a lower incidence of hip, vertebral, or total fractures in community-dwelling older adults. Sensitivity analyses that excluded low-quality trials and studies that exclusively enrolled patients with particular medical conditions did not alter these results.

A meta-analysis conducted by Jia-Guo Zhao et al²⁷ showed that no significant difference was found in the incidence of hip or other fractures, which was similar to our result. However, it did not focus on the effect of different concentrations of vitamin D, calcium or their combination and we supposed that a network meta-analysis might be more reasonable. And in this meta-analysis the participants of the included study reported by Massart²⁶ were adult maintenance hemodialysis patients, which may resulted in the imbalance of calcium in the body. Patients on haemodialysis may also be receiving 1,25-dihydroxyvitamin D, which may affect their response to vitamin D supplementation. And we suspected that a network meta-analysis might be a more suitable choice concerning all these different interventions mixed.

Bischoff-Ferrari et al ²⁸ reported that high-dose vitamin D supplementation (800 IU/d or higher) played an important role in the reduction of the risk of falls and hip fractures, as well as prevented non-vertebral fractures in adults 65 years or older. However, their findings may have been influenced by the trial of Chapuy et al ²⁹, which only enrolled participants living in an institution. What's more, differences in conclusions of previous meta-analyses and the current meta-analysis were due to the recently published trials which reported neutral or harmful associations of vitamin D supplementation and fracture incidence more and more. Study findings here indicated that vitamin D might result in a

e 13 of 48		BMJ Open
	243	higher risk for hip fracture, but this conclusion did not reach statistical significance. This finding may
	244	be attributable to lack of statistical power in this meta-analysis.
	245	However, possible limitations of this study protocol include potential missing data and meta-biases,
	246	heterogeneity, which may limit the quality of evidence. Some RCTs were of poor quality and, for
	247	example, used unclear allocation concealment. So we made a sensitivity analysis by excluding
	248	low-quality trials. And some study characteristics such as sex, baseline serum 25-hydroxyvitamin D
	249	concentrations, duration of follow-up, performance bias and detection bias might be potential obstacles
	250	to the outcomes of our article, but we performed some subgroup analyses before statistical analysis and
	251	found no statistical differences between these subgroups. What's more, we combined bolus dosing by
	252	injection with oral supplements taken daily/monthly/yearly, which might have different effects on
	253	vitamin D status in the body. In addition, this work does not necessarily preclude any benefit of vitamin
	254	D and calcium supplementation in older, frail individuals.
	255	Conclusions
	256	In this meta-analysis of randomized clinical trials, we found that the use of different concentrations of
	257	vitamin D, calcium or their combination in community-dwelling older adults was not associated with a
	258	lower risk of fractures. Our findings may not support the routine use of these supplements in
	259	community-dwelling older people.
	260	Contributors
	261	ZCH and AMW conceived the study. The search strategy was developed by LT and XBL. ZHF, GZ
	262	and QT will complete electronic search, select publications and assess their eligibility. ZHS and XBL
	263	will extract information of the included studies after screening. JWX will check the data entry for
	264	accuracy and completeness. ZCH and LT will give advice for data analysis and presentation of study
		12
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

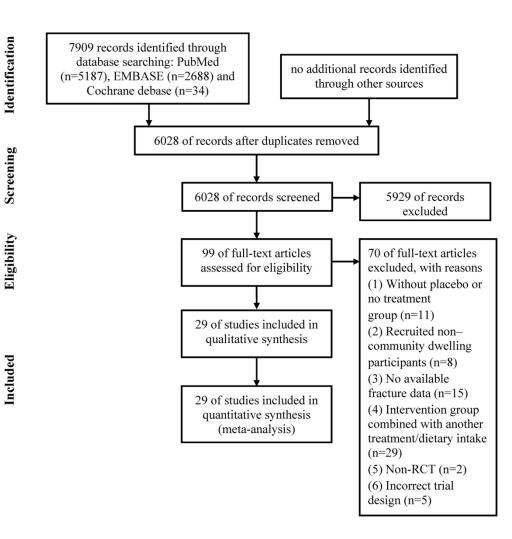
	BMJ Open
265	result. WFN and AMW supervised the overall conduct of the study. All the authors drafted and
266	critically reviewed and approved the final manuscript.
267	Funds and Acknowledgement
268	This work was funded by the National Natural Science Foundation of China (81501933, 81572214)
269	Zhejiang Provincial Natural Science Foundation of China (LY14H060008), Zhejiang Provincia
270	Medical Technology Foundation of China (2018254309, 2015111494), Wenzhou leading talen
271	innovative project (RX2016004) and Wenzhou Municipal Science and Technology Bureau
272	(Y20170389). The funders had no role in the design, execution, or writing of the study.
273	Conflicts of interest
274	None declared
275	Patient consent
276	Not required.
277	Provenance and peer review
278	Not commissioned; externally peer reviewed.
279	Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement No additional data are available. References
280	No additional data are available.
281	References
282	1. Svedbom A, Hernlund E, Ivergard M, et al. Osteoporosis in the European Union: a compendium of
283	country-specific reports. Arch Osteoporos 2013;8:137. doi: 10.1007/s11657-013-0137-0
284	2. Mohd-Tahir NA, Li SC. Economic burden of osteoporosis-related hip fracture in Asia: a systematic
285	review. Osteoporos Int 2017;28(7):2035-44. doi: 10.1007/s00198-017-3985-4
286	3. Kim J, Lee E, Kim S, et al. Economic Burden of Osteoporotic Fracture of the Elderly in South Korea: A
287	National Survey. Value Health Reg Issues 2016;9:36-41. doi: 10.1016/j.vhri.2015.09.007
288	4. Qu B, Ma Y, Yan M, et al. The economic burden of fracture patients with osteoporosis in western
289	China. Osteoporos Int 2014;25(7):1853-60. doi: 10.1007/s00198-014-2699-0
290	5. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in
291	the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone
	13
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	292	Miner Res 2014;29(11):2520-6. doi: 10.1002/jbmr.2269
4	293	6. Consensus conference: Osteoporosis. JAMA 1984;252(6):799-802.
5	294	7. Ross AC. The 2011 report on dietary reference intakes for calcium and vitamin D. <i>Public Health Nutr</i>
6	295	2011;14(5):938-9. doi: 10.1017/S1368980011000565
7	296	8. Shea B, Wells G, Cranney A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. VII.
8 9	290 297	Meta-analysis of calcium supplementation for the prevention of postmenopausal
10	297	osteoporosis. Endocr Rev 2002;23(4):552-9. doi: 10.1210/er.2001-7002
11	298 299	
12	300	 Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. <i>Lancet (London, England)</i> 2014;383(9912):146-55. doi:
13 14	300 301	
14	301	10.1016/s0140-6736(13)61647-5 [published Online First: 2013/10/15]
16		10. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of
17	303	fractures: an updated meta-analysis from the National Osteoporosis Foundation. <i>Osteoporos</i>
18	304	Int 2016;27(1):367-76. doi: 10.1007/s00198-015-3386-5
19 20	305	11. Group D. Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture trials
20	306	in US and Europe. <i>BMJ</i> 2010;340:b5463. doi: 10.1136/bmj.b5463
22	307	12. Flicker L, MacInnis RJ, Stein MS, et al. Should older people in residential care receive vitamin D to
23	308	prevent falls? Results of a randomized trial. Journal of the American Geriatrics Society
24	309	2005;53(11):1881-8. doi: 10.1111/j.1532-5415.2005.00468.x [published Online First:
25 26	310	
20	311	13. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol)
28	312	supplementation on fractures and mortality in men and women living in the community:
29	313	randomised double blind controlled trial. BMJ (Clinical research ed) 2003;326(7387):469. doi:
30	314	10.1136/bmj.326.7387.469 [published Online First: 2003/03/01]
31 32	315	14. Lyons RA, Johansen A, Brophy S, et al. Preventing fractures among older people living in
33	316	institutional care: a pragmatic randomised double blind placebo controlled trial of vitamin D
34	317	supplementation. Osteoporosis international : a journal established as result of cooperation
35	318	between the European Foundation for Osteoporosis and the National Osteoporosis
36	319	Foundation of the USA 2007;18(6):811-8. doi: 10.1007/s00198-006-0309-5 [published Online
37 38	320	First: 2007/05/03]
39	321	15. Law M, Withers H, Morris J, et al. Vitamin D supplementation and the prevention of fractures and
40	322	falls: results of a randomised trial in elderly people in residential accommodation. Age and
41	323	ageing 2006;35(5):482-6. doi: 10.1093/ageing/afj080 [published Online First: 2006/04/28]
42	324	16. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Prevention of nonvertebral fractures with oral
43 44	325	vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Archives of
45	326	internal medicine 2009;169(6):551-61. doi: 10.1001/archinternmed.2008.600 [published
46	327	Online First: 2009/03/25]
47	328	17. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures
48	329	in older women: a randomized controlled trial. <i>Jama</i> 2010;303(18):1815-22. doi:
49 50	330	10.1001/jama.2010.594 [published Online First: 2010/05/13]
51	331	18. Nakamura K, Saito T, Kobayashi R, et al. Effect of low-dose calcium supplements on bone loss in
52	332	perimenopausal and postmenopausal Asian women: a randomized controlled trial. J Bone
53	333	Miner Res 2012;27(11):2264-70. doi: 10.1002/jbmr.1676
54 55	334	19. Prince RL, Devine A, Dhaliwal SS, et al. Effects of calcium supplementation on clinical fracture and
55 56	335	bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women.
57		
58		14
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

336	Archives of internal medicine 2006;166(8):869-75. doi: 10.1001/archinte.166.8.869
337	[published Online First: 2006/04/26]
338	20. Salovaara K, Tuppurainen M, Karkkainen M, et al. Effect of vitamin D(3) and calcium on fracture
339	risk in 65- to 71-year-old women: a population-based 3-year randomized, controlled trialthe
340	OSTPRE-FPS. Journal of bone and mineral research : the official journal of the American
341	Society for Bone and Mineral Research 2010;25(7):1487-95. doi: 10.1002/jbmr.48 [published
342	Online First: 2010/03/05]
343	21. Boonen S, Lips P, Bouillon R, et al. Need for additional calcium to reduce the risk of hip fracture
344	with vitamin d supplementation: evidence from a comparative metaanalysis of randomized
345	controlled trials. The Journal of clinical endocrinology and metabolism 2007;92(4):1415-23.
346	doi: 10.1210/jc.2006-1404 [published Online First: 2007/02/01]
347	22. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
348	meta-analyses: the PRISMA statement. <i>PLoS Med</i> 2009;6(7):e1000097. doi:
349	10.1371/journal.pmed.1000097
350	23. Hansson T, Roos B. The effect of fluoride and calcium on spinal bone mineral content: a controlled,
351	prospective (3 years) study. <i>Calcified tissue international</i> 1987;40(6):315-7. [published Online
352	First: 1987/06/01]
353	24. Bolland MJ, Leung W, Tai V, et al. Calcium intake and risk of fracture: systematic review. BMJ
354	(Clinical research ed) 2015;351:h4580. doi: 10.1136/bmj.h4580 [published Online First:
355	2015/10/01]
356	25. Inkovaara J, Gothoni G, Halttula R. Calcium, vitamin D and anabolic steroid in treatment of aged
357	bones: Double-blind placebo-controlled long-term clinical trial. Age and ageing
358	1983;12(2):124-30.
359	26. Massart A, Debelle FD, Racape J, et al. Biochemical parameters after cholecalciferol repletion in
360	hemodialysis: results From the VitaDial randomized trial. American journal of kidney diseases :
361	the official journal of the National Kidney Foundation 2014;64(5):696-705. doi:
362	10.1053/j.ajkd.2014.04.020 [published Online First: 2014/05/27]
363	27. Zhao JG, Zeng XT, Wang J, et al. Association Between Calcium or Vitamin D Supplementation and
364	Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and
365	Meta-analysis. Jama 2017;318(24):2466-82. doi: 10.1001/jama.2017.19344 [published Online
366	First: 2017/12/28]
367	28. Bischoff-Ferrari HA, Willett WC, Orav EJ, et al. A pooled analysis of vitamin D dose requirements
368	for fracture prevention. <i>The New England journal of medicine</i> 2012;367(1):40-9. doi:
369	10.1056/NEJMoa1109617 [published Online First: 2012/07/06]
370	29. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in elderly
371	women. The New England journal of medicine 1992;327(23):1637-42. doi:
372	10.1056/nejm199212033272305 [published Online First: 1992/12/03]
373	
374	Figure 1. The selection of literature for included studies.

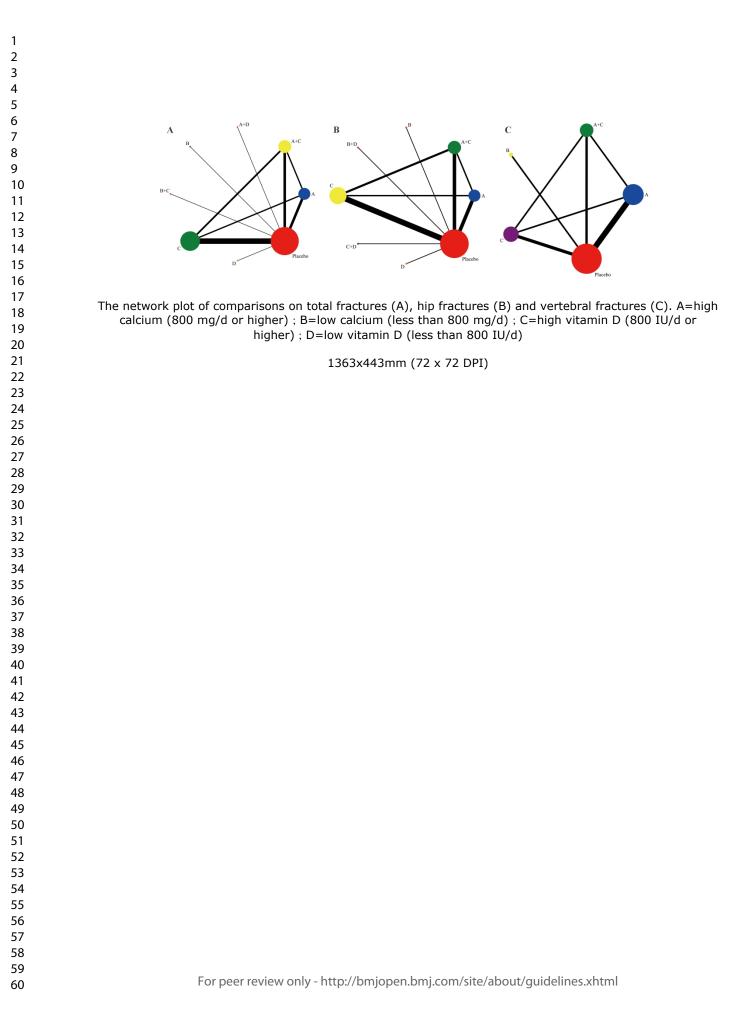
3 4 5	375	Figure 2. The network plot of comparisons on total fractures (A), hip fractures (B) and vertebral
6 7	376	fractures (C). A=high calcium (800 mg/d or higher); B=low calcium (less than 800 mg/d); C=high
8 9 10 11	377	vitamin D (800 IU/d or higher); D=low vitamin D (less than 800 IU/d)
12 13 14 15	378	Figure 3. The forest plot for the risk of total fractures (A), hip fractures (B) and vertebral fractures (C).
16 17	379	A=high calcium (800 mg/d or higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800
18 19 20 21 22	380	IU/d or higher); D=low vitamin D (less than 800 IU/d)
23 24	381	supplementary Figure 1. A sensitivity analysis excluded the trial of Hansson et al. A=high calcium
25 26 27	382	(800 mg/d or higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or higher);
28 29 30 31 32	383	D=low vitamin D (less than 800 IU/d)
33 34	384	supplementary Figure 2. A sensitivity analysis excluded the trial of Inkovaara et al. A=high calcium
35 36 37	385	(800 mg/d or higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or higher);
38 39 40 41	386	D=low vitamin D (less than 800 IU/d)
42 43 44 45 46	387	supplementary Figure 3. Risk of Bias Assessment of All Included Studies
47 48 49 50 51	388	supplementary Figure 4. Risk of Bias Assessment of All Included Studies
52 53 54	389	supplementary Figure 5. Publication bias for the total fractures. A=high calcium (800 mg/d or higher);
55 56 57	390	B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or higher); D=low vitamin D (less 16
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

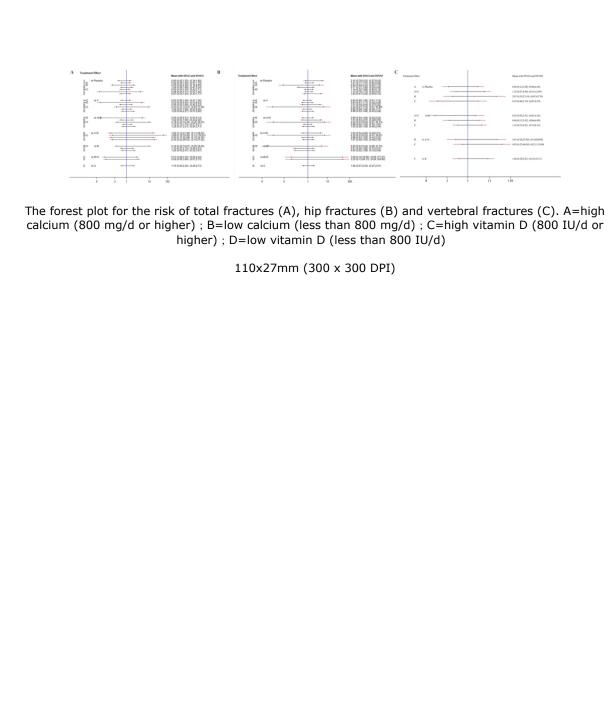
391 than 800 IU/d)

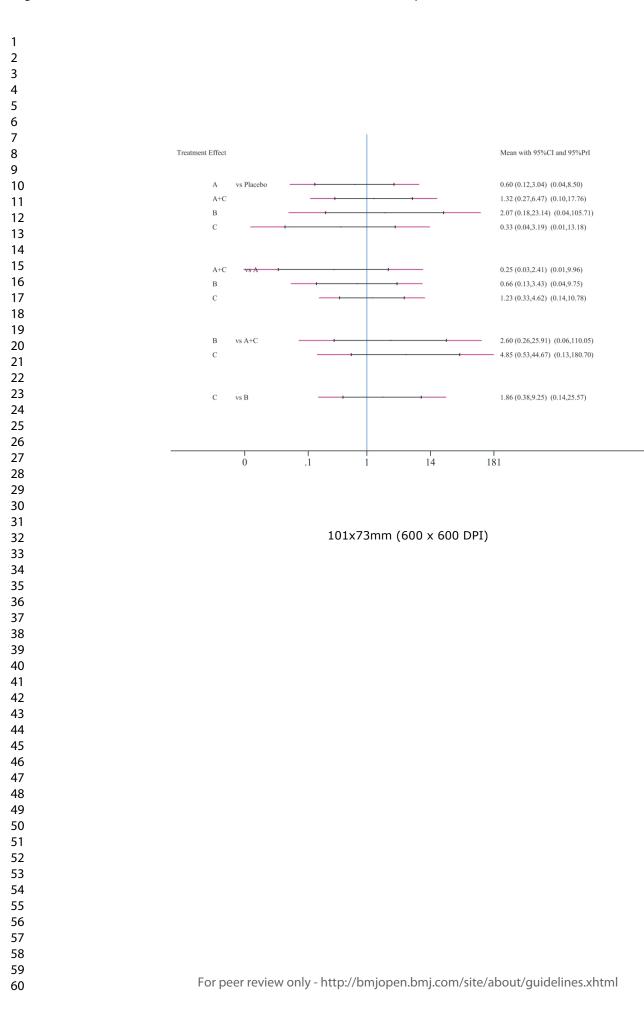

- supplementary Figure 6. Publication bias for the hip fractures. A=high calcium (800 mg/d or higher);
- B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or higher); D=low vitamin D (less
- 394 than 800 IU/d)
- 395 supplementary Figure 7. Publication bias for the vertebral fractures. A=high calcium (800 mg/d or
- 396 higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or higher); D=low vitamin
- 397 D (less than 800 IU/d)
- supplementary Figure 8. Inconsistency test for the total fractures. A=high calcium (800 mg/d or
- 399 higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or higher); D=low vitamin
- 400 D (less than 800 IU/d)
- 401 supplementary Figure 9. Ranking graph of distribution of probabilities for total fractures. A=high
- 402 calcium (800 mg/d or higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or
- 403 higher); D=low vitamin D (less than 800 IU/d)
- 404 supplementary Figure 10. Inconsistency test for the hip fractures. A=high calcium (800 mg/d or
- 405 higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or higher); D=low vitamin
- 406 D (less than 800 IU/d)

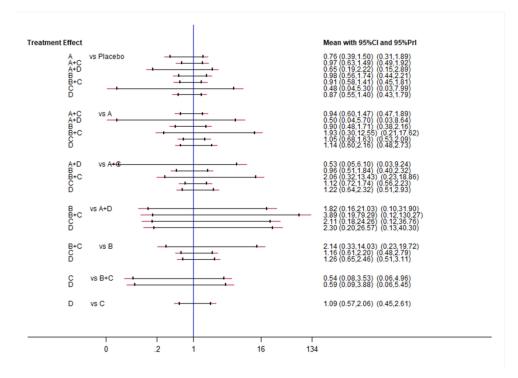
BMJ Open

407	supplementary Figure 11	. Ranking graph of distribution	of probabilities	s for hip fractures. A=high
-----	-------------------------	---------------------------------	------------------	-----------------------------

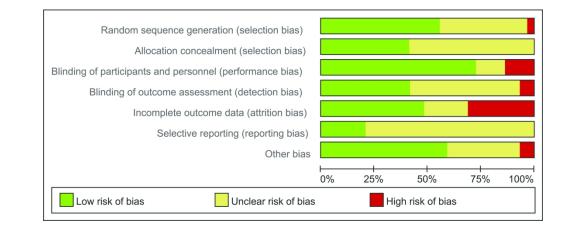

- 408 calcium (800 mg/d or higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or
- 409 higher); D=low vitamin D (less than 800 IU/d)
- 410 supplementary Figure 12. Inconsistency test for the vertebral fractures. A=high calcium (800 mg/d or
- 411 higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800 IU/d or higher); D=low vitamin
- 412 D (less than 800 IU/d)
- 413 supplementary Figure 13. Ranking graph of distribution of probabilities for vertebral fractures.
- 414 A=high calcium (800 mg/d or higher); B=low calcium (less than 800 mg/d); C=high vitamin D (800


415 IU/d or higher); D=low vitamin D (less than 800 IU/d)


The selection of literature for included studies


168x168mm (300 x 300 DPI)

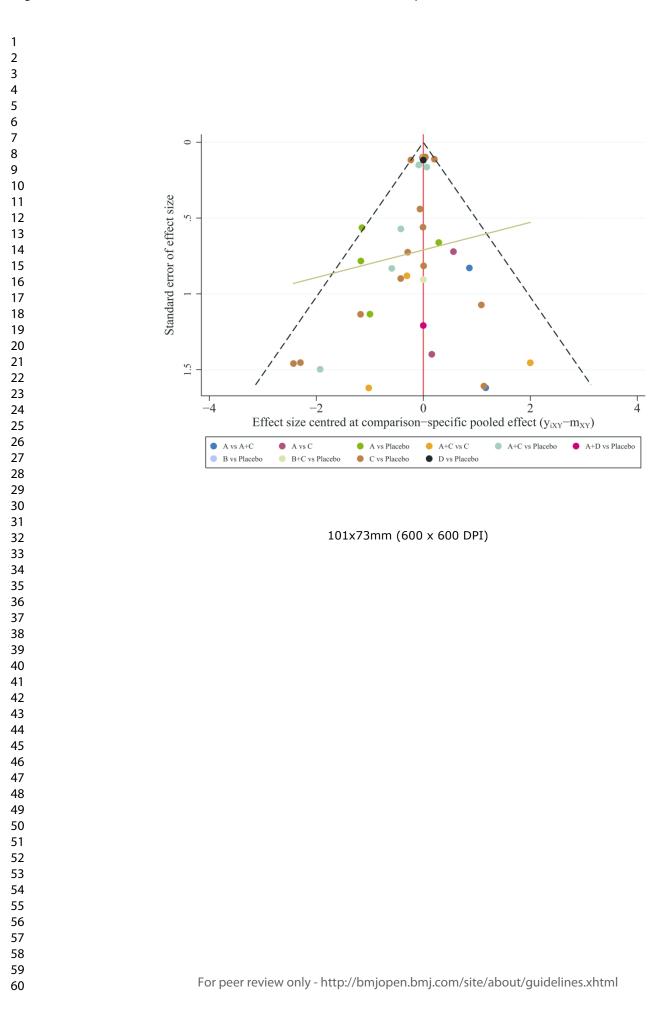
Page 23 of 48

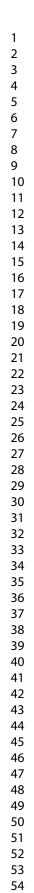


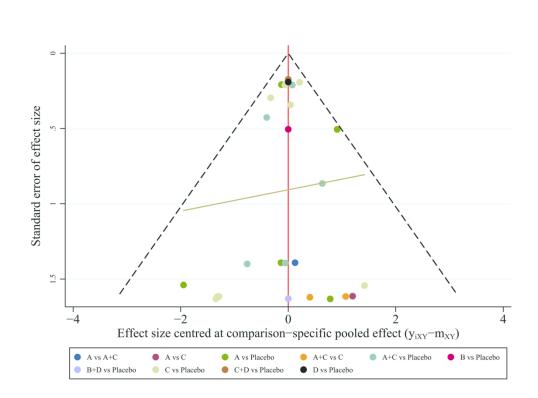
84x60mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

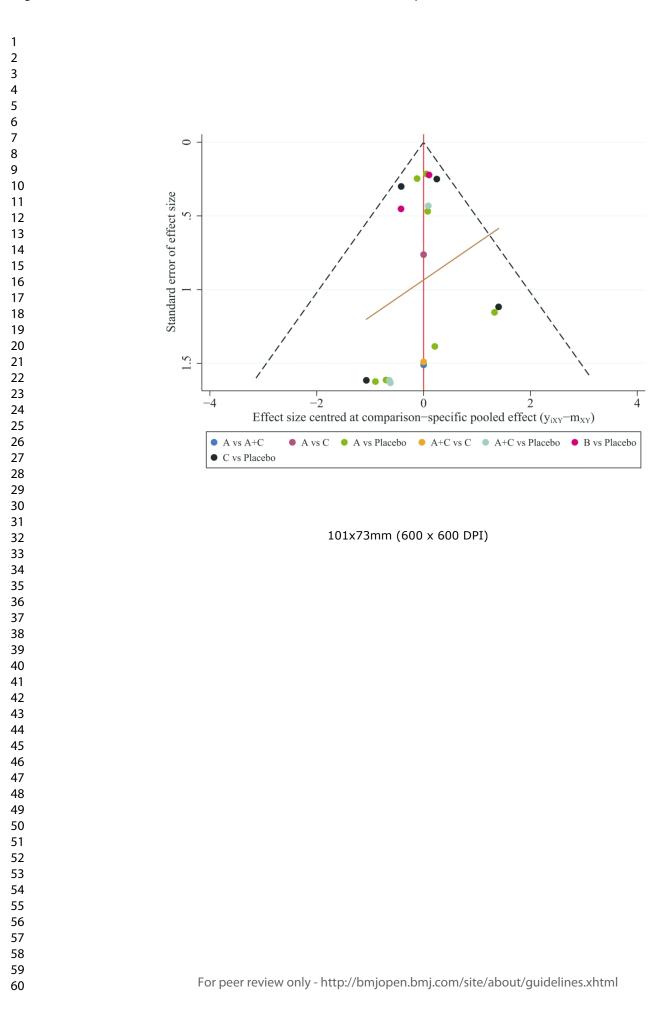
BMJ Open

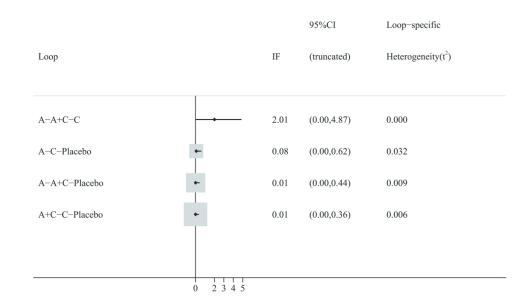


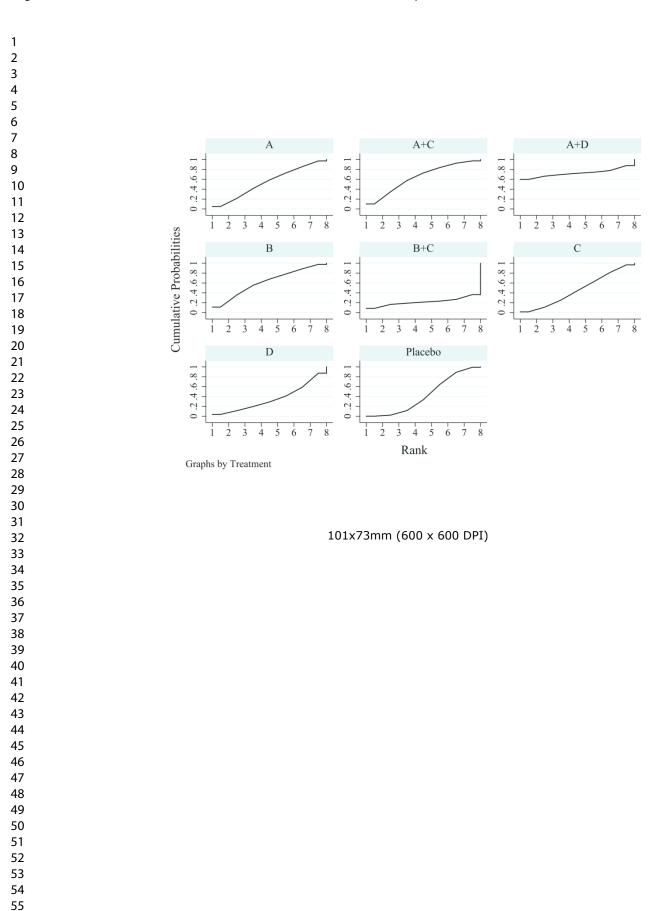

82x34mm (600 x 600 DPI)



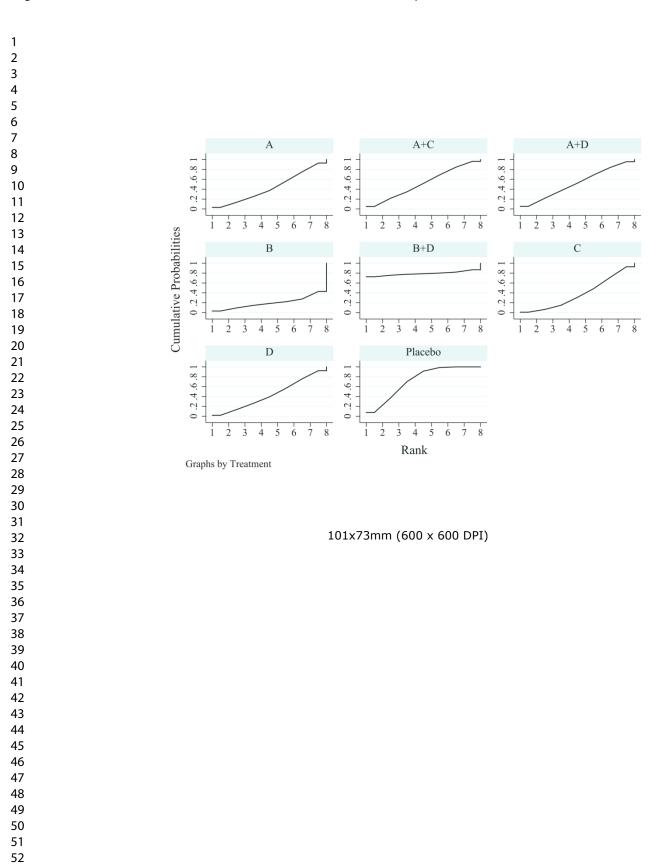
264x824mm (600 x 600 DPI)

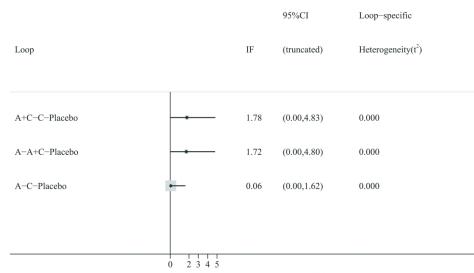

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml




101x73mm (600 x 600 DPI)

183x123mm (600 x 600 DPI)

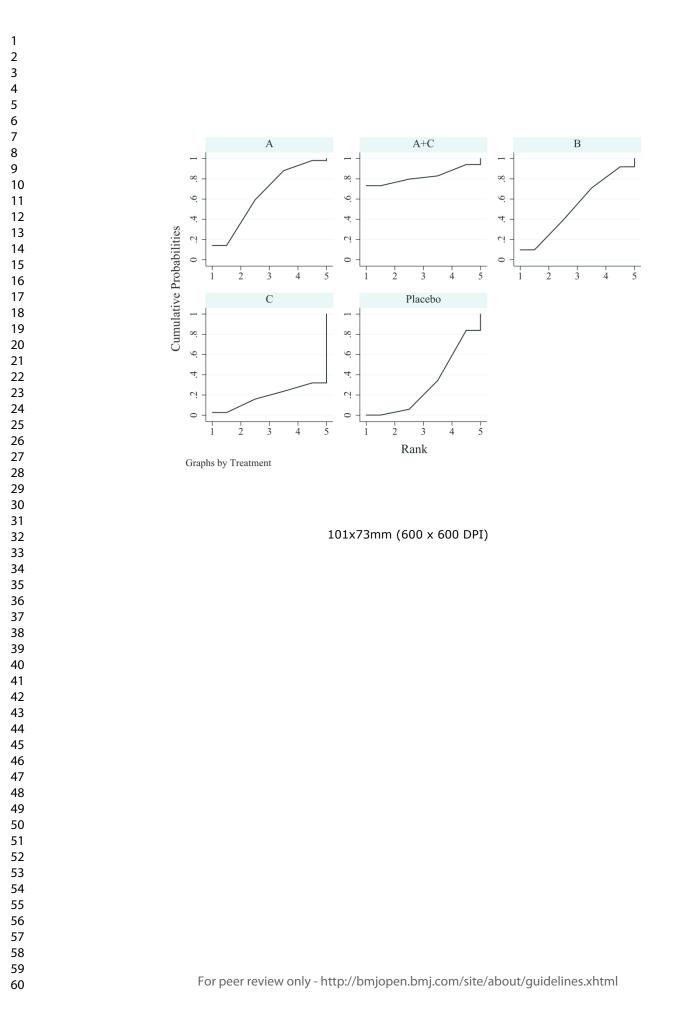

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			95%CI	Loop-specific
Loop		IF	(truncated)	Heterogeneity(t ²)
A-A+C-Placebo	·	0.44	(0.00,1.34)	0.000
А-А+С-С	*	0.41	(0.00,3.63)	0.000
A+C-C-Placebo	+	0.21	(0.00,0.82)	0.000
A-C-Placebo	-	0.05	(0.00,0.74)	0.015
	0 1 2 3 4			
	0 1 2 3 4			
	0 1 2 3 4			
	183x123m		600 DPI)	
			600 DPI)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



*** Loop(s) [A-A+C-C] are formed only by multi-arm trial(s) - Consistent by definition

177x116mm (600 x 600 DPI)

Page 35 of 48

BMJ Open

Supplementary Table S1 - Checklist of items to include when reporting a systematic review or meta-analysis

Section/topic	#	Checklist item	Reported on page #
TITLE	_		-
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	-	-	-
⁴ Structured summary 5 7 8	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION	<u>.</u>	•	
Rationale	3	Describe the rationale for the review in the context of what is already known.	3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
⁴ METHODS	•	<u>.</u>	
5 Protocol and 7 registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	4
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4
3 Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
⁵ Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	NA

Page 1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Section/topic	#	Checklist item	Reported on page #
tudy selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in ndividual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6
ynthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	7
tisk of bias across tudies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS	-	2	·
tudy selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	7
tudy characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7
tisk of bias within tudies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	8
Results of individual tudies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	8-10

Section/topic	#	Checklist item	Reported on page #
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-10
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-10
⁴ DISCUSSION			-
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers).	10-12
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias).	11
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	12
⁴ FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	12
8 9 0 1 2 3 4 5 5 6 7 8 9			
9 0 1 2 3 4 5 6		Page 3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 39 of 48

BMJ Open

Source	Intervention	Women, No. (%)	Mean Age, y	Previous Fracture	Calcium Intake, mg/d	Baseline 25OHD, ng/mL	Treatmen Duration
Avenell et al, 2004	Calcium(1 g/d) (n = 29)	NA a (83)	78 ^b	Yes	NA	NA	3.8 y
(United Kingdom)[1]	No treatment $(n = 35)$						
	D ₃ (800IU/d) (n = 35)	NA a (83)	78 ^b	Yes	NA	NA	3.8 y
	No treatment $(n = 35)$						
	Calcium $(1g/d) + D_3$	NA a (83)	78 ^b	Yes	NA	NA	3.8 y
	(800IU/d) (n = 35)						
	No treatment (n = 35)						
Baron et al, 1999	Calcium: 1.2 g/d (n = 464)	258 (28)	61.0	NA	877	NA	4 y
(United States)[2]	Placebo (n = 466)						
Dawson-Hughes et al,	Calcium $(0.5g/d) + D_3$	213 (54)	71.1	NA	729	29.6 ^e	3 у
1997 (United States)[3]	(700IU/d) (n = 187)						
	Placebo (n = 202)						
Glendenning et al, 2012	2 D ₃ (150000 IU every 3 mo)	686 (100)	76.7	NA	864	26.3 ^e	9 mo
(Australia)[4]	(n = 353)						
	Placebo (n = 333)						
Grant et al, 2005	Calcium(1 g/d) (n = 1311)	2241 (85)	77	Yes	NA	15.2 ^{e,f}	2-5 у
(United Kingdom)[5]	Placebo (n = 1332)						
	D ₃ (800IU/d) (n = 1343)	2264 (85)	77	Yes	NA	15.2 ^{e,f}	2-5 у
	Placebo (n = 1332)						
	Calcium $(1g/d) + D_3$	2232 (85)	77.5	Yes	NA	15.2 ^{e,f}	2-5 у
	(800IU/d) (n = 1306)						
	Placebo (n = 1332)						
Hansson and Roos,	Calcium $(1g/d)$ (n = 25)	50 (100)	65.9	Yes	NA	NA	3 у
1987 (Sweden)[6]	Placebo (n = 25)						
Harwood et al, 2004	D_3 (300000 IU once) (n = 38)	75 (100)	80.5	Yes	NA	11.6	1 y
(United Kingdom)[7]	No treatment $(n = 37)$						
	Calcium $(1g/d) + D_2$	112 (100)	81.7	Yes	NA	11.9	1 y
	(300000 IU once) (n = 36)						
	Calcium $(1g/d) + D_3$						
	(800IU/d) (n = 39)						
	No treatment $(n = 37)$						

BMJ	Open
-----	------

Page 40 of 48

Hin et al, 2017	D ₃ (4000 IU/d)(n = 102)	150 (49)	71.7	Partial ^c	710	20.1	1 y
(United Kingdom)[8]	D ₃ (2000 IU/d)(n = 102)						
	Placebo (n = 101)						
Inkovaara et al, 1983	Calcium (1.2 g/d) (n = 42)	69 (82)	80.1	NA	NA	NA	9 mo
(Finland)[9]	Placebo (n = 42)						
	$D_3(1000 \text{ IU/d}) (n = 45)$	71 (82)	79.6	NA	NA	NA	9 mo
	Placebo (n = 42)						
	Calcium (1.2g/d) + D ₃ (1000	69 (78)	79.0	NA	NA	NA	9 mo
	IU/d) (n = 46)						
	Placebo (n = 42)						
Jackson et al, 2006	Calcium (1g/d) + D ₃ (400	7972 (100)	62.4	Partial ^c	1151	18.9 ^e	7 y
(United States)[10]	IU/d) (n = 4015)						
	Placebo (n = 3957)						
Lips et al, 1996	400 IU/d (n = 1291)	1916 (74)	80.0	No hip fracture	868	10.6 ^e	3-4 y
(The Netherlands)[11]	Placebo (n = 1287)						
Liu et al, 2015	Calcium (1.5g/d) + D ₃ (600	98 (100)	62.1	No	1500	NA	1 y
(China)[12]	IU/d) (n = 50)						
	Placebo $(n = 48)$						
Massart et al, 2014	$D_3(25000 \text{ IU every week })$	21 (38)	64.1	NA	881	17.8	3 mo
(Belgium)[13]	(n = 26)						
	Placebo (n = 29)						
Mitri et al, 2011	D ₃ (2000 IU/d)(n = 23)	25 (53)	58.0	NA	926	25.3	4 mo
(United States)[14]	Placebo (n = 24)				5 		
Peacock et al, 2000	Calcium (0.75g/d) (n = 126)	187 (72)	73.8	Partial ^c	597	25.0	4 y
(United States)[15]	Placebo (n = 135)						
Porthouse et al, 2005	Calcium $(1g/d) + D_3 (800$	3314 (100)	76.8	Partial ^c	1080	NA	1.5 - 3.5 y
(United Kingdom)[16]	IU/d) (n = 1321)						
	No treatment $(n = 1993)$						
Prince et al, 2006	Calcium (0.48g/d) (n = 730)	1460 (100)	75.2	Partial ^c	915	31.0 ^e	5 y
(Australia)[17]	Placebo (n = 730)						
Punthakee et al, 2012	$D_3 (1000 \text{ IU/d}) (n = 607)$	499 (41)	66.6	Partial ^c	NA	NA	4 mo
(Canada)[18]	Placebo (n = 614)						
Recker et al, 1996	Calcium (1.2 g/d) (n = 95)	197 (100)	73.5	Partial ^c	434	25.5 ^e	4 y
(United States)[19]	Placebo (n = 102)						
Reid et al, 1993	Calcium (1 g/d) (n = 68)	135 (100)	58	No vertebral	750	37.5	4 y
(New Zealand)[20]	Placebo ($n = 67$)			fracture			

Page 41 of 48

1

BMJ Open

Reid et al, 2006 (New Zealand)[21]	Calcium (1 g/d) (n = 732) Placebo (n = 739)	1471 (100)	74.3	Partial ^c	857	20.7	5 y
Riggs et al, 1998 (United States)[22]	Calcium (1.6 g/d) (n = 119) Placebo (n = 117)	236 (100)	66.2	No	714	30.1	4 y
Salovaara et al, 2010 (Finland)[23]	Calcium(1g/d) + D ₃ (800 IU/d) (n = 1718) No treatment (n = 1714)	3432 (100)	67.3	Partial ^c	957	19.8 °	3 у
Sanders et al, 2010 (Australia)[24]	D ₃ (500000 IU every year) (n = 1131) Placebo (n = 1127)	2258 (100)	76.1	Partial ^c	976	19.8 °	3-5 y
Smith et al, 2007 (United Kingdom)[25]	D ₃ (300000 IU every year) (n = 4727) Placebo (n = 4713)	5086 (54)	79.1	Partial ^c	625 ^d	22.6 °	3 у
Trivedi et al, 2003 (United Kingdom)[26]	D ₃ (100000 IU every 4 mo) (n = 1345) Placebo (n = 1341)	649 (24)	74.8	NA	742	NA	5 y
Uusi-Rasi et al, 2015 (Finland)[27]	D ₃ (800 IU/d) (n = 102) Placebo (n = 102)	204 (100)	73.9	NA	1082	26.7	2 y
Witham et al, 2013 (United Kingdom)[28]	D ₃ (100000 IU every 3 mo) (n = 80) Placebo (n = 79)	77 (49)	76.8	NA	1125	18.0	1 y
Xue et al, 2017 (China)[29]	Calcium (0.6g/d) + D ₃ (800 IU/d) (n = 139) Placebo (n = 173)	312 (100)	63.6	Partial ^c	NA	30.8	1 y
	Abbreviation: 25OHD, ^a Women accounted to each group. ^b Mean age is 78 y for group. ^c This trial reported particle ^d Partial particle particle particle particles to ^f The RECORD trial reported particles to particle particles to the particle part	for 83% of to or total part artial particip vere assessed eceived mea sported that	tal participa icipants in t ants with fra d for dietary surement of the mean ba	nts in this trial, b his trial, but det cture history. calcium intake. baseline 250HD c	concentration	t available for ea s. for a sample of	ach
	supplementary Ta	ble 1. The o	characterist	ics of the inclu	ded studies.		
	-			n.bmj.com/site/			

References

 Avenell A, Grant AM, McGee M, McPherson G, Campbell MK, McGee MA. The effects of an open design on trial participant recruitment, compliance and retention--a randomized controlled trial comparison with a blinded, placebo-controlled design. Clinical trials (London, England).
 2004;1(6):490-8.

2. Baron JA, Beach M, Mandel JS, van Stolk RU, Haile RW, Sandler RS, et al. Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. The New England journal of medicine. 1999 Jan 14;340(2):101-7.

3. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. The New England journal of medicine. 1997 Sep 4;337(10):670-6.

4. Glendenning P, Zhu K, Inderjeeth C, Howat P, Lewis JR, Prince RL. Effects of three-monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2012 Jan;27(1):170-6.

5. Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet (London, England). 2005 May 7-13;365(9471):1621-8.

6. Hansson T, Roos B. The effect of fluoride and calcium on spinal bone mineral content: a controlled, prospective (3 years) study. Calcified tissue international. 1987 Jun;40(6):315-7.

7. Harwood RH, Sahota O, Gaynor K, Masud T, Hosking DJ. A randomised, controlled comparison of different calcium and vitamin D supplementation regimens in elderly women after hip fracture: The Nottingham Neck of Femur (NoNOF) study. Age and ageing. 2004;33(1):45-51.

8. Hin H, Tomson J, Newman C, Kurien R, Lay M, Cox J, et al. Optimum dose of vitamin D for disease prevention in older people: BEST-D trial of vitamin D in primary care. Osteoporosis International. 2017;28(3):841-51.

9. Inkovaara J, Gothoni G, Halttula R. Calcium, vitamin D and anabolic steroid in treatment of aged bones: Double-blind placebo-controlled long-term clinical trial. Age and ageing. 1983;12(2):124-30.

 Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al. Calcium plus vitamin D supplementation and the risk of fractures. New England Journal of Medicine. 2006;354(7):669-83.
 Lips P, Graafmans WC, Ooms ME, Bezemer PD, Bouter LM. Vitamin D supplementation and

fracture incidence in elderly persons: A randomized, placebo-controlled clinical trial. Annals of internal medicine. 1996;124(4):400-6.

12. Liu BX, Chen SP, Li YD, Wang J, Zhang B, Lin Y, et al. The Effect of the Modified Eighth Section of Eight-Section Brocade on Osteoporosis in Postmenopausal Women: A Prospective Randomized Trial. Medicine. 2015 Jun;94(25):e991.

13. Massart A, Debelle FD, Racape J, Gervy C, Husson C, Dhaene M, et al. Biochemical parameters after cholecalciferol repletion in hemodialysis: results From the VitaDial randomized trial. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2014 Nov;64(5):696-705.

14. Mitri J, Dawson-Hughes B, Hu FB, Pittas AG. Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the

1	
2	Colorum and Vitemin D for Disketes Mellitus (CoDDM) rendemized controlled trial. The American
3 4	Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. The American
5	journal of clinical nutrition. 2011 Aug;94(2):486-94.
6	15. Peacock M, Liu G, Carey M, McClintock R, Ambrosius W, Hui S, et al. Effect of calcium or 25OH
7	vitamin D3 dietary supplementation on bone loss at the hip in men and women over the age of 60.
8	The Journal of clinical endocrinology and metabolism. 2000 Sep;85(9):3011-9.
9 10	16. Porthouse J, Cockayne S, King C, Saxon L, Steele E, Aspray T, et al. Randomised controlled trial of
11	calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary
12	care. BMJ (Clinical research ed). 2005 Apr 30;330(7498):1003.
13	17. Prince RL, Devine A, Dhaliwal SS, Dick IM. Effects of calcium supplementation on clinical fracture
14	and bone structure: Results of a 5-year, double-blind, placebo-controlled trial in elderly women.
15	Archives of internal medicine. 2006;166(8):869-75.
16 17	18. Punthakee Z, Bosch J, Dagenais G, Diaz R, Holman R, Probstfield JL, et al. Design, history and
18	results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled
19	trial. Diabetologia. 2012;55(1):36-45.
20	19. Recker RR, Hinders S, Davies KM, Heaney RP, Stegman MR, Lappe JM, et al. Correcting calcium
21	nutritional deficiency prevents spine fractures in elderly women. Journal of bone and mineral
22 23	research : the official journal of the American Society for Bone and Mineral Research. 1996
24	Dec;11(12):1961-6.
25	20. Reid IR, Ames RW, Evans MC, Gamble GD, Sharpe SJ. Effect of calcium supplementation on bone
26	loss in postmenopausal women. The New England journal of medicine. 1993 Feb 18;328(7):460-4.
27	21. Reid IR, Mason B, Horne A, Ames R, Reid HE, Bava U, et al. Randomized Controlled Trial of
28 29	Calcium in Healthy Older Women. American Journal of Medicine. 2006;119(9):777-85.
30	22. Riggs BL, O'Fallon WM, Muhs J, O'Connor MK, Kumar R, Melton LJ, 3rd. Long-term effects of
31	calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in
32	elderly women. Journal of bone and mineral research : the official journal of the American Society for
33	Bone and Mineral Research. 1998 Feb;13(2):168-74.
34 35	23. Salovaara K, Tuppurainen M, Kärkkäinen M, Rikkonen T, Sandini L, Sirola J, et al. Effect of vitamin
36	D3 and calcium on fracture risk in 65- to 71-year-old women: A population-based 3-year randomized,
37	controlled trial - The OSTPRE-FPS. Journal of Bone and Mineral Research. 2010;25(7):1487-95.
38	24. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose
39	oral vitamin D and falls and fractures in older women: A randomized controlled trial. JAMA - Journal of
40 41	the American Medical Association. 2010;303(18):1815-22.
41	25. Smith H, Anderson F, Raphael H, Maslin P, Crozier S, Cooper C. Effect of annual intramuscular
43	vitamin D on fracture risk in elderly men and women - A population-based, randomized, double-blind,
44	placebo-controlled trial. Rheumatology. 2007;46(12):1852-7.
45	26. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol)
46	supplementation on fractures and mortality in men and women living in the community: randomised
47 48	double blind controlled trial. BMJ (Clinical research ed). 2003 Mar 1;326(7387):469.
49	
50	27. Uusi-Rasi K, Patil R, Karinkanta S, Kannus P, Tokola K, Lamberg-Allardt C, et al. Exercise and
51	vitamin D in fall prevention among older women: a randomized clinical trial. JAMA internal medicine.
52	2015 May;175(5):703-11.
53 54	28. Witham MD, Price RJ, Struthers AD, Donnan PT, Messow CM, Ford I, et al. Cholecalciferol
55	treatment to reduce blood pressure in older patients with isolated systolic hypertension: the VitDISH
56	randomized controlled trial. JAMA internal medicine. 2013 Oct 14;173(18):1672-9.
57	
58	
59	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	rot peer testest only integrating periodicistic about guidelines. Antini

29. Xue Y, Hu Y, Wang O, Wang C, Han G, Shen Q, et al. Effects of Enhanced Exercise and Combined Vitamin D and Calcium Supplementation on Muscle Strength and Fracture Risk in Postmenopausal Chinese Women. Zhongguo yi xue ke xue yuan xue bao Acta Academiae Medicinae Sinicae. 2017 Jun 20;39(3):345-51.

tor beer terien only

	Treatment			No. of Participa	nts
Source	Duration	Intervention	Total Fracture	Hip fracture	Vertebral Fractu
Avenell et al, 2004	3.8 y	Calcium(1 g/d) (n = 29)	4	1	0
(United Kingdom)[1]		D ₃ (800IU/d) (n = 35)	3	0	0
		Total Fracture Hip fracture Vertebral Fracture Calcium(1 g/d) (n = 29) 4 1 0 D ₁ (800HU/d) (n = 35) 3 0 0 Calcium (1g/d) + D ₃ 2 1 0 (800HU/d) (n = 35) 4 1 1 No treatment (n = 35) 4 1 1 Calcium (1 g/d) + D ₃ 4 1 1 Calcium (0.5g/d) + D ₃ 0 0 1 Calcium (0.5g/d) + D ₃ 0 0 1 Calcium (0.5g/d) + D ₃ 0 0 1 (700HU/d) (n = 187) 1 1 1 Placebo (n = 202) 1 1 1 D ₃ (150000 HU every 3 mo) 10 0 1 Calcium (1 g/d) (n = 1311) 166 49 3 D ₃ (800HU/d) (n = 1343) 188 47 4 Calcium (1 g/d) + D ₃ 165 46 0 (800HU/d) (n = 1332) 179 41 1 Placebo (n = 1332) 17			
			4	1	1
Baron et al, 1999	4 y				1
(United States)[2]	Ţÿ				
			14		
Dawson-Hughes et al, 1997 (United States)[3]	s y			0	
(United States)[5]				1	
Glendenning et al, 2012	9 mo		10		
(Australia)[4]	9 1110		10	0	
(Austrana)[4]			10	1	
Grant et al, 2005	2-5 y				2
(United Kingdom)[5]	2-3 y				
(Onice Kingeom/[5]					
			165	46	0
		· · · · ·	170	41	1
H	2		179	41	
Hansson and Roos, 1987 (Sweden)[6]	3 Y				
		. ,			1
Harwood et al, 2004 (United Kingdom)[7]	1 y				
(United Kingdom)[7]			6	1	
		(800IU/d) (n = 39)			
		No treatment $(n = 37)$	5	1	
Hin et al, 2017	1 y	$D_3(4000 \text{ IU/d})(n = 102)$	6		
(United Kingdom)[8]	- ,	$D_3(2000 \text{ IU/d})(n = 102)$	-		
(emer imgeom)[o]					
		Placebo (n = 101)	1		

Inkovaara et al, 1983	9 mo	Calcium $(1.2 \text{ g/d}) (n = 42)$	1		
(Finland)[9]		$D_3(1000 \text{ IU/d}) (n = 45)$	1		
		Calcium $(1.2g/d) + D_3(1000)$	0		
		IU/d) (n = 46)			
		Placebo (n = 42)	3		
Jackson et al, 2006	7 y	Calcium $(1g/d) + D_3 (400$		70	
(United States)[10]		IU/d) (n = 4015)			
		Placebo (n = 3957)		61	
Lips et al, 1996	3-4 y	400 IU/d (n = 1291)	135	58	
(The Netherlands)[11]		Placebo (n = 1287)	122	48	
Liu et al, 2015	1 y	Calcium (1.5g/d) + D ₃ (600	1		
(China)[12]		IU/d) (n = 50)			
		Placebo (n = 48)	2		
Massart et al, 2014	3 mo	$D_3(25000 \text{ IU every week })$	0		
(Belgium)[13]		(n = 26)			
		Placebo (n = 29)	5		
Mitri et al, 2011	4 mo	D ₃ (2000 IU/d)(n = 23)	1		
(United States)[14]		Placebo (n = 24)	0		
Peacock et al, 2000	4 y	Calcium (0.75g/d) (n = 126)			7
(United States)[15]		Placebo (n = 135)	0		13
Porthouse et al, 2005	1.5-3.5 y	Calcium (1g/d) + D ₃ (800	58	8	
(United Kingdom)[16]		IU/d) (n = 1321)			
		No treatment (n = 1993)	91	17	
Prince et al, 2006	5 y	Calcium (0.48g/d) (n = 730)	110	11	38
(Australia)[17]		Placebo (n = 730)	126	6	39
Punthakee et al, 2012	4 mo	D ₃ (1000 IU/d) (n = 607)	3		
(Canada)[18]		Placebo (n = 614)	3		
Recker et al, 1996	4 y	Calcium (1.2 g/d) (n = 95)			27
(United States)[19]		Placebo (n = 102)			34
Reid et al, 1993	4 y	Calcium $(1 \text{ g/d}) (n = 68)$	2	0	0
(New Zealand)[20]		Placebo (n = 67)	7	2	1
Reid et al, 2006	5 y	Calcium (1 g/d) (n = 732)	134	17	27
(New Zealand)[21]		Placebo (n = 739)	147	5	38
	4 y	Calcium $(1.6 \text{ g/d}) (n = 119)$			8

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

(United States)[22]		Placebo (n = 117)			9
Salovaara et al, 2010	3 у	Calcium(1g/d) + D ₃ (800 IU/d) (n = 1718)	78	4	9
(Finland)[23]		No treatment $(n = 1714)$	94	2	13
Sanders et al, 2010	3-5 y	D ₃ (500000 IU every year) (n = 1131)	155	19	35
(Australia)[24]		Placebo (n = 1127)	125	15	
Smith et al, 2007	3 у	D ₃ (300000 IU every year) (n = 4727)		66	
(United Kingdom)[25]		Placebo (n = 4713)		44	
Trivedi et al, 2003	5 y	D ₃ (100000 IU every 4 mo) (n = 1345)	119	21	18
(United Kingdom)[26]		Placebo (n = 1341)	149	24	28
Uusi-Rasi et al, 2015	2 у	D_3 (800 IU/d) (n = 102)	6	2	
(Finland)[27]		Placebo (n = 102)	6	0	
Witham et al, 2013 (United Kingdom)[28]	1 y	D ₃ (100000 IU every 3 mo) (n = 80)	2		
(United Kingdom)[28]		Placebo (n = 79)	3		
Xue et al, 2017	1 y	Calcium $(0.6g/d) + D_3$ (800 IU/d) (n = 139)	3		
(China)[29]		Placebo (n = 173)	2		

Supplementary Table 2. The detailed data of outcomes

1. Avenell A, Grant AM, McGee M, McPherson G, Campbell MK, McGee MA. The effects of an open design on trial participant recruitment, compliance and retention--a randomized controlled trial comparison with a blinded, placebo-controlled design. Clinical trials (London, England). 2004;1(6):490-8.

2. Baron JA, Beach M, Mandel JS, van Stolk RU, Haile RW, Sandler RS, et al. Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. The New England journal of medicine. 1999 Jan 14;340(2):101-7.

3. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. The New England journal of medicine. 1997 Sep 4;337(10):670-6.

4. Glendenning P, Zhu K, Inderjeeth C, Howat P, Lewis JR, Prince RL. Effects of three-monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2012 Jan;27(1):170-6.

5. Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet (London, England). 2005 May 7-13;365(9471):1621-8.

6. Hansson T, Roos B. The effect of fluoride and calcium on spinal bone mineral content: a controlled, prospective (3 years) study. Calcified tissue international. 1987 Jun;40(6):315-7.

7. Harwood RH, Sahota O, Gaynor K, Masud T, Hosking DJ. A randomised, controlled comparison of different calcium and vitamin D supplementation regimens in elderly women after hip fracture: The Nottingham Neck of Femur (NoNOF) study. Age and ageing. 2004;33(1):45-51.

8. Hin H, Tomson J, Newman C, Kurien R, Lay M, Cox J, et al. Optimum dose of vitamin D for disease prevention in older people: BEST-D trial of vitamin D in primary care. Osteoporosis International. 2017;28(3):841-51.

9. Inkovaara J, Gothoni G, Halttula R. Calcium, vitamin D and anabolic steroid in treatment of aged bones: Double-blind placebo-controlled long-term clinical trial. Age and ageing. 1983;12(2):124-30.

10. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al. Calcium plus vitamin D supplementation and the risk of fractures. New England Journal of Medicine. 2006;354(7):669-83.

11. Lips P, Graafmans WC, Ooms ME, Bezemer PD, Bouter LM. Vitamin D supplementation and fracture incidence in elderly persons: A randomized, placebo-controlled clinical trial. Annals of internal medicine. 1996;124(4):400-6.

12. Liu BX, Chen SP, Li YD, Wang J, Zhang B, Lin Y, et al. The Effect of the Modified Eighth Section of Eight-Section Brocade on Osteoporosis in Postmenopausal Women: A Prospective Randomized Trial. Medicine. 2015 Jun;94(25):e991.

13. Massart A, Debelle FD, Racape J, Gervy C, Husson C, Dhaene M, et al. Biochemical parameters after cholecalciferol repletion in hemodialysis: results From the VitaDial randomized trial. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2014 Nov;64(5):696-705.

14. Mitri J, Dawson-Hughes B, Hu FB, Pittas AG. Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. The American journal of clinical nutrition. 2011 Aug;94(2):486-94.

15. Peacock M, Liu G, Carey M, McClintock R, Ambrosius W, Hui S, et al. Effect of calcium or 25OH vitamin D3 dietary supplementation on bone loss at the hip in men and women over the age of 60. The Journal of clinical endocrinology and metabolism. 2000 Sep;85(9):3011-9.

16. Porthouse J, Cockayne S, King C, Saxon L, Steele E, Aspray T, et al. Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ (Clinical research ed). 2005 Apr 30;330(7498):1003.

17. Prince RL, Devine A, Dhaliwal SS, Dick IM. Effects of calcium supplementation on clinical fracture and bone structure: Results of a 5-year, double-blind, placebo-controlled trial in elderly women. Archives of internal medicine. 2006;166(8):869-75.

18. Punthakee Z, Bosch J, Dagenais G, Diaz R, Holman R, Probstfield JL, et al. Design, history and results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled trial. Diabetologia. 2012;55(1):36-45.

19. Recker RR, Hinders S, Davies KM, Heaney RP, Stegman MR, Lappe JM, et al. Correcting calcium nutritional deficiency prevents spine fractures in elderly women. Journal of bone and mineral

60

BMJ Open

1	
2	
3	research : the official journal of the American Society for Bone and Mineral Research. 1996
4 5	Dec;11(12):1961-6.
6	20. Reid IR, Ames RW, Evans MC, Gamble GD, Sharpe SJ. Effect of calcium supplementation on bone
7	loss in postmenopausal women. The New England journal of medicine. 1993 Feb 18;328(7):460-4.
8	21. Reid IR, Mason B, Horne A, Ames R, Reid HE, Bava U, et al. Randomized Controlled Trial of
9	Calcium in Healthy Older Women. American Journal of Medicine. 2006;119(9):777-85.
10	22. Riggs BL, O'Fallon WM, Muhs J, O'Connor MK, Kumar R, Melton LJ, 3rd. Long-term effects of
11	
12	calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in
13	elderly women. Journal of bone and mineral research : the official journal of the American Society for
14	Bone and Mineral Research. 1998 Feb;13(2):168-74.
15	23. Salovaara K, Tuppurainen M, Kärkkäinen M, Rikkonen T, Sandini L, Sirola J, et al. Effect of vitamin
16	D3 and calcium on fracture risk in 65- to 71-year-old women: A population-based 3-year randomized,
17	controlled trial - The OSTPRE-FPS. Journal of Bone and Mineral Research. 2010;25(7):1487-95.
18	
19	24. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose
20	oral vitamin D and falls and fractures in older women: A randomized controlled trial. JAMA - Journal of
21 22	the American Medical Association. 2010;303(18):1815-22.
22	25. Smith H, Anderson F, Raphael H, Maslin P, Crozier S, Cooper C. Effect of annual intramuscular
24	vitamin D on fracture risk in elderly men and women - A population-based, randomized, double-blind,
25	placebo-controlled trial. Rheumatology. 2007;46(12):1852-7.
26	26. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol)
27	
28	supplementation on fractures and mortality in men and women living in the community: randomised
29	double blind controlled trial. BMJ (Clinical research ed). 2003 Mar 1;326(7387):469.
30	27. Uusi-Rasi K, Patil R, Karinkanta S, Kannus P, Tokola K, Lamberg-Allardt C, et al. Exercise and
31	vitamin D in fall prevention among older women: a randomized clinical trial. JAMA internal medicine.
32	2015 May;175(5):703-11.
33	28. Witham MD, Price RJ, Struthers AD, Donnan PT, Messow CM, Ford I, et al. Cholecalciferol
34 35	treatment to reduce blood pressure in older patients with isolated systolic hypertension: the VitDISH
36	randomized controlled trial. JAMA internal medicine. 2013 Oct 14;173(18):1672-9.
37	
38	29. Xue Y, Hu Y, Wang O, Wang C, Han G, Shen Q, et al. Effects of Enhanced Exercise and Combined
39	Vitamin D and Calcium Supplementation on Muscle Strength and Fracture Risk in Postmenopausal
40	Chinese Women. Zhongguo yi xue ke xue yuan xue bao Acta Academiae Medicinae Sinicae. 2017 Jun
41	20;39(3):345-51.
42	
43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	

BMJ Open

Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their combination: a network meta-analysis of randomized controlled trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024595.R1
Article Type:	Original research
Date Submitted by the Author:	10-Jan-2019
Complete List of Authors:	Hu, Zhi-Chao; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Tang, Qian; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Sang , Chang-Min ; Department of Orthopaedics, The Affiliated Hospital of Jiujiang Medical College, Jiujiang, Jiangxi, 332000, China., Department of Orthopaedics Tang, Li; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Li, Xiaobin; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Zheng, Gang; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Feng, Zhen-Hua; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Kuan, Jiang-Wei; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Shen, Zhi-Hao; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Shen, Zhi-Hao; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Second Medical School of Wenzhou Medical University

1	
2	
2 3 4 5	
4	
5	
6	
7	
8	
9	
10	
11	<b:< td=""></b:<>
12	
13	Secondary
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40	
42	
42	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

	Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. 3. Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, 325027, China., Wu, Ai-Min; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Diabetes and endocrinology, Nutrition and metabolism
Keywords:	Calcium, Vitamin D, Fractures, network meta-analysis

SCHOLARONE[™] Manuscripts

2		
3		
4	1	Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their
5		
6	2	combination: a network meta-analysis of randomized controlled trials
7	2	combination, a network meta-analysis of randomized controlled trians
8		
9	3	Zhi-Chao Hu ^{1,2,3} , Qian Tang ^{1,2,3} , Chang-Min Sang ⁴ , Li Tang ^{1,2,3} , Xiao-Bin Li ^{1,2,3} , Gang Zheng ^{1,2,3} ,
10		
11	4	Zhan Hua Fanal 23 Hana Wai Yuan 23 Zhi Haa Shan 23 Li Yan Shan 23* Wan Fai Nil 23* and
12	4	Zhen-Hua Feng ^{1,2,3} , Jiang-Wei Xuan ^{1,2,3} , Zhi-Hao Shen ^{1,2,3} , Li-Yan Shen ^{1,2,3,*} , Wen-Fei Ni ^{1,2,3,*} and
13		
14	5	Ai-Min Wu ^{1,2,3,*}
15		
16		
17	6	
18		
19 20	7	Affiliations:
20	,	
21		
22	8	1. Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of
23		
24 25	9	Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
25 26	,	wenzhoù wiediear Oniversity, wenzhoù, zhejrang, 525027, ennia.
26 27		
27 28	10	2. The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
28 29		
29 30	11	2 Dana Dessenth Institute. The Key Outback die Laboratory of Theilang Dressings. Warnhow
30	11	3. Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou,
32		
33	12	Zhejiang, 325027, China.
34		
35	10	
36	13	4. Department of Orthopaedics, The Affiliated Hospital of Jiujiang Medical College, Jiujiang, Jiangxi,
37		
38	14	332000, China.
39		,
40		
41	15	*Correspondence author:
42		*Correspondence author: Ai-Min Wu, email: aiminwu@wmu.edu.cn
43	16	Ai-Min Wu, email: aiminwu@wmu.edu.cn
44	10	
45		
46	17	Wen-Fei Ni, email: wenfeini@yeah.net
47		
48	18	Li-Yan Shen, email : shenliyan@wmu.edu.cn
49	10	Li- I an Shen, chian. Shennyan@winu.cdu.ch
50		
51	19	Phone: +86 0577 88002814;
52		
53	20	Eare 196 0577990009922
54	20	Fax: +86 057788002823;
55		
56	21	
57		
58	22	This Chang Has and Olon Tong constrained a quality to this much
59	22	Zhi-Chao Hu and Qian Tang contributed equally to this work.
60		

2
2
3
4
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 9 30 31 23 34 35 36 37 89
6
7
/
8
9
10
11
11
12
13
14
15
10
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
50
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

23	Abstract
24	Objective Inconsistent findings in regard to association between different concentrations of vitamin D,
25	calcium or their combination and the risk of fracture have been reported during the past decade in
26	community-dwelling older people. This study was designed to compare the fracture risk using different
27	concentrations of vitamin D, calcium or their combination.
28	Design A systematic review and network meta-analysis.
29	Data sources Randomized controlled trials in PubMed, Cochrane library, and EMBASE databases
30	were systematically searched from the inception dates to December 31, 2017.
31	Outcomes Total fracture was defined as the primary outcome. Secondary outcomes were hip fracture
32	and vertebral fracture. Due to the consistency of the original studies, a consistency model was adopted.
33	Results A total of 25 randomized controlled trials involving 43510 participants fulfilled the inclusion
34	criteria. There was no evidence that the risk of total fracture was reduced by using different
35	concentrations of vitamin D, calcium or their combination compared with placebo or no treatment. No
36	significant associations were found between calcium, vitamin D, or combined calcium and vitamin D
37	supplements and the incidence of hip, or vertebral fractures.
38	Conclusions The use of supplements that included calcium, vitamin D, or both was not found to be
39	better than placebo or no treatment in terms of risk of fractures among community-dwelling older
40	adults. It means the routine use of these supplements in community-dwelling older people should be
41	treated more carefully.
42	Prospero registration number CRD42017079624

43 Keywords: Calcium; Vitamin D; Fractures; network meta-analysis

44 Strengths and limitations of this study

 This systematic review and meta-analysis combined the evidence from randomized controlled trials. • Our findings may not support the routine use of these supplements in community-dwelling older people. • This work does not necessarily preclude any benefit of vitamin D and calcium supplementation in older, frail individuals. Potential missing data and meta-biases, heterogeneity, which may limit the quality of evidence. Introduction Clinical fractures of the elderly represent a worldwide public health problem that leads to illness and social burden. The patients with osteoporosis in the European Union were estimated to be 27.5 million in 2010, and 3.5 million new fragility fractures were sustained¹. In Asia, the average cost of osteoporotic fractures accounted for 18.95% of the countries' 2014 gross domestic product (GDP)/capita and increased annually²⁻⁴. The overall prevalence of osteoporosis or low bone mass in non-institutional population over the age of 50 in the USA was estimated at 10.3% and 43.9%, respectively, which means that 10.2 million elderly people had osteoporosis and 43.4 million people had low bone mass in 2010⁵. With the demographic trend of ageing and the predicted increase in life expectancy, the cost of fracture treatment is expected to rise. Dietary allowances for calcium range from 700 to 1200 mg/d and vitamin D of 600-800 IU/d have long been recommended for the prevention of osteoporotic fractures in the elderly⁶⁷. The supplements of calcium and vitamin D are commonly taken to maintain bone health. However, the previous randomized controlled trials (RCT) and meta-analyses concerning vitamin D, calcium, or their combination for fractures yielded different efficacy outcomes. For instance, two meta-analyses demonstrated calcium or vitamin D supplementation alone has a small benefit on bone

BMJ Open

67	mineral density (BMD), but no clinically important to prevent fractures ⁸ , while an updated
68	meta-analysis and a pooled analysis found calcium plus vitamin D supplementation can significantly
69	reduce hip fractures by 30% and total fractures by 15% ^{10 11} . Two RCTs reported that low dose of
70	vitamin D supplementation (less than 800 IU/d) can reduce the incidence of falls ¹² and may prevent
71	fractures without adverse effects ¹³ , but other RCTs showed no significant reduction in the incidence of
72	hip or other peripheral fractures ^{14 15} and its possible effects were seen only in patients with initial
73	calcium insufficiency. Based on the evidence from meta-analysis, Bischoff-Ferrari et al ¹⁶ illustrated
74	that high-dose vitamin D supplementation (800 IU/d or higher) not only reduced the risk of falls and
75	hip fractures, but also prevented non-vertebral fractures. In contrast, a study reported annual high-dose
76	oral vitamin D resulted in an increased risk of falls and fractures ¹⁷ . On the other hand, low-dose
77	calcium supplementation (less than 800mg/d) effectively led to a sustained reduction in the rate of bone
78	loss ¹⁸ and turnover. Although it was also reported that the high dose of calcium (800 mg/d or higher)
79	was associated with a lower risk of clinical fractures ¹⁹ . The high-dose calcium with high-dose vitamin
80	D can't prevent fractures according to the evidence from reported RCT ²⁰ , but a meta-analysis
81	supported their combination can prevent bone loss and significantly reduce the risk of hip fractures and
82	all osteoporotic fractures ²¹ . Thus, it's challenging to conclude a dose-response relation between the
83	intakes of vitamin D, calcium, or their combination and the main outcomes in these heterogeneous
84	literatures.
85	Therefore, this study was designed to compare the fracture risk using different concentrations of
86	vitamin D, calcium or their combination, and comprehensively evaluate the optimal concentration to

- 87 guide clinical practice and public prevention in community-dwelling older people.
- 88 Methods

89 Search strategy and selection criteria

This review and meta-analysis is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension statement for network meta-analysis. Our meta-analysis was registered prospectively in PROSPERO (CRD42017079624) and the Checklist PRISMA 2009 (**Supplementary Table 1**) will be used and check our final reports ²².

We restricted our meta-analysis to the inclusion criteria should meet following details: (1) RCTs; (2) Interventions must be one of the following three: vitamin D only, calcium only, both vitamin D and calcium; (3) Complete outcome data of fracture; (4) Trials enrolling adults older than 50 years and living in their communities; (5) Only studies that lasted more than a year. Exclusion criteria were (1) Calcium or vitamin D combined with other therapies (eg: hormones, exercise); (2) Trials in which vitamin D analogues (eg: calcitriol) or hydroxylated vitamin D were used; (3) Trials in which dietary intake of calcium or vitamin D (eg: from milk) was evaluated; (4) Patients suffering from illness or long-term use of certain drugs affecting the stability of the calcium metabolism, such as metabolic bone disease, bone tumour, treatment of steroids and so on.

Participants must be randomly assigned to two or more following groups: (1) high calcium (800 mg/d or higher) only; (2) low calcium (less than 800 mg/d) only; (3) high vitamin D (800 IU/d or higher) only; (4) low vitamin D (less than 800 IU/d) only; (5) high calcium (800 mg/d or higher) + high vitamin D (800 IU/d or higher); (6) high calcium + low vitamin D (less than 800 IU/d); (7) low calcium (less than 800 mg/d) + high vitamin D; (8) low calcium + low vitamin D; (9) placebo. The interventions should be compared with placebo.

109 Two authors (ZHF and GZ) independently searched the electronic literature database of PubMed,

110 Embase, Cochrane database on December 31, 2017 (detailed search strategies are reported

BMJ Open

in supplementary eTable 1). Related articles and reference lists were searched to avoid original miss. The reference studies of previous systematic reviews, meta-analysis, and included studies were manually searched to avoid initial miss. After 2 authors assessed the potentially eligible studies independently, any disagreement was discussed and resolved with the third independent author (QT).

Data collection and assessment of risk of bias

Two reviewers (ZHS and XBL) independently extracted data, and the third reviewer (LT) checked the consistency between them. A standard data extracted form was used at this stage, including the authors, publishing date, country, participant characteristics; doses of calcium, vitamin D, or their combination; dietary calcium intake; baseline serum 25-hydroxyvitamin D concentration; and trial duration. For continuous outcomes, the mean, SD (standard deviation) and participant number will be extracted. For dichotomous outcomes, we extracted the total numbers and the numbers of events of both groups. The data in other forms was recalculated when possible to enable pooled analysis.

We used the Cochrane risk of bias tool to assess risk bias of included studies. The tool has seven domains including random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting and other bias. The classification of the judgment for each domain was low risk of bias, high risk of bias, or unclear risk of bias and two authors (ZHF and GZ) independently evaluated the risk of studies.

128 Data synthesis and statistical analysis

The data was extracted and input into the STATA software (version 12.0; StataCorp, College Station, TX, USA) for network meta-analysis. And we generated network plots for each outcome to illustrate which interventions had been compared directly in the included studies. Network meta-analysis is an extension of standard meta-analysis to compare multiple treatments based on

133	randomized controlled trial evidence, which forms a connected network of comparisons. Treatment
134	effect estimates from network meta-analysis exploit both the direct comparisons within trials and the
135	indirect comparisons across trials. The heterogeneity was further assessed with the I^2 statistic and a
136	value of more than 50% was considered as statistically significant heterogeneity. Random effects
137	model was applied when significant heterogeneity existed (P < 0.05 or I^2 test exhibited > 50%),
138	otherwise, fixed-effects model was utilized ²³ . Relative risk (RR) with 95% confidence intervals (CIs)
139	was calculated for dichotomous outcomes while weighted mean difference (WMD) with 95% CIs for
140	the continuous. Inconsistency refers to differences between direct and various indirect effect estimates
141	for the same comparison. To assess inconsistency, we estimated the inconsistency factors in closed
142	loop based on the method described by Chaimani et al ²⁴ . The heterogeneity in each closed loop was
143	estimated by utilizing inconsistency factor (IF). If the 95% confidence intervals (95% CI) of IF values
144	are not truncated at zero, it suggests that the inconsistency among studies has statistical significance.
145	We used the surface under the cumulative ranking probabilities (SUCRA) to indicate which treatment
146	was the best one. The funnel plot was used to identify possible publication bias if the number of studies
147	was larger than 10.
148	Patient and public involvement
149	No patients were involved in setting the research question or the outcome measures, and no patients

were involved in developing plans for design or implementation of the study. Furthermore, no patients were asked to advice on interpretation or writing up of results. Since this meta-analysis used aggregated data from previous trials, it is unable to disseminate the results of the research to study participants directly.

154 Result

1		
2		
3	165	
4 5	155	Data Retrieval
6		
7	156	In summary, a total of 7909 potential records were initially identified through PubMed (5187),
8		
9	157	Embase (2688), Cochrane Data base (34). Based on our review of the title and abstract, 99 full-text
10	107	Enibuse (2000), Coemane Data base (51). Dased on our review of the title and abstract, 55 fun text
11		
12	158	papers were reviewed and 25 studies ^{13 17 19 20 25-45} met inclusion criteria (Figure 1).
13		
14	159	Study and Patient Characteristics
15		·
16 17	160	The characteristics of all 25 included studies were summarized and shown in supplementary Table
17	100	The characteristics of an 25 included studies were summarized and shown in supplementary radie
19		
20	161	2. And the detailed data of outcomes was collected in supplementary Table 3. The papers had similar
21		
22	162	distributions of sex, age, country, intervention and all of them were community-dwelling older people.
23	102	distributions of sex, age, country, increation and an of them were community dwenning order people.
24		
25	163	Hansson et al ²⁹ did not report the residential status of participants, although a previous meta-analysis
26		
27	164	classified this status as community. The trial by Hansson et al was included, but a sensitivity analysis
28		
29	165	
30 31	165	was performed that excluded that trial (supplementary Figure 1).
32		
33	166	Supplementary Figure 2 showed the assessment of the risk of bias. All studies were randomized;
34		
35	167	17 were double-blind, placebo-controlled trials; 13 trials described an adequate random sequence
36	107	17 were double-blind, placebo-controlled trials, 15 trials described an adequate random sequence
37		
38	168	generation process; and 11 trials described the methods used for allocation concealment. No obvious
39		
40	169	publication bias was reported according to the supplementary Figure 3, supplementary Figure 4 and
41	107	paonemien eine was reperted according to all supprendentally right of our prendentally right of and
42	. = 0	
43	170	supplementary Figure 5.
44 45		
43 46	171	Inconsistence and heterogeneity check
40		
48	172	The statistical inconsistency between direct and indirect comparisons was generally low according to
49	172	The statistical medisistency between direct and multect comparisons was generally low according to
50		
51	173	inconsistency test because the CI values included zero (supplementary Figure 6, supplementary
52		
53	174	Figure 7, supplementary Figure 8). Therefore, we adopted a consistency model in all three groups.
54	- / •	
55	1.5.5	
56 57	175	Meanwhile, the global heterogeneity parameter I ² values were 8.4%, 0% and 0% respectively, which
57 58		
58 59	176	indicated no obvious heterogeneity was observed in all these results (supplementary Figure 9,
60		

177 supplementary Figure 10, supplementary Figure 11).

Primary outcome: total fracture

For estimating the vitamin D, calcium or their combination efficacy against total fractures, we looked at data from 24965 individuals from 18 studies^{13 17 19 20 25 26 28 30 31 33-35 37 39 40 43-45}. Pooled estimates included 15 studies with one treatment, 1 study with two treatments, and 2 studies with three treatments.

The network plot of comparisons on total fractures was shown in **Figure 2A**. The forest plot for the network meta-analysis was shown in **Figure 3**. The RR values and 95% CIs are summarized in **Figure 3**. The direct and indirect comparisons indicated no differences among the vitamin D, calcium or their combination that remained in the main network. Neither do the statistical differences between interventions and placebo (P<0.05). So we didn't continue to make ranking graph of distribution of probabilities on total fractures.

188 probabilities on total fractures.

189 Secondary outcomes: hip fracture and vertebral fracture

190 A total of 41845 individuals were included from 16 studies^{13 17 19 20 25-28 30 32 33 37 39 40 42 43} for evaluate 191 the drug efficacy against hip fractures. Pooled estimates included 13 studies with one treatment, 1 study 192 with two treatments, and two studies with three treatments.

The network plot of comparisons on hip fractures was shown in **Figure 2B**. The forest plot for the network meta-analysis was shown in **Figure 4**. The RR values and 95% CIs are summarized in **Figure** 4. The direct and indirect comparisons indicated no differences among the vitamin D, calcium or their combination that remained in the main network. Neither do the statistical differences between drug experimental groups and placebo (P<0.05). So we didn't continue to make ranking graph of distribution of probabilities on total fractures.

BMJ Open

199	A total of 17612 individuals were collected from 12 studies ^{13 17 19 20 25 28 29 36 38-41} involving vertebral
200	fractures. Pooled estimates included 10 studies with one treatment, and two studies with three
201	treatments.
202	The network plot of comparisons on vertebral fractures was shown in Figure 2C. The forest plot for
203	the network meta-analysis was shown in Figure 5. The RR values and 95% CIs are summarized in
204	Figure 5. The direct and indirect comparisons indicated no differences among the vitamin D, calcium
205	or their combination that remained in the main network. Neither do the statistical differences between
206	drug experimental groups and placebo (P<0.05). So we didn't continue to make ranking graph of
207	distribution of probabilities on total fractures. In a separate sensitivity analysis, we excluded Hansson's
208	study ²⁹ (supplementary Figure 1). However, there was still no significant association of vitamin D,
209	calcium or their combination with total fracture.
210	Discussion
210 211	Discussion Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture.
211	Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture.
211 212	Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture. We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses
211 212 213	Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture. We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses of vitamin D with calcium on fractures.
211212213214	Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture. We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses of vitamin D with calcium on fractures. Results of this meta-analysis showed that calcium, calcium plus vitamin D, and vitamin D
 211 212 213 214 215 	Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture. We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses of vitamin D with calcium on fractures. Results of this meta-analysis showed that calcium, calcium plus vitamin D, and vitamin D supplementation alone were not significantly associated with a lower incidence of hip, vertebral, or
 211 212 213 214 215 216 	Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture. We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses of vitamin D with calcium on fractures. Results of this meta-analysis showed that calcium, calcium plus vitamin D, and vitamin D supplementation alone were not significantly associated with a lower incidence of hip, vertebral, or total fractures in community-dwelling older adults. Sensitivity analyses that excluded low-quality trials
 211 212 213 214 215 216 217 	Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture. We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses of vitamin D with calcium on fractures. Results of this meta-analysis showed that calcium, calcium plus vitamin D, and vitamin D supplementation alone were not significantly associated with a lower incidence of hip, vertebral, or total fractures in community-dwelling older adults. Sensitivity analyses that excluded low-quality trials and studies that exclusively enrolled patients with particular medical conditions did not alter these

Zhao's study was to investigate whether calcium, vitamin D, or combined calcium and vitamin D supplement are associated with a lower facture incidence while our study was designed to evaluate the optimal concentration of them. Meanwhile, in Zhao's meta-analysis, the participants of the included study reported by Massart⁴⁷ were adult maintenance hemodialysis patients, which may result in the imbalance of calcium in the body. Patients on hemodialysis may also be receiving 1,25-dihydroxyvitamin D, which may affect their response to vitamin D supplementation. So we did not include that trial in our network meta-analysis. What's more, we didn't include studies that lasted less than a year because we thought this time-frame was too short to see anti-fracture efficacy. And we suspected that a network meta-analysis might be a more suitable choice concerning all these different interventions mixed. Bischoff-Ferrari et al ⁴⁸ reported that high-dose vitamin D supplementation (800 IU/d or higher) played an important role in the reduction of the risk of falls and hip fractures, as well as prevented non-vertebral fractures in adults 65 years or older. However, their findings may have been influenced by the trial of Chapuy et al ⁴⁹, which only enrolled participants living in an institution. What's more, differences in conclusions of previous meta-analyses and the current meta-analysis were due to the recently published trials which reported neutral or harmful associations of vitamin D supplementation and fracture incidence more and more. Study findings here indicated that vitamin D might result in a higher risk for hip fracture, but this conclusion did not reach statistical significance. This finding may be attributable to lack of statistical power in this meta-analysis.

Most recently there was a meta-analysis published in the Lancet by Bolland et al⁵⁰, whose findings suggested that vitamin D supplementation does not prevent fractures or falls, or have clinically meaningful effects on bone mineral density. Although it was similar to our study to some extent, they

BMJ Open

are really different. First, we only included community-dwelling older people. We found that some meta-analyses equated community-dwelling older people with those in nursing institution. The lack of exercise, dietary intake and exposure to sunlight made people in nursing institution turned more susceptible to the use of supplements including vitamin D, calcium or their combination. Although the studies involving participants living in nursing institution were only a small part, but it could change the whole outcomes and produce false positive results. We found only Avenell's study paid attention to this question when they conducted a subgroup analysis, but they did not discussed separately. Meanwhile, we only enrolled adults older than 50 years and trial duration more than 1 year to reduce the statistical heterogeneity in network meta-analysis. Furthermore, the current analyses included calcium supplementation, where the Bolland's study focused on vitamin D. However, possible limitations of this study protocol include potential missing data and meta-biases, heterogeneity, which may limit the quality of evidence. Some RCTs were of poor quality and, for example, used unclear allocation concealment. So we made a sensitivity analysis by excluding low-quality trials. Although some study characteristics such as baseline serum 25-hydroxyvitamin D concentrations might be to contribute heterogeneity, we could not perform subgroup analysis or meta-regression analysis to evaluate it due to the extreme complexity and the limitation of Stata software for network meta-analysis. What's more, we combined bolus dosing by injection with oral supplements taken daily/monthly/yearly, which might have different effects on vitamin D status in the body. In addition, the report ignored the effect of treatment with vitamin D on plasma 25-hydroxy-vitamin D concentrations and sub-types of fracture, such as pathologic fractures; this work does not necessarily preclude any benefit of vitamin D and calcium supplementation in older, frail individuals.

265 Conclusions

In this meta-analysis of randomized clinical trials, we found that the use of different concentrations of vitamin D, calcium or their combination in community-dwelling older adults was not associated with a lower risk of fractures. Our findings may not support the routine use of these supplements in community-dwelling older people.

270 Contributors

271 ZCH and AMW conceived the study. The search strategy was developed by LT and XBL. ZHF, GZ
272 and QT will complete electronic search, select publications and assess their eligibility. ZHS and XBL
273 will extract information of the included studies after screening. JWX will check the data entry for
274 accuracy and completeness. ZCH and LT will give advice for data analysis and presentation of study
275 result. LYS and CMS contributed to the text revision. WFN and AMW supervised the overall conduct
276 of the study. All the authors drafted and critically reviewed and approved the final manuscript.

277 Funds and Acknowledgement

This work was funded by the National Natural Science Foundation of China (81501933, 81572214), Zhejiang Provincial Natural Science Foundation of China (LY14H060008), Zhejiang Provincial Medical Technology Foundation of China (2018254309, 2015111494), Wenzhou leading talent innovative project (RX2016004) and Wenzhou Municipal Science and Technology Bureau (Y20170389). The funders had no role in the design, execution, or writing of the study.

- 283 Conflicts of interest
- 284 None declared
- 285 Patient consent
- 286 Not required.

1		
2 3		
4	287	Provenance and peer review
5 6		
7	288	Not commissioned; externally peer reviewed.
8		
9 10	289	Data sharing statement
11		
12	290	No additional data are available.
13 14	201	
15	291	References
16 17	292	1. Svedbom A, Hernlund E, Ivergard M, et al. Osteoporosis in the European Union: a compendium of
18	293	country-specific reports. Arch Osteoporos 2013;8:137. doi: 10.1007/s11657-013-0137-0
19	294	2. Mohd-Tahir NA, Li SC. Economic burden of osteoporosis-related hip fracture in Asia: a systematic
20	295	review. <i>Osteoporos</i> Int 2017;28(7):2035-44. doi: 10.1007/s00198-017-3985-4
21 22	296	3. Kim J, Lee E, Kim S, et al. Economic Burden of Osteoporotic Fracture of the Elderly in South Korea: A
23	297	National Survey. Value Health Reg Issues 2016;9:36-41. doi: 10.1016/j.vhri.2015.09.007
24	298	4. Qu B, Ma Y, Yan M, et al. The economic burden of fracture patients with osteoporosis in western
25 26	299	China. Osteoporos Int 2014;25(7):1853-60. doi: 10.1007/s00198-014-2699-0
27	300	5. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in
28	301	the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone
29 30	302	Miner Res 2014;29(11):2520-6. doi: 10.1002/jbmr.2269
30	303	6. Consensus conference: Osteoporosis. JAMA 1984;252(6):799-802.
32	304	7. Ross AC. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr
33	305	2011;14(5):938-9. doi: 10.1017/S1368980011000565
34 35	306	8. Shea B, Wells G, Cranney A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. VII.
36	307	Meta-analysis of calcium supplementation for the prevention of postmenopausal
37	308	osteoporosis. <i>Endocr Rev</i> 2002;23(4):552-9. doi: 10.1210/er.2001-7002
38 39	309	9. Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic
40	310	review and meta-analysis. Lancet 2014;383(9912):146-55. doi:
41	311	10.1016/s0140-6736(13)61647-5 [published Online First: 2013/10/15]
42 43	312	10. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of
44	313	fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos
45	314	Int 2016;27(1):367-76. doi: 10.1007/s00198-015-3386-5
46 47	315	11. Group D. Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture
47 48	316	trials in US and Europe. BMJ 2010;340:b5463. doi: 10.1136/bmj.b5463
49	317	12. Flicker L, MacInnis RJ, Stein MS, et al. Should older people in residential care receive vitamin D to
50	318	prevent falls? Results of a randomized trial. J Am Geriatr Soc 2005;53(11):1881-8. doi:
51 52	319	10.1111/j.1532-5415.2005.00468.x [published Online First: 2005/11/09]
53	320	13. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol)
54	321	supplementation on fractures and mortality in men and women living in the community:
55 56	322	randomised double blind controlled trial. <i>Bmj</i> 2003;326(7387):469. doi:
57	323	10.1136/bmj.326.7387.469 [published Online First: 2003/03/01]
58	324	14. Lyons RA, Johansen A, Brophy S, et al. Preventing fractures among older people living in
59 60	325	institutional care: a pragmatic randomised double blind placebo controlled trial of vitamin D
00		

2		
3 4	326	supplementation. Osteoporos Int 2007;18(6):811-8. doi: 10.1007/s00198-006-0309-5
5	327	[published Online First: 2007/05/03]
6	328	15. Law M, Withers H, Morris J, et al. Vitamin D supplementation and the prevention of fractures and
7	329	falls: results of a randomised trial in elderly people in residential accommodation. Age
8 9	330	Ageing 2006;35(5):482-6. doi: 10.1093/ageing/afj080 [published Online First: 2006/04/28]
9 10	331	16. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Prevention of nonvertebral fractures with oral
11	332	vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern
12	333	Med 2009;169(6):551-61. doi: 10.1001/archinternmed.2008.600 [published Online First:
13 14	334	2009/03/25]
15	335	17. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures
16	336	in older women: a randomized controlled trial. <i>Jama</i> 2010;303(18):1815-22. doi:
17	337	10.1001/jama.2010.594 [published Online First: 2010/05/13]
18 19	338	18. Nakamura K, Saito T, Kobayashi R, et al. Effect of low-dose calcium supplements on bone loss in
20	339	perimenopausal and postmenopausal Asian women: a randomized controlled trial. J Bone
21	340	Miner Res 2012;27(11):2264-70. doi: 10.1002/jbmr.1676
22	340	19. Prince RL, Devine A, Dhaliwal SS, et al. Effects of calcium supplementation on clinical fracture and
23 24		
25	342	bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women.
26	343	Arch Intern Med 2006;166(8):869-75. doi: 10.1001/archinte.166.8.869 [published Online
27	344	First: 2006/04/26]
28 29	345	20. Salovaara K, Tuppurainen M, Karkkainen M, et al. Effect of vitamin D(3) and calcium on fracture
30	346	risk in 65- to 71-year-old women: a population-based 3-year randomized, controlled
31	347	trialthe OSTPRE-FPS. <i>J Bone Miner Res</i> 2010;25(7):1487-95. doi: 10.1002/jbmr.48
32	348	[published Online First: 2010/03/05]
33 34	349	21. Boonen S, Lips P, Bouillon R, et al. Need for additional calcium to reduce the risk of hip fracture
35	350	with vitamin d supplementation: evidence from a comparative metaanalysis of randomized
36	351	controlled trials. J Clin Endocrinol Metab 2007;92(4):1415-23. doi: 10.1210/jc.2006-1404
37	352	[published Online First: 2007/02/01]
38 39	353	22. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
40	354	meta-analyses: the PRISMA statement. <i>PLoS Med</i> 2009;6(7):e1000097. doi:
41	355	10.1371/journal.pmed.1000097
42 43	356	23. Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. Genet
45 44	357	Epidemiol 2005;28(2):123-37. doi: 10.1002/gepi.20048 [published Online First: 2004/12/14]
45	358	24. Chaimani A, Higgins JP, Mavridis D, et al. Graphical tools for network meta-analysis in STATA. PLoS
46	359	One 2013;8(10):e76654. doi: 10.1371/journal.pone.0076654 [published Online First:
47 48	360	2013/10/08]
48 49	361	25. Avenell A, Grant AM, McGee M, et al. The effects of an open design on trial participant
50	362	recruitment, compliance and retentiona randomized controlled trial comparison with a
51	363	blinded, placebo-controlled design. <i>Clin Trials</i> 2004;1(6):490-8. doi:
52 53	364	10.1191/1740774504cn053oa [published Online First: 2005/11/11]
53 54	365	26. Baron JA, Beach M, Mandel JS, et al. Calcium supplements for the prevention of colorectal
55	366	adenomas. Calcium Polyp Prevention Study Group. N Engl J Med 1999;340(2):101-7. doi:
56	367	10.1056/nejm199901143400204 [published Online First: 1999/01/14]
57 58	368	27. Dawson-Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on
59	369	bone density in men and women 65 years of age or older. <i>N Engl J Med</i> 1997;337(10):670-6.
60	507	some density in men and women us years of age of older. W LIIGIS INED 1557,557(10).070°0.
		45

1		
2 3	370	doi: 10.1056/nejm199709043371003 [published Online First: 1997/09/04]
4 5	371	28. Grant AM, Avenell A, Campbell MK, et al. Oral vitamin D3 and calcium for secondary prevention of
6	372	low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D,
7	373	RECORD): a randomised placebo-controlled trial. Lancet 2005;365(9471):1621-8. doi:
8 9	374	10.1016/s0140-6736(05)63013-9 [published Online First: 2005/05/12]
9 10	375	29. Hansson T, Roos B. The effect of fluoride and calcium on spinal bone mineral content: a
11	376	controlled, prospective (3 years) study. Calcif Tissue Int 1987;40(6):315-7. [published Online
12 13	377	First: 1987/06/01]
14	378	30. Harwood RH, Sahota O, Gaynor K, et al. A randomised, controlled comparison of different calcium
15	379	and vitamin D supplementation regimens in elderly women after hip fracture: The
16 17	380	Nottingham Neck of Femur (NONOF) Study. Age Ageing 2004;33(1):45-51. [published Online
17 18	381	First: 2003/12/30]
19	382	31. Hin H, Tomson J, Newman C, et al. Optimum dose of vitamin D for disease prevention in older
20	383	people: BEST-D trial of vitamin D in primary care. Osteoporos Int 2017;28(3):841-51. doi:
21 22	384	10.1007/s00198-016-3833-y [published Online First: 2016/12/18]
23	385	32. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of
24	386	fractures. N Engl J Med 2006;354(7):669-83. doi: 10.1056/NEJMoa055218 [published Online
25 26	387	First: 2006/02/17]
27	388	33. Lips P, Graafmans WC, Ooms ME, et al. Vitamin D supplementation and fracture incidence in
28	389	elderly persons. A randomized, placebo-controlled clinical trial. Ann Intern Med
29 30	390	1996;124(4):400-6. [published Online First: 1996/02/15]
31	391	34. Liu BX, Chen SP, Li YD, et al. The Effect of the Modified Eighth Section of Eight-Section Brocade on
32	392	Osteoporosis in Postmenopausal Women: A Prospective Randomized Trial. Medicine
33 34	393	(Baltimore) 2015;94(25):e991. doi: 10.1097/md.000000000000991 [published Online First:
34 35	394	2015/06/25]
36	395	35. Mitri J, Dawson-Hughes B, Hu FB, et al. Effects of vitamin D and calcium supplementation on
37	396	pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of
38 39	397	diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled
40	398	trial. Am J Clin Nutr 2011;94(2):486-94. doi: 10.3945/ajcn.111.011684 [published Online First:
41	399	2011/07/01]
42 43	400	36. Peacock M, Liu G, Carey M, et al. Effect of calcium or 25OH vitamin D3 dietary supplementation
44	401	on bone loss at the hip in men and women over the age of 60. J Clin Endocrinol Metab
45	402	2000;85(9):3011-9. doi: 10.1210/jcem.85.9.6836 [published Online First: 2000/09/22]
46 47	403	37. Porthouse J, Cockayne S, King C, et al. Randomised controlled trial of calcium and
48	404	supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary
49	405	care. <i>Bmj</i> 2005;330(7498):1003. doi: 10.1136/bmj.330.7498.1003 [published Online First:
50 51	406	2005/04/30]
52	407	38. Recker RR, Hinders S, Davies KM, et al. Correcting calcium nutritional deficiency prevents spine
53	408	fractures in elderly women. J Bone Miner Res 1996;11(12):1961-6. doi:
54 55	409	10.1002/jbmr.5650111218 [published Online First: 1996/12/01]
55 56	410	39. Reid IR, Ames RW, Evans MC, et al. Effect of calcium supplementation on bone loss in
57	411	postmenopausal women. N Engl J Med 1993;328(7):460-4. doi:
58	412	10.1056/nejm199302183280702 [published Online First: 1993/02/18]
59 60	413	40. Reid IR, Mason B, Horne A, et al. Randomized controlled trial of calcium in healthy older women.
00		16

1

2		
3	414	Am J Med 2006;119(9):777-85. doi: 10.1016/j.amjmed.2006.02.038 [published Online First:
4	415	2006/09/02]
5 6	415	41. Riggs BL, O'Fallon WM, Muhs J, et al. Long-term effects of calcium supplementation on serum
7	417	parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res
8	417	
9		1998;13(2):168-74. doi: 10.1359/jbmr.1998.13.2.168 [published Online First: 1998/03/12]
10 11	419	42. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in
12	420	elderly men and womena population-based, randomized, double-blind, placebo-controlled
13	421	trial. Rheumatology (Oxford) 2007;46(12):1852-7. doi: 10.1093/rheumatology/kem240
14	422	[published Online First: 2007/11/14]
15 16	423	43. Uusi-Rasi K, Patil R, Karinkanta S, et al. Exercise and vitamin D in fall prevention among older
17	424	women: a randomized clinical trial. <i>JAMA Intern Med</i> 2015;175(5):703-11. doi:
18	425	10.1001/jamainternmed.2015.0225 [published Online First: 2015/03/24]
19	426	44. Witham MD, Price RJ, Struthers AD, et al. Cholecalciferol treatment to reduce blood pressure in
20 21	427	older patients with isolated systolic hypertension: the VitDISH randomized controlled trial.
22	428	JAMA Intern Med 2013;173(18):1672-9. doi: 10.1001/jamainternmed.2013.9043 [published
23	429	Online First: 2013/08/14]
24	430	45. Xue Y, Hu Y, Wang O, et al. Effects of Enhanced Exercise and Combined Vitamin D and Calcium
25 26	431	Supplementation on Muscle Strength and Fracture Risk in Postmenopausal Chinese Women.
27	432	Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2017;39(3):345-51. doi:
28	433	10.3881/j.issn.1000-503X.2017.03.008 [published Online First: 2017/07/12]
29	434	46. Zhao JG, Zeng XT, Wang J, et al. Association Between Calcium or Vitamin D Supplementation and
30 31	435	Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and
32	436	Meta-analysis. Jama 2017;318(24):2466-82. doi: 10.1001/jama.2017.19344 [published
33	437	Online First: 2017/12/28]
34 35	438	47. Massart A, Debelle FD, Racape J, et al. Biochemical parameters after cholecalciferol repletion in
36	439	hemodialysis: results From the VitaDial randomized trial. Am J Kidney Dis
37	440	2014;64(5):696-705. doi: 10.1053/j.ajkd.2014.04.020 [published Online First: 2014/05/27]
38	441	48. Bischoff-Ferrari HA, Willett WC, Orav EJ, et al. A pooled analysis of vitamin D dose requirements
39 40	442	for fracture prevention. N Engl J Med 2012;367(1):40-9. doi: 10.1056/NEJMoa1109617
41	443	[published Online First: 2012/07/06]
42	444	49. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in elderly
43 44	445	women. N Engl J Med 1992;327(23):1637-42. doi: 10.1056/nejm199212033272305
44 45	446	[published Online First: 1992/12/03]
46	447	50. Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: a
47	448	systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol
48 49	449	2018;6(11):847-58. doi: 10.1016/s2213-8587(18)30265-1 [published Online First:
49 50	450	2018/10/09]
51	100	
52	451	
53 54		
54 55		
56		
57	452	Legends:
58 50		

BMJ Open

Figure 1. The selection of literature for included studies.

454 Figure 2. The network plot of comparisons on total fractures (A), hip fractures (B) and vertebral

455 fractures (C). A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high

456 vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)

Figure 3. The forest plot for the risk of total fractures. A: high calcium (800 mg/d or higher); B: low
calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than
800 IU/d)

Figure 4. The forest plot for the risk of hip fractures. A: high calcium (800 mg/d or higher); B: low
calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than
800 IU/d)

Figure 5. The forest plot for the risk of vertebral fractures. A: high calcium (800 mg/d or higher); B:
low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less
than 800 IU/d)

supplementary Figure 1. A sensitivity analysis excluded the trial of Hansson et al. A: high calcium

467 (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher);

468 D: low vitamin D (less than 800 IU/d)

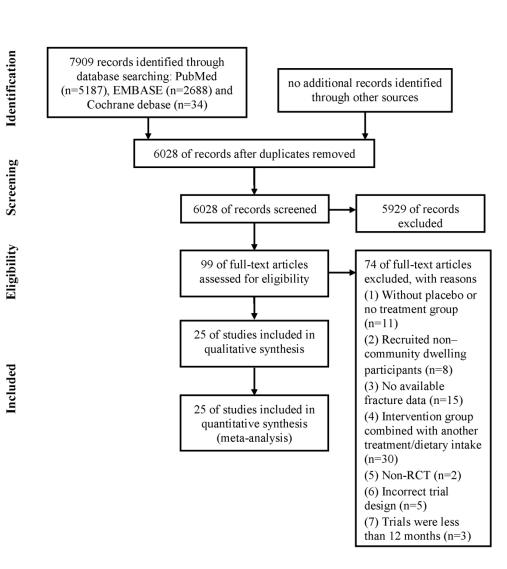
470 supplementary Figure 3. Publication bias for the total fractures. A: high calcium (800 mg/d or higher);

471 B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less

472 than 800 IU/d)

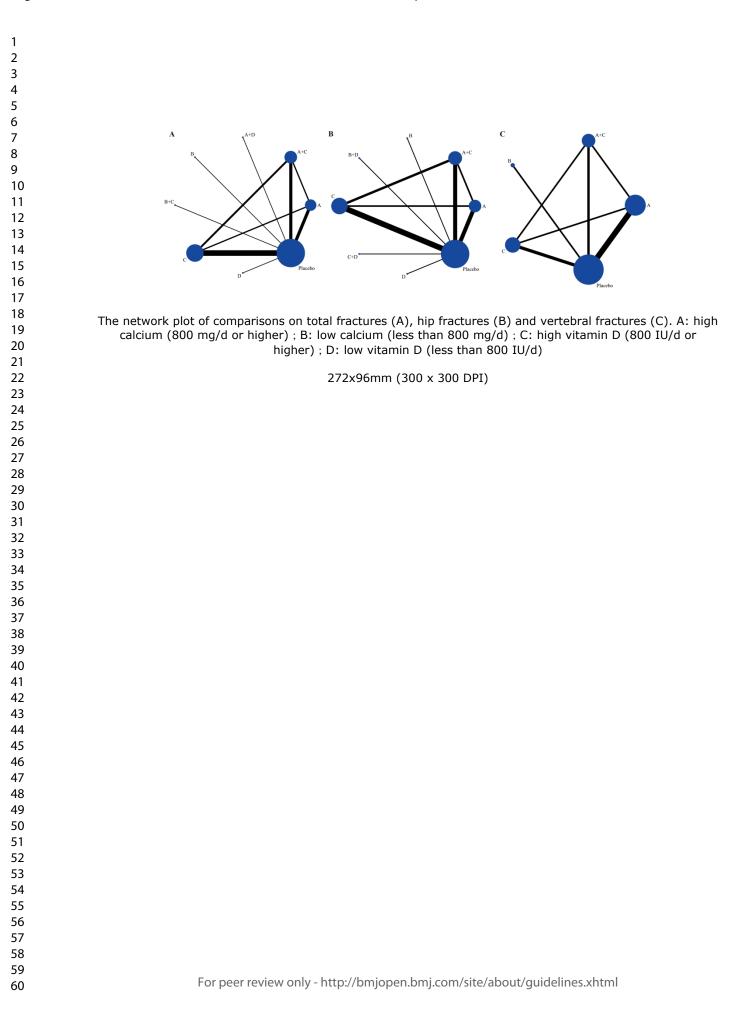
473 supplementary Figure 4. Publication bias for the hip fractures. A: high calcium (800 mg/d or higher);
474 B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less

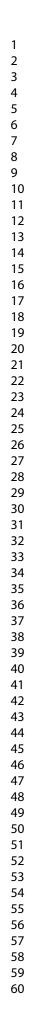
475 than 800 IU/d)

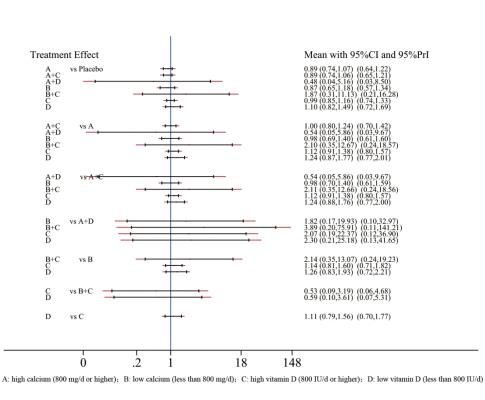

476 supplementary Figure 5. Publication bias for the vertebral fractures. A: high calcium (800 mg/d or
477 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low

478 vitamin D (less than 800 IU/d)

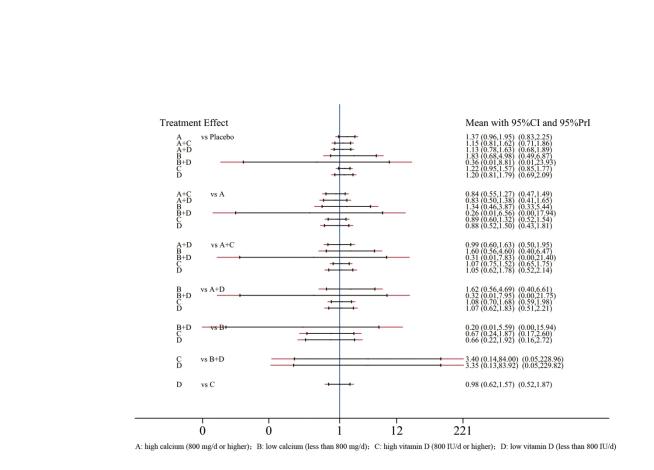
479 supplementary Figure 6. Inconsistency test for the total fractures. A: high calcium (800 mg/d or
480 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low
481 vitamin D (less than 800 IU/d)


482 supplementary Figure 7. Inconsistency test for the hip fractures. A: high calcium (800 mg/d or
483 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low
484 vitamin D (less than 800 IU/d)


2		
3 4	485	supplementary Figure 8. Inconsistency test for the vertebral fractures. A: high calcium (800 mg/d or
5	405	supprementary right of meonsistency test for the vertebrar fractures. A. high calcium (800 hig/d of
6	10.6	
7	486	higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin
8		
9 10	487	D (less than 800 IU/d)
11		
12		
13		
14	488	supplementary Figure 9. Heterogeneity test for the total fractures.
15 16		
17		
18		
19	400	
20	489	supplementary Figure 10. Heterogeneity test for the hip fractures.
21		
22 23		
23 24		
25	490	supplementary Figure 11. Heterogeneity test for the vertebral fractures.
26		
27		
28		
29 30		
31		supplementary Figure 11. Heterogeneity test for the vertebral fractures.
32		
33		
34		
35 36		
37		
38		
39		
40		
41 42		
42 43		
44		
45		
46		
47 48		
48 49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		
59		
60		



The selection of literature for included studies.


171x176mm (300 x 300 DPI)

The forest plot for the risk of total fractures. A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)

The forest plot for the risk of hip fractures. A: high calcium (800 mg/d or higher) ; B: low calcium (less than 800 mg/d) ; C: high vitamin D (800 IU/d or higher) ; D: low vitamin D (less than 800 IU/d)

Mean with 95%CI and 95%PrI

0.81 (0.61,1.08) (0.54,1.21)

0.59 (0.27,1.30) (0.20,1.81)

0.88 (0.60,1.30) (0.51,1.53)

0.98 (0.68,1.40) (0.59,1.62)

0.74 (0.32,1.69) (0.23,2.39)

1.09 (0.67,1.77) (0.55,2.17)

1.21 (0.77,1.90) (0.64,2.29)

1.48 (0.62,3.55) (0.43,5.12)

1.64 (0.70,3.87) (0.49,5.52)

1.11 (0.65,1.89) (0.52,2.35)

The forest plot for the risk of vertebral fractures. A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d) ; C: high vitamin D (800 IU/d or higher) ; D: low vitamin D (less than 800 IU/d)

Supplem	nentary eTable 1. Search Strategy for Each Database
	Search strategy
Pubmed	#1 "calcium"[MeSH Terms] OR "calcium"[All Fields]
	#2 "vitamin d"[MeSH Terms] OR "vitamin d"[All Fields] OR
	"ergocalciferols"[MeSH Terms] OR "ergocalciferols"[All Fields]
	#3 "fractures, bone"[MeSH Terms] OR ("fractures"[All Fields] AND "bone"
	Fields]) OR "bone fractures"[All Fields] OR "fracture"[All Fields]
	#4 #1 or #2
	#5 #3 and #4
	#5 #3 and #4

Supplementary Table 1 - Checklist of items to include when reporting a systematic review or meta-analysis

Section/to	pic	#	Checklist item	Reported on page #
⁰ TITLE				-
Title		1	Identify the report as a systematic review, meta-analysis, or both.	1
BABSTRACT				
⁴ Structured sum 5 6 7 8	nary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTI	ION			
Rationale		3	Describe the rationale for the review in the context of what is already known.	3
2 Objectives 3		4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
⁴ METHODS				-
6 Protocol and 7 registration 8		5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criter	ia	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
3 Information sou 4 5	rces	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
6 Search		8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5

 Page 1

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Section/topic	#	Checklist item	Reported on page #
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
3 Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	7
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
8 RESULTS	•	•	+
9 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	9-10
40 41 42 43 44 45 46		Page 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2			
Section/topic	#	Checklist item	Reported on page #
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9-10
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-10
⁴ DISCUSSION	<u>b</u>		-
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers).	10-12
PLimitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias).	12
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13
4 FUNDING	<u> </u>	•	•
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	13
28 29 30 31 32 33 34 35 36 37 38			
88 39 40 41 42 43 44 45 46		Page 3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 31 of 46

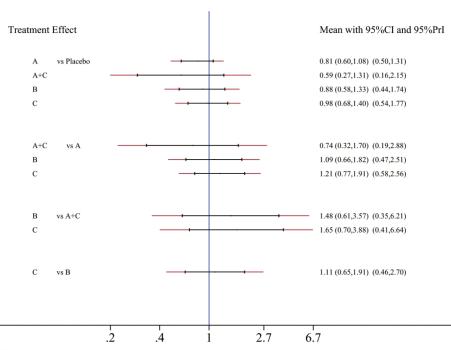
Source	Intervention	Women, No. (%)	Mean Age, y	Previous Fracture	Calcium Intake, mg/d	Baseline 25OHD, ng/mL	Treatment Duration
venell et al, 2004	Calcium(1 g/d) (n = 29)	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
United Kingdom)	No treatment $(n = 35)$						
1 2	D ₃ (800IU/d) (n = 35)	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
3	No treatment $(n = 35)$						
4 5	Calcium $(1g/d) + D_3$	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
б	(800IU/d) (n = 35)						
7 8	No treatment (n = 35)						
9 Baron et al, 1999	Calcium: 1.2 g/d (n = 464)	258 (28)	61.0	NA	877	NA	4 y
0 United States)	Placebo (n = 466)						
2 Dawson-Hughes et al,	Calcium $(0.5g/d) + D_3$	213 (54)	71.1	NA	729	29.6 °	3 у
3 4 97 (United States)	(700IU/d) (n = 187)						- 5
5	Placebo (n = 202)						
6 Frant et al, 2005	Calcium(1 g/d) (n = 1311)	2241 (85)	77	Yes	NA	15.2 ^{e,f}	2-5 y
8 Synited Kingdom)	Placebo (n = 1332)	2211 (03)		105	1 12 1	10.2	239
9 <i>9</i>) 0	$D_{3}(800IU/d) (n = 1343)$	2264 (85)	77	Yes	NA	15.2 ^{e,f}	2-5 y
1 2	Placebo (n = 1332)	2204 (83)		105	NA NA	13.2	2-5 y
3		2222 (0.5)				1 5 0 0 f	
4 5	Calcium $(1g/d) + D_3$	2232 (85)	77.5	Yes	NA	15.2 ^{e,f}	2-5 y
6	(800IU/d) (n = 1306)						
7	Placebo (n = 1332)			4			
8 Jansson and Roos, 9	Calcium (1g/d) (n = 25)	50 (100)	65.9	Yes	NA	NA	3 у
987 (Sweden)	Placebo (n = 25)						
1 Harwood et al, 2004 2	D_3 (300000 IU once) (n = 38)	75 (100)	80.5	Yes	NA	11.6	1 y
Bunited Kingdom) 4	No treatment $(n = 37)$						
5	Calcium $(1g/d) + D_2$	112 (100)	81.7	Yes	NA	11.9	1 y
6 7	(300000 IU once) (n = 36)						
8	Calcium $(1g/d) + D_3$						
9 0	(800IU/d) (n = 39)						
1	No treatment $(n = 37)$						
2 lin et al, 2017 3	D ₃ (4000 IU/d)(n = 102)	150 (49)	71.7	Partial ^c	710	20.1	1 y
(United Kingdom)	D ₃ (2000 IU/d)(n = 102)						
5 6	Placebo (n = 101)						
ackson et al, 2006	Calcium (1g/d) + D ₃ (400	7972 (100)	62.4	Partial ^c	1151	18.9 °	7у
8 United States)	IU/d) (n = 4015)						

Lips et al, 1996 (The Netherlands)	Placebo (n = 3957)						
	400 IU/d (n = 1291)	1916 (74)	80.0	No hip fracture	868	10.6 °	3-4 y
	Placebo (n = 1287)	1910 (74)	00.0	no mp naetare	000	10.0	549
Liu et al, 2015	Calcium $(1.5g/d) + D_3 (600)$	98 (100)	62.1	No	1500	NA	1
(O hina)	IU/d) (n = 50)	98 (100)	02.1	NO	1500	INA	1 y
1	Placebo (n = 48)						
2 Maitri et al, 2011		25 (52)	59.0	NT 4	026	25.2	4
4	$D_3(2000 \text{ IU/d})(n = 23)$	25 (53)	58.0	NA	926	25.3	4 mo
(United States)	Placebo (n $= 24$)						
6 Peacock et al, 2000 7	Calcium (0.75g/d) (n = 126)	187 (72)	73.8	Partial ^c	597	25.0	4 y
(genited States)	Placebo (n = 135)						
Porthouse et al, 2005	Calcium $(1g/d) + D_3$ (800	3314 (100)	76.8	Partial ^c	1080	NA	1.5-3.5 y
(United Kingdom) 22	IU/d) (n = 1321)						
23	No treatment (n = 1993)						
24 Pfince et al, 2006 25	Calcium (0.48g/d) (n = 730)	1460 (100)	75.2	Partial ^c	915	31.0 ^e	5 y
(Australia)	Placebo (n = 730)						
7 Recker et al, 1996 28	Calcium (1.2 g/d) (n = 95)	197 (100)	73.5	Partial ^c	434	25.5 °	4 y
(9 nited States)	Placebo (n = 102)						
30 Reid et al, 1993	Calcium (1 g/d) (n = 68)	135 (100)	58	No vertebral	750	37.5	4 y
(New Zealand)	Placebo ($n = 67$)			fracture			
13 Bapeid et al, 2006	Calcium (1 g/d) (n = 732)	1471 (100)	74.3	Partial ^c	857	20.7	5 y
(New Zealand)	Placebo (n = 739)						
16 Riggs et al, 1998	Calcium (1.6 g/d) (n = 119)	236 (100)	66.2	No	714	30.1	4 y
(United States)	Placebo (n = 117)						-
0	$Calcium(1g/d) + D_3$	3432 (100)	67.3	Partial	957	19.8 °	3 у
Shlovaara et al, 2010	(800 IU/d) (n = 1718)	0.02(100)	0710			1710	U J
2 (Finland) 3	No treatment $(n = 1714)$						
14 15	D ₃ (500000 IU every year)	2258 (100)	76.1	Partial ^c	976	19.8 °	3-5 y
Sanders et al, 2010	(n = 1131)	2238 (100)	70.1	1 artiai	570	17.0	5-5 y
(Australia) 18	Placebo (n = 1127)						
9		5086 (54)	70.1	Dential C	()5 d	22.68	2
50 Smith et al, 2007 51	D_3 (300000 IU every year)	5086 (54)	79.1	Partial ^c	625 ^d	22.6 °	3 у
(United Kingdom)	(n = 4727)						
<u>3</u> 4	Placebo (n = 4713)				_		
D ivedi et al, 2003	D ₃ (100000 IU every 4 mo)	649 (24)	74.8	NA	742	NA	5 y
6 (United Kingdom)	(n = 1345)						
8	Placebo (n = 1341)						

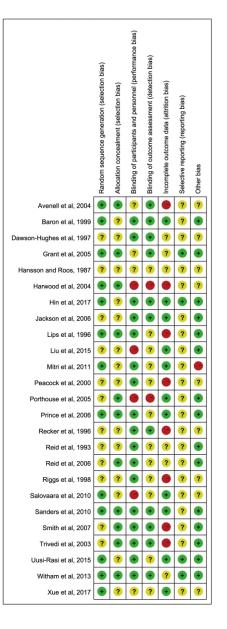
1 2											
3 4 ^(Finland)	Placebo (n = 102)										
5 6 Witham et al, 2013	D ₃ (100000 IU every 3 mo)	77 (49)	76.8	NA	1125	18.0	1 y				
7 (United Kingdom) 8	(n = 80)										
9	Placebo $(n = 79)$										
10	Calcium (0.6g/d) + D ₃ (800	312 (100)	63.6	Partial ^c	NA	30.8	1 y				
12 12 12	IU/d) (n = 139)										
1(€hina) 13	Placebo (n = 173)										
14 15											
16	Abbreviation: 250HD	, 25-hydroxyvi	tamin D; NA,	not available							
17	^a Women accounted	for 83% of tot	al participant	s in this trial, b	out detailed d	ata not available	for				
18 19	each group.										
20	^b Mean age is 78 y	for total parti	cipants in thi	s trial, but det	ailed data no	t available for e	ach				
21	group.										
22	^c This trial reported p	artial participa	onts with fract	ure history.							
23 24	^d Partial participants	were assessed	for dietary ca	lcium intake.							
25	^e Partial participants				concentration	IS.					
26	f The RECORD trial re						60				
27	participants was 15.2										
28 29		0			U	·					
30											
31											
32	supplementary Ta	ble 2. The c	haracteristic	s of the inclu	ded studies.						
33 34											
35											
36											
37											
38 39											
40											
41											
42 43											
43 44											
45											
46											
47 48											
49											
50											
51											
52 53											
54											
55											
56											
57 58											
59											
60											

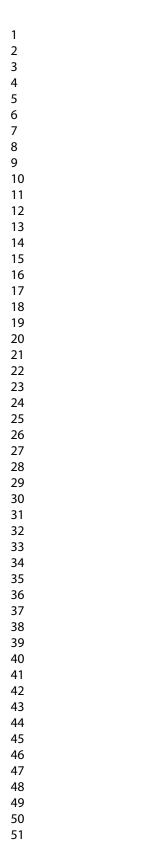
	Treatment		No. of Participants				
Source	Duration	Intervention	Total Fracture	Hip fracture	Vertebral Fractu		
Avenell et al, 2004	3.8 y	Calcium(1 g/d) (n = 29)	4	1	0		
(United Kingdom)		D ₃ (800IU/d) (n = 35)	3	0	0		
		Calcium $(1g/d) + D_3$	2	1	0		
		(800IU/d) (n = 35)					
		No treatment $(n = 35)$	4	1	1		
Baron et al, 1999	4 y	Calcium: 1.2 g/d (n = 464)	4	1			
(United States)		Placebo (n = 466)	14	0			
Dawson-Hughes et al, 1997	/ 3 y	Calcium $(0.5g/d) + D_3$		0			
(United States)		(700IU/d) (n = 187)					
		Placebo (n = 202)		1			
Grant et al, 2005	2-5 у	Calcium(1 g/d) (n = 1311)	166	49	3		
(United Kingdom)		D ₃ (800IU/d) (n = 1343)	188	47	4		
		Calcium $(1g/d) + D_3$	165	46	0		
		(800IU/d) (n = 1306)					
		Placebo (n = 1332)	179	41	1		
Hansson and Roos, 1987	3 у	Calcium (1g/d) (n = 25)			1		
(Sweden)		Placebo (n = 25)	N.		1		
Harwood et al, 2004	1 y	D ₃ (300000 IU once) (n = 38)	0	0			
(United Kingdom)		Calcium $(1g/d) + D_2$	6	1			
		(300000 IU once) (n = 36)					
		Calcium $(1g/d) + D_3$					
		(800IU/d) (n = 39)	•				
		No treatment $(n = 37)$	5	1			
Hin et al, 2017	1 y	D ₃ (4000 IU/d)(n = 102)	6				
(United Kingdom)		D ₃ (2000 IU/d)(n = 102)					
		Placebo (n = 101)	1				
Jackson et al, 2006	7 у	Calcium (1g/d) + D ₃ (400		70			
(United States)		IU/d) (n = 4015)					
		Placebo (n = 3957)		61			

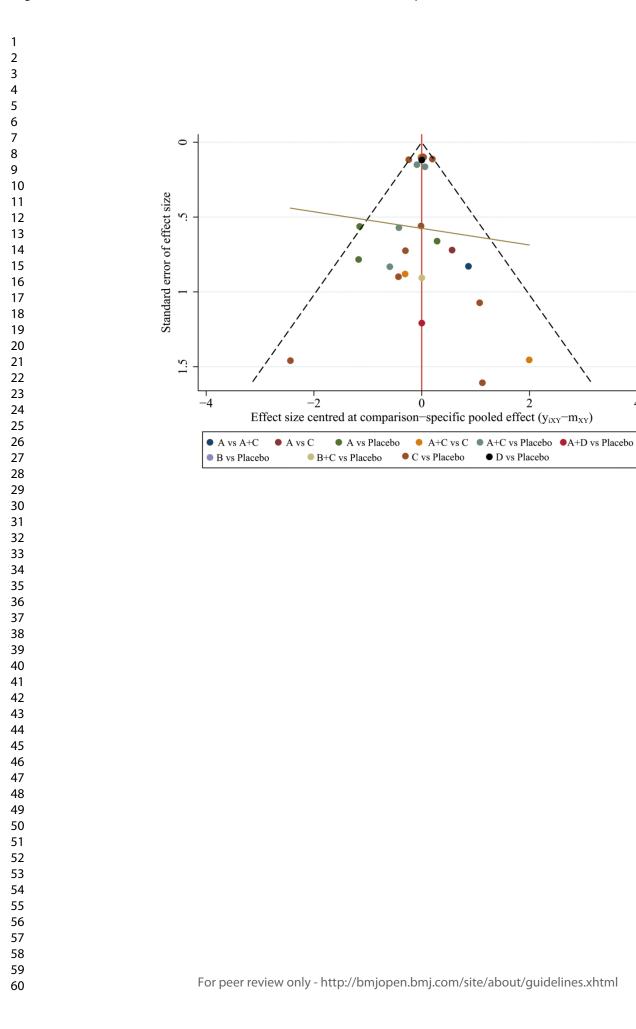
Page 35 of 46

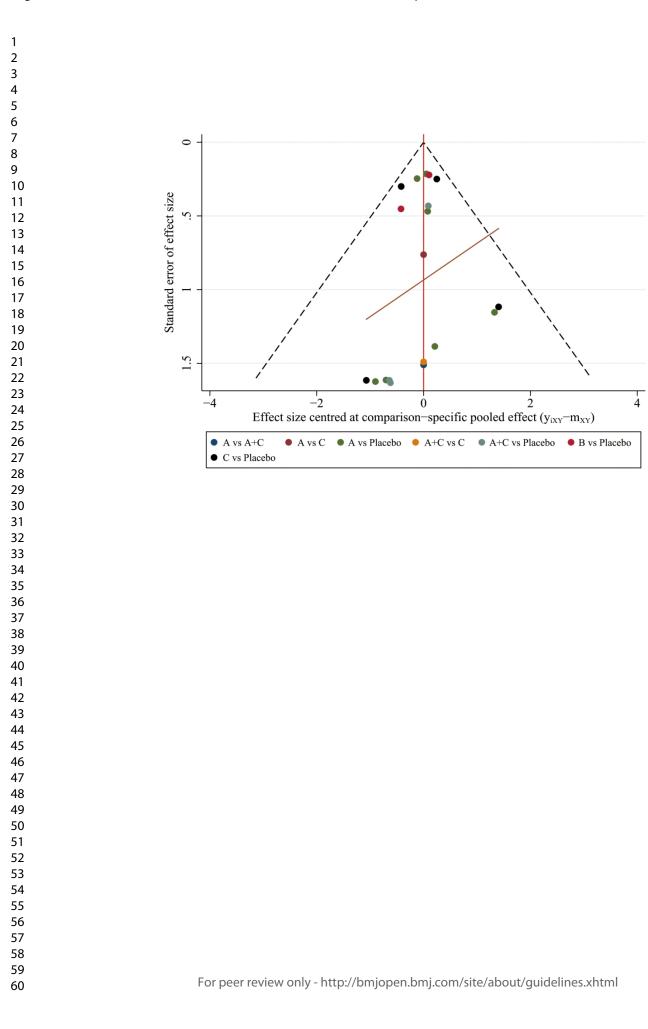

BMJ Open

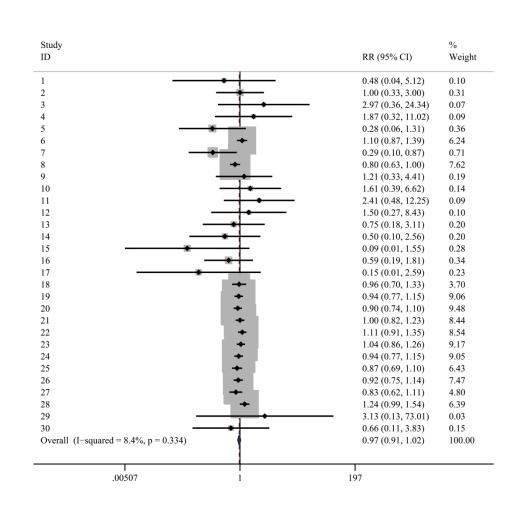
Lips et al, 1996	3-4 y	400 IU/d (n = 1291)	135	58	
(The Netherlands)		Placebo (n = 1287)	122	48	
Liu et al, 2015	1 y	Calcium (1.5g/d) + D ₃ (600	1		
(China)		IU/d) (n = 50)			
		Placebo (n = 48)	2		
Mitri et al, 2011	4 mo	D ₃ (2000 IU/d)(n = 23)	1		
(United States)		Placebo (n = 24)	0		
Peacock et al, 2000	4 y	Calcium (0.75g/d) (n = 126)			7
(United States)		Placebo (n = 135)			13
Porthouse et al, 2005	1.5-3.5 y	Calcium $(1g/d) + D_3$ (800	58	8	
(United Kingdom)		IU/d) (n = 1321)			
		No treatment (n = 1993)	91	17	
Prince et al, 2006	5 у	Calcium (0.48g/d) (n = 730)	110	11	38
(Australia)		Placebo (n = 730)	126	6	39
Recker et al, 1996	4 y	Calcium (1.2 g/d) (n = 95)			27
(United States)		Placebo (n = 102)			34
Reid et al, 1993	4 y	Calcium (1 g/d) (n = 68)	2	0	0
(New Zealand)		Placebo (n = 67)	7	2	1
Reid et al, 2006	5 у	Calcium (1 g/d) (n = 732)	134	17	27
(New Zealand)		Placebo (n = 739)	147	5	38
Riggs et al, 1998	4 y	Calcium (1.6 g/d) (n = 119)	4		8
(United States)		Placebo (n = 117)			9
	3 у	$Calcium(1g/d) + D_3$	78	4	9
Salovaara et al, 2010 (Finland)		(800 IU/d) (n = 1718)			
(Filland)		No treatment $(n = 1714)$	94	2	13
Sandana et al. 2010	3-5 y	D ₃ (500000 IU every year)	155	19	35
Sanders et al, 2010 (Australia)		(n = 1131)			
(Austrana)		Placebo (n = 1127)	125	15	28
Smith et al, 2007	3 у	D ₃ (300000 IU every year)		66	
(United Kingdom)		(n = 4727)			
(Cinted Kingdom)		Placebo (n = 4713)		44	
Trivedi et al, 2003	5 у	D ₃ (100000 IU every 4 mo)	119	21	13
(United Kingdom)		(n = 1345)			
(United Kingdom)		Placebo (n = 1341)	149	24	28

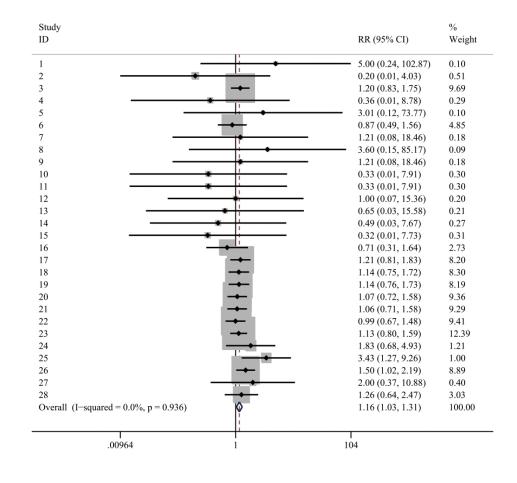

Uusi-Rasi et al, 2015	2 у	D ₃ (800 IU/d) (n = 102)	6	2	
(Finland)		Placebo (n = 102)	6	0	
Witham et al, 2013 (United Kingdom)	1 y	D ₃ (100000 IU every 3 mo)	2		
		(n = 80)			
		Placebo ($n = 79$)	3		
	1 y	Calcium (0.6g/d) + D ₃ (800	3		
Xue et al, 2017 (China)		IU/d) (n = 139)			
		Placebo (n = 173)	2		

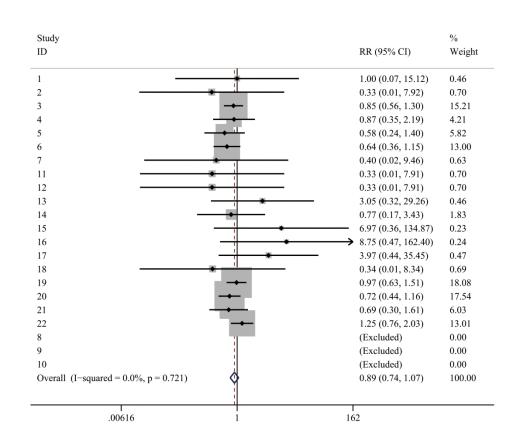

Supplementary Table 3. The detailed data of outcomes


48	
49	
50	
51	
52	
53	
54	


A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)


			95%CI	Loop-specific
Loop		IF	(truncated)	$Heterogeneity(t^2)$
A-A+C-C A-A+C-Placebo	•	2.00 0.13	(0.00,4.87) (0.00,0.65)	0.000
A–C–Placebo		0.11	(0.00,0.75)	0.043
A+C-C-Placebo	•	0.02	(0.00,0.40)	0.009
	0 2 3 4 5			


BMJ Open


3					
4					
5					
6					
7					
8					
9				95%CI	Loop-specific
10					
11	Loop		IF	(truncated)	Heterogeneity(t ²)
12					
13					
14					
15	A-A+C-Placebo		0.77	(0.00,1.78)	0.000
16					
17	A-A+C-C	*	0.41	(0.00,3.63)	0.000
18					
19	A+C-C-Placebo	•	0.23	(0.00,0.83)	0.000
20		T			
21	A-C-Placebo		0.04	(0.00,0.78)	0.022
22		T			
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
JT					

			95%CI	Loop-specific
Loop		IF	(truncated)	Heterogeneity(t ²)
A+C-C-Placebo		1.78	(0.00,4.83)	0.000
A-A+C-Placebo		1.72	(0.00,4.80)	0.000
A–C–Placebo	-	0.06	(0.00,1.62)	0.000
	0 2 3 4 5			

*** Loop(s) [A-A+C-C] are formed only by multi-arm trial(s) - Consistent by definition

BMJ Open

Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their combination: a network meta-analysis of randomized controlled trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024595.R2
Article Type:	Original research
Date Submitted by the Author:	02-Aug-2019
Complete List of Authors:	Hu, Zhi-Chao; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Tang, Qian; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Sang , Chang-Min ; Department of Orthopaedics, The Affiliated Hospital of Jiujiang Medical College, Jiujiang, Jiangxi, 332000, China., Department of Orthopaedics Tang, Li; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Li, Xiaobin; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Zheng, Gang; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Feng, Zhen-Hua; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Kuan, Jiang-Wei; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Shen, Zhi-Hao; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Shen, Zhi-Hao; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.; Hainan Medical College, Haikou, Hainan, China. Shen, Li-Yan; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical Universi

	Wu, Ai-Min; The Second Affiliated Hospital and Yuying Children's Hospita of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Diabetes and endocrinology, Nutrition and metabolism
Keywords:	Calcium, Vitamin D, Fractures, network meta-analysis

Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their

2 3
4
5
6
7
/ 8
o 9
9
10
11 12
12 13
14 15
15 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
36 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

1

combination: a network meta-analysis of randomized controlled trials
Zhi-Chao Hu^{1,2,3}, Qian Tang^{1,2,3}, Chang-Min Sang⁴, Li Tang^{1,2,3}, Xiao-Bin Li^{1,2,3}, Gang Zheng^{1,2,3},
Zhen-Hua Feng^{1,2,3}, Jiang-Wei Xuan^{1,2,3}, Zhi-Hao Shen^{1,2,3}, Li-Yan Shen^{1,2,3}, Wen-Fei Ni^{1,2,3,*} and
Ai-Min Wu^{1,2,3,*}
Affiliations:

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.

10 2. The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.

11 3. Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou,

12 Zhejiang, 325027, China.

13 4. Department of Orthopaedics, The Affiliated Hospital of Jiujiang Medical College, Jiujiang, Jiangxi,

14 332000, China.

- 15 ***Correspondence author:**
- 16 Ai-Min Wu, email: aiminwu@wmu.edu.cn
- 17 Wen-Fei Ni, email: wenfeini@yeah.net
- 18 **Phone:** +86 0577 88002814;
- 19 **Fax:** +86 057788002823;
- 20
- 21 Zhi-Chao Hu and Qian Tang contributed equally to this work.

2
2
3
4
5
3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 22 23 24 25 26 27 28 9 30 31 23 34 35 33 34 35 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37
7
/
8
9
10
11
11
12
13
14
15
10
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
50
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

23	Abstract
24	Objective Inconsistent findings in regard to association between different concentrations of vitamin D,
25	calcium or their combination and the risk of fracture have been reported during the past decade in
26	community-dwelling older people. This study was designed to compare the fracture risk using different
27	concentrations of vitamin D, calcium or their combination.
28	Design A systematic review and network meta-analysis.
29	Data sources Randomized controlled trials in PubMed, Cochrane library, and EMBASE databases
30	were systematically searched from the inception dates to December 31, 2017.
31	Outcomes Total fracture was defined as the primary outcome. Secondary outcomes were hip fracture
32	and vertebral fracture. Due to the consistency of the original studies, a consistency model was adopted.
33	Results A total of 25 randomized controlled trials involving 43510 participants fulfilled the inclusion
34	criteria. There was no evidence that the risk of total fracture was reduced by using different
35	concentrations of vitamin D, calcium or their combination compared with placebo or no treatment. No
36	significant associations were found between calcium, vitamin D, or combined calcium and vitamin D
37	supplements and the incidence of hip, or vertebral fractures.
38	Conclusions The use of supplements that included calcium, vitamin D, or both was not found to be
39	better than placebo or no treatment in terms of risk of fractures among community-dwelling older
40	adults. It means the routine use of these supplements in community-dwelling older people should be
41	treated more carefully.
42	Prospero registration number CRD42017079624

43 Keywords: Calcium; Vitamin D; Fractures; network meta-analysis

44 Strengths and limitations of this study

 This systematic review and meta-analysis combined the evidence from randomized controlled trials. • Our findings may not support the routine use of these supplements in community-dwelling older people. • This work does not necessarily preclude any benefit of vitamin D and calcium supplementation in older, frail individuals. Potential missing data and meta-biases, heterogeneity, which may limit the quality of evidence. Introduction Clinical fractures of the elderly represent a worldwide public health problem that leads to illness and social burden. The patients with osteoporosis in the European Union were estimated to be 27.5 million in 2010, and 3.5 million new fragility fractures were sustained¹. In Asia, the average cost of osteoporotic fractures accounted for 18.95% of the countries' 2014 gross domestic product (GDP)/capita and increased annually²⁻⁴. The overall prevalence of osteoporosis or low bone mass in non-institutional population over the age of 50 in the USA was estimated at 10.3% and 43.9%, respectively, which means that 10.2 million elderly people had osteoporosis and 43.4 million people had low bone mass in 2010⁵. With the demographic trend of ageing and the predicted increase in life expectancy, the cost of fracture treatment is expected to rise. Dietary allowances for calcium range from 700 to 1200 mg/d and vitamin D of 600-800 IU/d have long been recommended for the prevention of osteoporotic fractures in the elderly⁶⁷. The supplements of calcium and vitamin D are commonly taken to maintain bone health. However, the previous randomized controlled trials (RCT) and meta-analyses concerning vitamin D, calcium, or their combination for fractures yielded different efficacy outcomes. For instance, two meta-analyses demonstrated calcium or vitamin D supplementation alone has a small benefit on bone

BMJ Open

67	mineral density (BMD), but no clinically important to prevent fractures ⁸ , while an updated
68	meta-analysis and a pooled analysis found calcium plus vitamin D supplementation can significantly
69	reduce hip fractures by 30% and total fractures by 15% ^{10 11} . Two RCTs reported that low dose of
70	vitamin D supplementation (less than 800 IU/d) can reduce the incidence of falls ¹² and may prevent
71	fractures without adverse effects ¹³ , but other RCTs showed no significant reduction in the incidence of
72	hip or other peripheral fractures ¹⁴ ¹⁵ and its possible effects were seen only in patients with initial
73	calcium insufficiency. Based on the evidence from meta-analysis, Bischoff-Ferrari et al ¹⁶ illustrated
74	that high-dose vitamin D supplementation (800 IU/d or higher) not only reduced the risk of falls and
75	hip fractures, but also prevented non-vertebral fractures. In contrast, a study reported annual high-dose
76	oral vitamin D resulted in an increased risk of falls and fractures ¹⁷ . On the other hand, low-dose
77	calcium supplementation (less than 800mg/d) effectively led to a sustained reduction in the rate of bone
78	loss ¹⁸ and turnover. Although it was also reported that the high dose of calcium (800 mg/d or higher)
79	was associated with a lower risk of clinical fractures ¹⁹ . The high-dose calcium with high-dose vitamin
80	D can't prevent fractures according to the evidence from reported RCT 20, but a meta-analysis
81	supported their combination can prevent bone loss and significantly reduce the risk of hip fractures and
82	all osteoporotic fractures ²¹ . Thus, it's challenging to conclude a dose-response relation between the
83	intakes of vitamin D, calcium, or their combination and the main outcomes in these heterogeneous
84	literatures.
85	Therefore, this study was designed to compare the fracture risk using different concentrations of
86	vitamin D, calcium or their combination, and comprehensively evaluate the optimal concentration to

- 87 guide clinical practice and public prevention in community-dwelling older people.
- 88 Methods

89 Search strategy and selection criteria

This review and meta-analysis is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension statement for network meta-analysis. Our meta-analysis was registered prospectively in PROSPERO (CRD42017079624) and the Checklist PRISMA 2009 (**Supplementary Table 1**) will be used and check our final reports ²².

We restricted our meta-analysis to the inclusion criteria should meet following details: (1) RCTs; (2) Interventions must be one of the following three: vitamin D only, calcium only, both vitamin D and calcium; (3) Complete outcome data of fracture; (4) Trials enrolling adults older than 50 years and living in their communities; (5) Only studies that lasted more than a year. Exclusion criteria were (1) Calcium or vitamin D combined with other therapies (eg: hormones, exercise); (2) Trials in which vitamin D analogues (eg: calcitriol) or hydroxylated vitamin D were used; (3) Trials in which dietary intake of calcium or vitamin D (eg: from milk) was evaluated; (4) Patients suffering from illness or long-term use of certain drugs affecting the stability of the calcium metabolism, such as metabolic bone disease, bone tumour, treatment of steroids and so on.

Participants must be randomly assigned to two or more following groups: (1) high calcium (800 mg/d or higher) only; (2) low calcium (less than 800 mg/d) only; (3) high vitamin D (800 IU/d or higher) only; (4) low vitamin D (less than 800 IU/d) only; (5) high calcium (800 mg/d or higher) + high vitamin D (800 IU/d or higher); (6) high calcium + low vitamin D (less than 800 IU/d); (7) low calcium (less than 800 mg/d) + high vitamin D; (8) low calcium + low vitamin D; (9) placebo. The interventions should be compared with placebo.

109 Two authors (ZHF and GZ) independently searched the electronic literature database of PubMed,

110 Embase, Cochrane database on December 31, 2017 (detailed search strategies are reported

BMJ Open

in supplementary eTable 1). Related articles and reference lists were searched to avoid original miss. The reference studies of previous systematic reviews, meta-analysis, and included studies were manually searched to avoid initial miss. After 2 authors assessed the potentially eligible studies independently, any disagreement was discussed and resolved with the third independent author (QT).

Data collection and assessment of risk of bias

Two reviewers (ZHS and XBL) independently extracted data, and the third reviewer (LT) checked the consistency between them. A standard data extracted form was used at this stage, including the authors, publishing date, country, participant characteristics; doses of calcium, vitamin D, or their combination; dietary calcium intake; baseline serum 25-hydroxyvitamin D concentration; and trial duration. For continuous outcomes, the mean, SD (standard deviation) and participant number will be extracted. For dichotomous outcomes, we extracted the total numbers and the numbers of events of both groups. The data in other forms was recalculated when possible to enable pooled analysis.

We used the Cochrane risk of bias tool to assess risk bias of included studies. The tool has seven domains including random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting and other bias. The classification of the judgment for each domain was low risk of bias, high risk of bias, or unclear risk of bias and two authors (ZHF and GZ) independently evaluated the risk of studies.

128 Data synthesis and statistical analysis

The data was extracted and input into the STATA software (version 12.0; StataCorp, College Station, TX, USA) for network meta-analysis. And we generated network plots for each outcome to illustrate which interventions had been compared directly in the included studies. Network meta-analysis is an extension of standard meta-analysis to compare multiple treatments based on

133	randomized controlled trial evidence, which forms a connected network of comparisons. Treatment
134	effect estimates from network meta-analysis exploit both the direct comparisons within trials and the
135	indirect comparisons across trials. To choose the random effects or fixed effects model, we either make
136	a judgement about what is most likely to be appropriate based on the assumptions of the different
137	models or conduct both fixed or random effects and compare which seems to fit the data better ²³ .
138	Relative risk (RR) with 95% confidence intervals (CIs) was calculated for dichotomous outcomes
139	while weighted mean difference (WMD) with 95% CIs for the continuous. Inconsistency refers to
140	differences between direct and various indirect effect estimates for the same comparison. To assess
141	inconsistency, we estimated the inconsistency factors in closed loop based on the method described by
142	Chaimani et al ²⁴ . The heterogeneity in each closed loop was estimated by utilizing inconsistency factor
143	(IF). If the 95% confidence intervals (95% CI) of IF values are not truncated at zero, it suggests that the
144	inconsistency among studies has statistical significance. We used the surface under the cumulative
145	ranking probabilities (SUCRA) to indicate which treatment was the best one. The funnel plot was used
146	to identify possible publication bias if the number of studies was larger than 10.
147	Patient and public involvement
148	No patients were involved in setting the research question or the outcome measures, and no patients
149	were involved in developing plans for design or implementation of the study. Furthermore, no patients
150	were asked to advice on interpretation or writing up of results. Since this meta-analysis used
151	aggregated data from previous trials, it is unable to disseminate the results of the research to study
152	participants directly.
153	Result

154 Data Retrieval

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
53 54
55
56
57
58
59

60

155 In summary, a total of 7909 potential records were initially identified through PubMed (5187), 156 Embase (2688), Cochrane Data base (34). Based on our review of the title and abstract, 99 full-text 157 papers were reviewed and 25 studies^{13 17 19 20 25-45} met inclusion criteria (Figure 1). 158 **Study and Patient Characteristics** 159 The characteristics of all 25 included studies were summarized and shown in supplementary Table 160 2. And the detailed data of outcomes was collected in **supplementary Table 3**. The papers had similar 161 distributions of sex, age, country, intervention and all of them were community-dwelling older people. 162 Hansson et al²⁹ did not report the residential status of participants, although a previous meta-analysis 163 classified this status as community. The trial by Hansson et al was included, but a sensitivity analysis 164 was performed that excluded that trial (supplementary Figure 1). 165 **Supplementary Figure 2** showed the assessment of the risk of bias. All studies were randomized; 166 17 were double-blind, placebo-controlled trials; 13 trials described an adequate random sequence 167 generation process; and 11 trials described the methods used for allocation concealment. No obvious 168 publication bias was reported according to the supplementary Figure 3, supplementary Figure 4 and 169 supplementary Figure 5. 170 **Inconsistence and heterogeneity check** 171 The statistical inconsistency between direct and indirect comparisons was generally low according to 172 inconsistency test because the CI values included zero (supplementary Figure 6, supplementary 173 Figure 7, supplementary Figure 8). Therefore, we adopted a consistency model in all three groups. 174 Meanwhile, the global heterogeneity parameter I^2 values were 8.4%, 0% and 0% respectively, which

- 175 indicated no obvious heterogeneity was observed in all these results (supplementary Figure 9,
- 176 supplementary Figure 10, supplementary Figure 11).

Primary outcome: total fracture

For estimating the vitamin D, calcium or their combination efficacy against total fractures, we looked at data from 24965 individuals from 18 studies^{13 17 19 20 25 26 28 30 31 33-35 37 39 40 43-45}. Pooled estimates included 15 studies with one treatment, 1 study with two treatments, and 2 studies with three treatments.

- The network plot of comparisons on total fractures was shown in **Figure 2A**. The forest plot for the network meta-analysis was shown in **Figure 3**. The RR values and 95% CIs are summarized in **Figure 3**. The direct and indirect comparisons indicated no differences among the vitamin D, calcium or their combination that remained in the main network. Neither do the statistical differences between interventions and placebo (P<0.05). So we didn't continue to make ranking graph of distribution of probabilities on total fractures.
- •

188 Secondary outcomes: hip fracture and vertebral fracture

189 A total of 41845 individuals were included from 16 studies^{13 17 19 20 25-28 30 32 33 37 39 40 42 43 for evaluate}

190 the drug efficacy against hip fractures. Pooled estimates included 13 studies with one treatment, 1 study

191 with two treatments, and two studies with three treatments.

The network plot of comparisons on hip fractures was shown in **Figure 2B**. The forest plot for the network meta-analysis was shown in **Figure 4**. The RR values and 95% CIs are summarized in **Figure** 4. The direct and indirect comparisons indicated no differences among the vitamin D, calcium or their combination that remained in the main network. Neither do the statistical differences between drug experimental groups and placebo (P<0.05). So we didn't continue to make ranking graph of distribution of probabilities on total fractures.

198 A total of 17612 individuals were collected from 12 studies^{13 17 19 20 25 28 29 36 38-41} involving vertebral

BMJ Open

fractures. Pooled estimates included 10 studies with one treatment, and two studies with three

treatments. The network plot of comparisons on vertebral fractures was shown in Figure 2C. The forest plot for the network meta-analysis was shown in Figure 5. The RR values and 95% CIs are summarized in Figure 5. The direct and indirect comparisons indicated no differences among the vitamin D, calcium or their combination that remained in the main network. Neither do the statistical differences between drug experimental groups and placebo (P<0.05). So we didn't continue to make ranking graph of distribution of probabilities on total fractures. In a separate sensitivity analysis, we excluded Hansson's study²⁹ (supplementary Figure 1). However, there was still no significant association of vitamin D, calcium or their combination with total fracture. Discussion Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture. We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses of vitamin D with calcium on fractures. Results of this meta-analysis showed that calcium, calcium plus vitamin D, and vitamin D supplementation alone were not significantly associated with a lower incidence of hip, vertebral, or total fractures in community-dwelling older adults. Sensitivity analyses that excluded low-quality trials and studies that exclusively enrolled patients with particular medical conditions did not alter these results. A meta-analysis conducted by Jia-Guo Zhao et al⁴⁶ showed that no significant difference was found in the incidence of hip or other fractures, which was similar to our result. However, the object of Zhao's study was to investigate whether calcium, vitamin D, or combined calcium and vitamin D

supplement are associated with a lower facture incidence while our study was designed to evaluate the optimal concentration of them. Meanwhile, in Zhao's meta-analysis, the participants of the included study reported by Massart⁴⁷ were adult maintenance hemodialysis patients, which may result in the imbalance of calcium in the body. Patients on hemodialysis may also be receiving 1,25-dihydroxyvitamin D, which may affect their response to vitamin D supplementation. So we did not include that trial in our network meta-analysis. What's more, we didn't include studies that lasted less than a year because we thought this time-frame was too short to see anti-fracture efficacy. And we suspected that a network meta-analysis might be a more suitable choice concerning all these different interventions mixed. Bischoff-Ferrari et al ⁴⁸ reported that high-dose vitamin D supplementation (800 IU/d or higher) played an important role in the reduction of the risk of falls and hip fractures, as well as prevented non-vertebral fractures in adults 65 years or older. However, their findings may have been influenced by the trial of Chapuy et al 49, which only enrolled participants living in an institution. What's more, differences in conclusions of previous meta-analyses and the current meta-analysis were due to the recently published trials which reported neutral or harmful associations of vitamin D supplementation and fracture incidence more and more. Study findings here indicated that vitamin D might result in a higher risk for hip fracture, but this conclusion did not reach statistical significance. This finding may be attributable to lack of statistical power in this meta-analysis. Most recently there was a meta-analysis published in the Lancet by Bolland et al⁵⁰, whose findings suggested that vitamin D supplementation does not prevent fractures or falls, or have clinically meaningful effects on bone mineral density. Although it was similar to our study to some extent, they are really different. First, we only included community-dwelling older people. We found that some

BMJ Open

meta-analyses equated community-dwelling older people with those in nursing institution. The lack of exercise, dietary intake and exposure to sunlight made people in nursing institution turned more susceptible to the use of supplements including vitamin D, calcium or their combination. Although the studies involving participants living in nursing institution were only a small part, but it could change the whole outcomes and produce false positive results. We found only Avenell's study paid attention to this question when they conducted a subgroup analysis, but they did not discussed separately. Meanwhile, we only enrolled adults older than 50 years and trial duration more than 1 year to reduce the statistical heterogeneity in network meta-analysis. Furthermore, the current analyses included calcium supplementation, where the Bolland's study focused on vitamin D. However, possible limitations of this study protocol include potential missing data and meta-biases, heterogeneity, which may limit the quality of evidence. Some RCTs were of poor quality and, for example, used unclear allocation concealment. So we made a sensitivity analysis by excluding low-quality trials. Meanwhile, some study characteristics such as baseline serum 25-hydroxyvitamin D concentrations might be to contribute heterogeneity so future analyses are still needed to explore this potential heterogeneity. What's more, we combined bolus dosing by injection with oral supplements taken daily/monthly/yearly, which might have different effects on vitamin D status in the body. In addition, the report ignored the effect of treatment with vitamin D on plasma 25-hydroxy-vitamin D concentrations and sub-types of fracture, such as pathologic fractures; this work does not necessarily preclude any benefit of vitamin D and calcium supplementation in older, frail individuals. Conclusions In this meta-analysis of randomized clinical trials, we found that the use of different concentrations of

vitamin D, calcium or their combination in community-dwelling older adults was not associated with a

lower risk of fractures. Our findings may not support the routine use of these supplements incommunity-dwelling older people.

267 Contributors

ZCH and AMW conceived the study. The search strategy was developed by LT and XBL. ZHF, GZ and QT will complete electronic search, select publications and assess their eligibility. ZHS and XBL will extract information of the included studies after screening. JWX will check the data entry for accuracy and completeness. ZCH and LT will give advice for data analysis and presentation of study result. LYS and CMS contributed to the text revision. WFN and AMW supervised the overall conduct of the study. All the authors drafted and critically reviewed and approved the final manuscript. Funds and Acknowledgement This work was funded by the National Natural Science Foundation of China (81501933, 81572214), Zhejiang Provincial Natural Science Foundation of China (LY14H060008), Zhejiang Provincial Medical Technology Foundation of China (2018254309, 2015111494), Wenzhou leading talent innovative project (RX2016004) and Wenzhou Municipal Science and Technology Bureau

279 (Y20170389). The funders had no role in the design, execution, or writing of the study.

- **Conflicts of interest**
- 281 None declared
- 282 Patient consent
- 283 Not required.
- **Provenance and peer review**

285 Not commissioned; externally peer reviewed.

286 Data availability statement

BMJ Open

1 2		
3 4 5	287	All data relevant to the study are included in the article or uploaded as supplementary information.
6 7	288	References
8 9	289	1. Svedbom A, Hernlund E, Ivergard M, et al. Osteoporosis in the European Union: a compendium of
9 10	290	country-specific reports. Arch Osteoporos 2013;8:137. doi: 10.1007/s11657-013-0137-0
11	291	2. Mohd-Tahir NA, Li SC. Economic burden of osteoporosis-related hip fracture in Asia: a systematic
12	292	review. Osteoporos Int 2017;28(7):2035-44. doi: 10.1007/s00198-017-3985-4
13 14	293	3. Kim J, Lee E, Kim S, et al. Economic Burden of Osteoporotic Fracture of the Elderly in South Korea: A
15	294	National Survey. Value Health Reg Issues 2016;9:36-41. doi: 10.1016/j.vhri.2015.09.007
16	295	4. Qu B, Ma Y, Yan M, et al. The economic burden of fracture patients with osteoporosis in western
17 18	296	China. Osteoporos Int 2014;25(7):1853-60. doi: 10.1007/s00198-014-2699-0
19	297	5. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in
20	298	the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone
21	299	Miner Res 2014;29(11):2520-6. doi: 10.1002/jbmr.2269
22 23	300	6. Consensus conference: Osteoporosis. JAMA 1984;252(6):799-802.
24	301	7. Ross AC. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr
25	302	2011;14(5):938-9. doi: 10.1017/S1368980011000565
26 27	303	8. Shea B, Wells G, Cranney A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. VII.
28	304	Meta-analysis of calcium supplementation for the prevention of postmenopausal
29	305	osteoporosis. <i>Endocr Rev</i> 2002;23(4):552-9. doi: 10.1210/er.2001-7002
30 31	306	9. Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic
32	307	review and meta-analysis. Lancet 2014;383(9912):146-55. doi:
33	308	10.1016/s0140-6736(13)61647-5 [published Online First: 2013/10/15]
34	309	10. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of
35 36	310	fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos
37	311	Int 2016;27(1):367-76. doi: 10.1007/s00198-015-3386-5
38	312	11. Group D. Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture
39 40	313	trials in US and Europe. <i>BMJ</i> 2010;340:b5463. doi: 10.1136/bmj.b5463
41	314	12. Flicker L, MacInnis RJ, Stein MS, et al. Should older people in residential care receive vitamin D to
42	315	prevent falls? Results of a randomized trial. J Am Geriatr Soc 2005;53(11):1881-8. doi:
43 44	316	10.1111/j.1532-5415.2005.00468.x [published Online First: 2005/11/09]
44	317	13. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol)
46	318	supplementation on fractures and mortality in men and women living in the community:
47	319	randomised double blind controlled trial. <i>Bmj</i> 2003;326(7387):469. doi:
48 49	320	10.1136/bmj.326.7387.469 [published Online First: 2003/03/01]
50	321	14. Lyons RA, Johansen A, Brophy S, et al. Preventing fractures among older people living in
51	322	institutional care: a pragmatic randomised double blind placebo controlled trial of vitamin D
52 53	323	supplementation. Osteoporos Int 2007;18(6):811-8. doi: 10.1007/s00198-006-0309-5
54	324	[published Online First: 2007/05/03]
55	325	15. Law M, Withers H, Morris J, et al. Vitamin D supplementation and the prevention of fractures and
56 57	326	falls: results of a randomised trial in elderly people in residential accommodation. Age
57 58	327	Ageing 2006;35(5):482-6. doi: 10.1093/ageing/afj080 [published Online First: 2006/04/28]
59	328	16. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Prevention of nonvertebral fractures with oral
60		
		14

1 2		
3	329	vitamin D and does dependency a moto analysis of randomized controlled trials. Arch Intern
4		vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern
5	330	Med 2009;169(6):551-61. doi: 10.1001/archinternmed.2008.600 [published Online First:
6 7	331	2009/03/25]
8	332	17. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures
9	333	in older women: a randomized controlled trial. <i>Jama</i> 2010;303(18):1815-22. doi:
10	334	10.1001/jama.2010.594 [published Online First: 2010/05/13]
11 12	335	18. Nakamura K, Saito T, Kobayashi R, et al. Effect of low-dose calcium supplements on bone loss in
12	336	perimenopausal and postmenopausal Asian women: a randomized controlled trial. J Bone
14	337	Miner Res 2012;27(11):2264-70. doi: 10.1002/jbmr.1676
15	338	19. Prince RL, Devine A, Dhaliwal SS, et al. Effects of calcium supplementation on clinical fracture and
16 17	339	bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women.
18	340	Arch Intern Med 2006;166(8):869-75. doi: 10.1001/archinte.166.8.869 [published Online
19	341	First: 2006/04/26]
20	342	20. Salovaara K, Tuppurainen M, Karkkainen M, et al. Effect of vitamin D(3) and calcium on fracture
21 22	343	risk in 65- to 71-year-old women: a population-based 3-year randomized, controlled
22	344	trialthe OSTPRE-FPS. <i>J Bone Miner Res</i> 2010;25(7):1487-95. doi: 10.1002/jbmr.48
24	345	[published Online First: 2010/03/05]
25	346	21. Boonen S, Lips P, Bouillon R, et al. Need for additional calcium to reduce the risk of hip fracture
26 27	347	with vitamin d supplementation: evidence from a comparative metaanalysis of randomized
27	348	controlled trials. J Clin Endocrinol Metab 2007;92(4):1415-23. doi: 10.1210/jc.2006-1404
29	349	[published Online First: 2007/02/01]
30	350	22. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
31 32	351	meta-analyses: the PRISMA statement. <i>PLoS Med</i> 2009;6(7):e1000097. doi:
33	351	
34		10.1371/journal.pmed.1000097
35	353	23. Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. <i>Genet</i>
36 37	354	<i>Epidemiol</i> 2005;28(2):123-37. doi: 10.1002/gepi.20048 [published Online First: 2004/12/14]
38	355	24. Chaimani A, Higgins JP, Mavridis D, et al. Graphical tools for network meta-analysis in STATA. <i>PLoS</i>
39	356	One 2013;8(10):e76654. doi: 10.1371/journal.pone.0076654 [published Online First:
40	357	2013/10/08]
41 42	358	25. Avenell A, Grant AM, McGee M, et al. The effects of an open design on trial participant
42	359	recruitment, compliance and retentiona randomized controlled trial comparison with a
44	360	blinded, placebo-controlled design. <i>Clin Trials</i> 2004;1(6):490-8. doi:
45	361	10.1191/1740774504cn053oa [published Online First: 2005/11/11]
46 47	362	26. Baron JA, Beach M, Mandel JS, et al. Calcium supplements for the prevention of colorectal
47	363	adenomas. Calcium Polyp Prevention Study Group. N Engl J Med 1999;340(2):101-7. doi:
49	364	10.1056/nejm199901143400204 [published Online First: 1999/01/14]
50	365	27. Dawson-Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on
51 52	366	bone density in men and women 65 years of age or older. N Engl J Med 1997;337(10):670-6.
52 53	367	doi: 10.1056/nejm199709043371003 [published Online First: 1997/09/04]
54	368	28. Grant AM, Avenell A, Campbell MK, et al. Oral vitamin D3 and calcium for secondary prevention of
55	369	low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D,
56 57	370	RECORD): a randomised placebo-controlled trial. Lancet 2005;365(9471):1621-8. doi:
58	371	10.1016/s0140-6736(05)63013-9 [published Online First: 2005/05/12]
59	372	29. Hansson T, Roos B. The effect of fluoride and calcium on spinal bone mineral content: a
60		,

Page 17 of 46

1

BMJ Open

2		
3	373	controlled, prospective (3 years) study. <i>Calcif Tissue Int</i> 1987;40(6):315-7. [published Online
4 5	374	First: 1987/06/01]
6	375	30. Harwood RH, Sahota O, Gaynor K, et al. A randomised, controlled comparison of different calcium
7	376	and vitamin D supplementation regimens in elderly women after hip fracture: The
8 9	377	Nottingham Neck of Femur (NONOF) Study. Age Ageing 2004;33(1):45-51. [published Online
9 10	378	First: 2003/12/30]
11	379	31. Hin H, Tomson J, Newman C, et al. Optimum dose of vitamin D for disease prevention in older
12	380	people: BEST-D trial of vitamin D in primary care. Osteoporos Int 2017;28(3):841-51. doi:
13 14	381	10.1007/s00198-016-3833-y [published Online First: 2016/12/18]
14	382	32. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of
16	383	fractures. <i>N Engl J Med</i> 2006;354(7):669-83. doi: 10.1056/NEJMoa055218 [published Online
17	384	First: 2006/02/17]
18 19	385	33. Lips P, Graafmans WC, Ooms ME, et al. Vitamin D supplementation and fracture incidence in
20		
21	386	elderly persons. A randomized, placebo-controlled clinical trial. Ann Intern Med
22	387	1996;124(4):400-6. [published Online First: 1996/02/15]
23	388	34. Liu BX, Chen SP, Li YD, et al. The Effect of the Modified Eighth Section of Eight-Section Brocade on
24 25	389	Osteoporosis in Postmenopausal Women: A Prospective Randomized Trial. Medicine
26	390	(Baltimore) 2015;94(25):e991. doi: 10.1097/md.000000000000991 [published Online First:
27	391	2015/06/25]
28	392	35. Mitri J, Dawson-Hughes B, Hu FB, et al. Effects of vitamin D and calcium supplementation on
29 30	393	pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of
31	394	diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled
32	395	trial. Am J Clin Nutr 2011;94(2):486-94. doi: 10.3945/ajcn.111.011684 [published Online First:
33	396	2011/07/01]
34 35	397	36. Peacock M, Liu G, Carey M, et al. Effect of calcium or 25OH vitamin D3 dietary supplementation
36	398	on bone loss at the hip in men and women over the age of 60. J Clin Endocrinol Metab
37	399	2000;85(9):3011-9. doi: 10.1210/jcem.85.9.6836 [published Online First: 2000/09/22]
38	400	37. Porthouse J, Cockayne S, King C, et al. Randomised controlled trial of calcium and
39 40	401	supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary
40	402	care. <i>Bmj</i> 2005;330(7498):1003. doi: 10.1136/bmj.330.7498.1003 [published Online First:
42	403	2005/04/30]
43	404	38. Recker RR, Hinders S, Davies KM, et al. Correcting calcium nutritional deficiency prevents spine
44 45	405	fractures in elderly women. J Bone Miner Res 1996;11(12):1961-6. doi:
46	406	10.1002/jbmr.5650111218 [published Online First: 1996/12/01]
47	400	39. Reid IR, Ames RW, Evans MC, et al. Effect of calcium supplementation on bone loss in
48		
49 50	408	postmenopausal women. <i>N Engl J Med</i> 1993;328(7):460-4. doi:
51	409	10.1056/nejm199302183280702 [published Online First: 1993/02/18]
52	410	40. Reid IR, Mason B, Horne A, et al. Randomized controlled trial of calcium in healthy older women.
53	411	Am J Med 2006;119(9):777-85. doi: 10.1016/j.amjmed.2006.02.038 [published Online First:
54 55	412	2006/09/02]
55 56	413	41. Riggs BL, O'Fallon WM, Muhs J, et al. Long-term effects of calcium supplementation on serum
57	414	parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res
58	415	1998;13(2):168-74. doi: 10.1359/jbmr.1998.13.2.168 [published Online First: 1998/03/12]
59 60	416	42. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in

2		
3	417	elderly men and womena population-based, randomized, double-blind, placebo-controlled
4 5	418	trial. <i>Rheumatology (Oxford)</i> 2007;46(12):1852-7. doi: 10.1093/rheumatology/kem240
6	419	[published Online First: 2007/11/14]
7	420	43. Uusi-Rasi K, Patil R, Karinkanta S, et al. Exercise and vitamin D in fall prevention among older
8		
9	421	women: a randomized clinical trial. <i>JAMA Intern Med</i> 2015;175(5):703-11. doi:
10	422	10.1001/jamainternmed.2015.0225 [published Online First: 2015/03/24]
11	423	44. Witham MD, Price RJ, Struthers AD, et al. Cholecalciferol treatment to reduce blood pressure in
12 13	424	older patients with isolated systolic hypertension: the VitDISH randomized controlled trial.
14	425	JAMA Intern Med 2013;173(18):1672-9. doi: 10.1001/jamainternmed.2013.9043 [published
15	426	Online First: 2013/08/14]
16	427	45. Xue Y, Hu Y, Wang O, et al. Effects of Enhanced Exercise and Combined Vitamin D and Calcium
17	428	Supplementation on Muscle Strength and Fracture Risk in Postmenopausal Chinese Women.
18 19	429	Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2017;39(3):345-51. doi:
20		
21	430	10.3881/j.issn.1000-503X.2017.03.008 [published Online First: 2017/07/12]
22	431	46. Zhao JG, Zeng XT, Wang J, et al. Association Between Calcium or Vitamin D Supplementation and
23	432	Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and
24 25	433	Meta-analysis. <i>Jama</i> 2017;318(24):2466-82. doi: 10.1001/jama.2017.19344 [published
25 26	434	Online First: 2017/12/28]
27	435	47. Massart A, Debelle FD, Racape J, et al. Biochemical parameters after cholecalciferol repletion in
28	436	hemodialysis: results From the VitaDial randomized trial. Am J Kidney Dis
29	437	2014;64(5):696-705. doi: 10.1053/j.ajkd.2014.04.020 [published Online First: 2014/05/27]
30 21	438	48. Bischoff-Ferrari HA, Willett WC, Orav EJ, et al. A pooled analysis of vitamin D dose requirements
31 32	439	for fracture prevention. N Engl J Med 2012;367(1):40-9. doi: 10.1056/NEJMoa1109617
33	440	[published Online First: 2012/07/06]
34	441	49. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in elderly
35	442	
36 37		women. <i>N Engl J Med</i> 1992;327(23):1637-42. doi: 10.1056/nejm199212033272305
38	443	[published Online First: 1992/12/03]
39	444	50. Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: a
40	445	systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol
41	446	2018;6(11):847-58. doi: 10.1016/s2213-8587(18)30265-1 [published Online First:
42 43	447	2018/10/09]
43 44	440	
45	448	
46		
47		
48 49		
49 50	449	Legends:
51		
52		
53		
54	450	Figure 1. The selection of literature for included studies.
55 56	100	
50 57		
58		
59		
60	451	Figure 2. The network plot of comparisons on total fractures (A), hip fractures (B) and vertebral
		17

BMJ Open

3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
20 21 22 23 24 25 26 27 28 29 30
25
26
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60

452 fractures (C). A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high
453 vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)

Figure 3. The forest plot for the risk of total fractures. A: high calcium (800 mg/d or higher); B: low

455 calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than

456 800 IU/d)

457 Figure 4. The forest plot for the risk of hip fractures. A: high calcium (800 mg/d or higher); B: low
458 calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than
459 800 IU/d)

460 Figure 5. The forest plot for the risk of vertebral fractures. A: high calcium (800 mg/d or higher); B:
461 low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less
462 than 800 IU/d)

463 supplementary Figure 1. A sensitivity analysis excluded the trial of Hansson et al. A: high calcium

464 (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher);

465 D: low vitamin D (less than 800 IU/d)

466 supplementary Figure 2. Risk of Bias Assessment of All Included Studies

467 **supplementary Figure 3.** Publication bias for the total fractures. A: high calcium (800 mg/d or higher);

B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less
than 800 IU/d)

470 supplementary Figure 4. Publication bias for the hip fractures. A: high calcium (800 mg/d or higher);

471 B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less

472 than 800 IU/d)

 473 supplementary Figure 5. Publication bias for the vertebral fractures. A: high calcium (800 mg/d or
474 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low

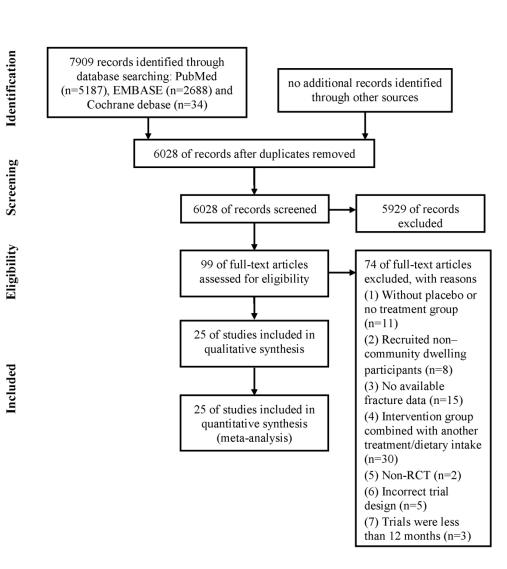
475 vitamin D (less than 800 IU/d)

476 supplementary Figure 6. Inconsistency test for the total fractures. A: high calcium (800 mg/d or

477 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low

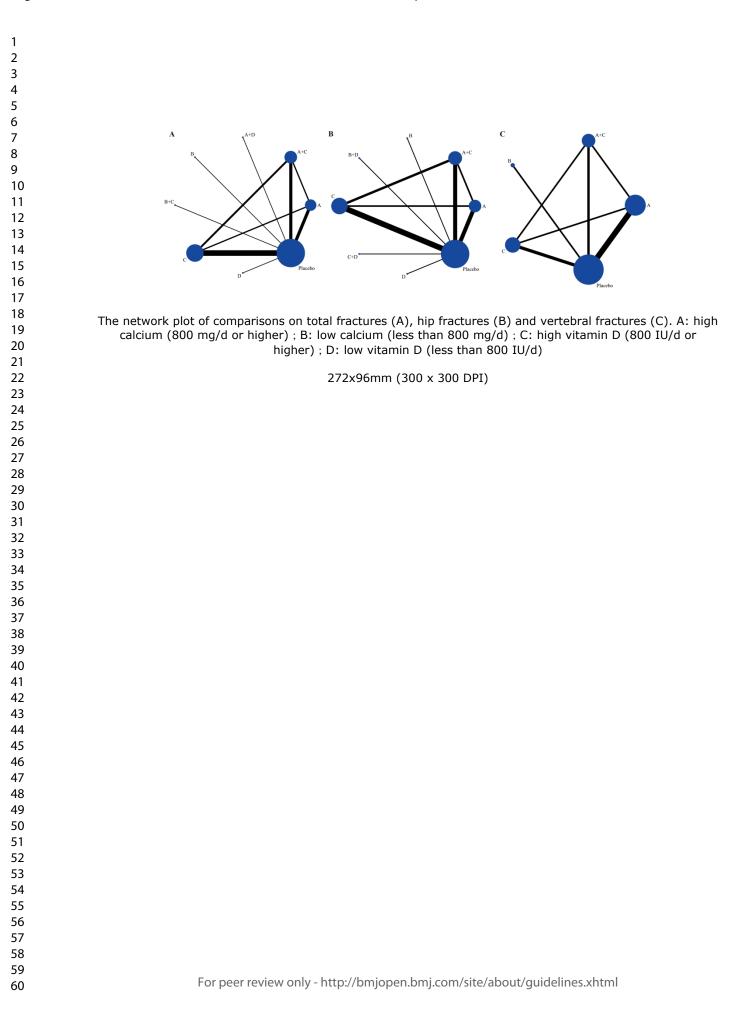
478 vitamin D (less than 800 IU/d)

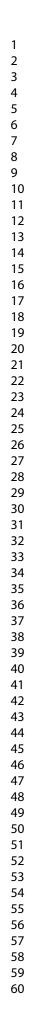
479 supplementary Figure 7. Inconsistency test for the hip fractures. A: high calcium (800 mg/d or

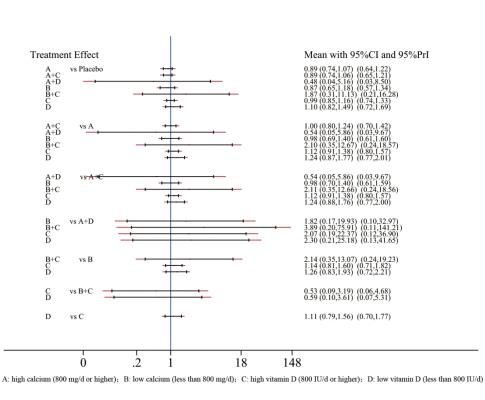

480 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low

481 vitamin D (less than 800 IU/d)

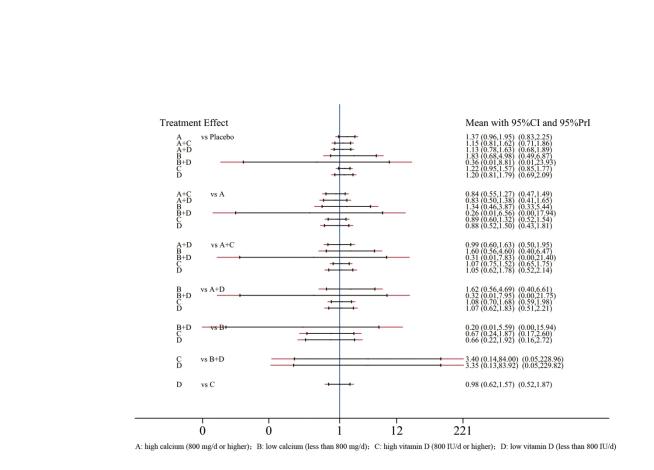
higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low


484 vitamin D (less than 800 IU/d)


1 2 3 4 5 6 7	485	supplementary Figure 9. Heterogeneity test for the total fractures.
8 9 10 11	486	supplementary Figure 10. Heterogeneity test for the hip fractures.
	487	supplementary Figure 11. Heterogeneity test for the vertebral fractures.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		



The selection of literature for included studies.


171x176mm (300 x 300 DPI)

The forest plot for the risk of total fractures. A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)

The forest plot for the risk of hip fractures. A: high calcium (800 mg/d or higher) ; B: low calcium (less than 800 mg/d) ; C: high vitamin D (800 IU/d or higher) ; D: low vitamin D (less than 800 IU/d)

Mean with 95%CI and 95%PrI

0.81 (0.61,1.08) (0.54,1.21)

0.59 (0.27,1.30) (0.20,1.81)

0.88 (0.60,1.30) (0.51,1.53)

0.98 (0.68,1.40) (0.59,1.62)

0.74 (0.32,1.69) (0.23,2.39)

1.09 (0.67,1.77) (0.55,2.17)

1.21 (0.77,1.90) (0.64,2.29)

1.48 (0.62,3.55) (0.43,5.12)

1.64 (0.70,3.87) (0.49,5.52)

1.11 (0.65,1.89) (0.52,2.35)

The forest plot for the risk of vertebral fractures. A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d) ; C: high vitamin D (800 IU/d or higher) ; D: low vitamin D (less than 800 IU/d)

Supplem	nentary eTable 1. Search Strategy for Each Database
	Search strategy
Pubmed	#1 "calcium"[MeSH Terms] OR "calcium"[All Fields]
	#2 "vitamin d"[MeSH Terms] OR "vitamin d"[All Fields] OR
	"ergocalciferols"[MeSH Terms] OR "ergocalciferols"[All Fields]
	#3 "fractures, bone"[MeSH Terms] OR ("fractures"[All Fields] AND "bone"
	Fields]) OR "bone fractures"[All Fields] OR "fracture"[All Fields]
	#4 #1 or #2
	#5 #3 and #4
	#5 #3 and #4

Supplementary Table 1 - Checklist of items to include when reporting a systematic review or meta-analysis

Section/to	pic	#	Checklist item	Reported on page #
⁰ TITLE				-
Title		1	Identify the report as a systematic review, meta-analysis, or both.	1
BABSTRACT				
⁴ Structured sum 5 6 7 8	nary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTI	ION			
Rationale		3	Describe the rationale for the review in the context of what is already known.	3
2 Objectives 3		4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
⁴ METHODS				-
6 Protocol and 7 registration 8		5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criter	ia	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
3 Information sou 4 5	rces	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
6 Search		8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5

 Page 1

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Section/topic	#	Checklist item	Reported on page #
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
3 Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	7
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
8 RESULTS	•	•	+
9 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	9-10
40 41 42 43 44 45 46		Page 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2			
Section/topic	#	Checklist item	Reported on page #
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9-10
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-10
⁴ DISCUSSION	<u>b</u>		-
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers).	10-12
PLimitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias).	12
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13
4 FUNDING	<u> </u>	•	•
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	13
28 29 30 31 32 33 34 35 36 37 38			
88 39 40 41 42 43 44 45 46		Page 3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 31 of 46

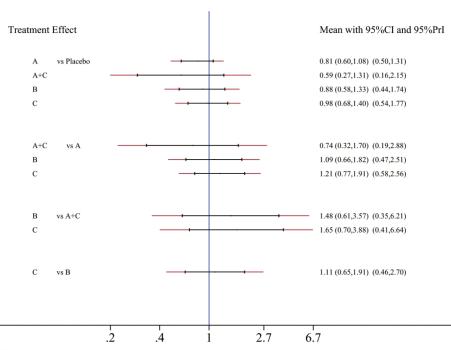
Source	Intervention	Women, No. (%)	Mean Age, y	Previous Fracture	Calcium Intake, mg/d	Baseline 25OHD, ng/mL	Treatment Duration
venell et al, 2004	Calcium(1 g/d) (n = 29)	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
United Kingdom)	No treatment $(n = 35)$						
1 2	D ₃ (800IU/d) (n = 35)	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
3	No treatment $(n = 35)$						
4 5	Calcium $(1g/d) + D_3$	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
б	(800IU/d) (n = 35)						
7 8	No treatment (n = 35)						
9 Baron et al, 1999	Calcium: 1.2 g/d (n = 464)	258 (28)	61.0	NA	877	NA	4 y
0 United States)	Placebo (n = 466)						
2 Dawson-Hughes et al,	Calcium $(0.5g/d) + D_3$	213 (54)	71.1	NA	729	29.6 °	3 у
3 4 97 (United States)	(700IU/d) (n = 187)						- 5
5	Placebo (n = 202)						
6 Frant et al, 2005	Calcium(1 g/d) (n = 1311)	2241 (85)	77	Yes	NA	15.2 ^{e,f}	2-5 y
8 Synited Kingdom)	Placebo (n = 1332)	2211 (03)		105	1 12 1	10.2	239
9 <i>9</i>) 0	$D_{3}(800IU/d) (n = 1343)$	2264 (85)	77	Yes	NA	15.2 ^{e,f}	2-5 y
1 2	Placebo (n = 1332)	2204 (83)		105	NA NA	13.2	2-5 y
3		2222 (0.5)				1 5 0 0 f	
4 5	Calcium $(1g/d) + D_3$	2232 (85)	77.5	Yes	NA	15.2 ^{e,f}	2-5 y
6	(800IU/d) (n = 1306)						
7	Placebo (n = 1332)			4			
8 Jansson and Roos, 9	Calcium (1g/d) (n = 25)	50 (100)	65.9	Yes	NA	NA	3 у
987 (Sweden)	Placebo (n = 25)						
1 Harwood et al, 2004 2	D_3 (300000 IU once) (n = 38)	75 (100)	80.5	Yes	NA	11.6	1 y
Bunited Kingdom) 4	No treatment $(n = 37)$						
5	Calcium $(1g/d) + D_2$	112 (100)	81.7	Yes	NA	11.9	1 y
6 7	(300000 IU once) (n = 36)						
8	Calcium $(1g/d) + D_3$						
9 0	(800IU/d) (n = 39)						
1	No treatment $(n = 37)$						
2 lin et al, 2017 3	D ₃ (4000 IU/d)(n = 102)	150 (49)	71.7	Partial ^c	710	20.1	1 y
united Kingdom)	D ₃ (2000 IU/d)(n = 102)						
5 6	Placebo (n = 101)						
ackson et al, 2006	Calcium (1g/d) + D ₃ (400	7972 (100)	62.4	Partial ^c	1151	18.9 °	7у
8 United States)	IU/d) (n = 4015)						

Lips et al, 1996	Placebo (n = 3957)						
<i>hps</i> et al, 1990	400 IU/d (n = 1291)	1916 (74)	80.0	No hip fracture	868	10.6 °	3-4 y
The Netherlands)	Placebo (n = 1287)	1910 (74)	00.0	No mp nactare	000	10.0	549
Liu et al, 2015	Calcium $(1.5g/d) + D_3 (600)$	98 (100)	62.1	No	1500	NA	1
(O hina)	IU/d) (n = 50)	98 (100)	02.1	NO	1500	INA	1 y
1	Placebo $(n = 48)$						
2 Maitri et al, 2011		25 (52)	59.0	N T 4	026	25.2	4
4	$D_3(2000 \text{ IU/d})(n = 23)$	25 (53)	58.0	NA	926	25.3	4 mo
(United States)	Placebo (n $= 24$)						
6 Peacock et al, 2000 7	Calcium (0.75g/d) (n = 126)	187 (72)	73.8	Partial ^c	597	25.0	4 y
(genited States)	Placebo (n = 135)						
Porthouse et al, 2005	Calcium $(1g/d) + D_3$ (800	3314 (100)	76.8	Partial ^c	1080	NA	1.5-3.5 y
(United Kingdom) 22	IU/d) (n = 1321)						
23	No treatment (n = 1993)						
24 Pfince et al, 2006 25	Calcium (0.48g/d) (n = 730)	1460 (100)	75.2	Partial ^c	915	31.0 ^e	5 y
(Australia)	Placebo (n = 730)						
7 Recker et al, 1996 28	Calcium (1.2 g/d) (n = 95)	197 (100)	73.5	Partial ^c	434	25.5 °	4 y
(9 nited States)	Placebo (n = 102)						
30 Reid et al, 1993	Calcium (1 g/d) (n = 68)	135 (100)	58	No vertebral	750	37.5	4 y
(New Zealand)	Placebo ($n = 67$)			fracture			
13 Bapeid et al, 2006	Calcium (1 g/d) (n = 732)	1471 (100)	74.3	Partial ^c	857	20.7	5 y
(New Zealand)	Placebo (n = 739)						
16 Riggs et al, 1998	Calcium (1.6 g/d) (n = 119)	236 (100)	66.2	No	714	30.1	4 y
(United States)	Placebo (n = 117)						-
0	$Calcium(1g/d) + D_3$	3432 (100)	67.3	Partial	957	19.8 °	3 у
Shlovaara et al, 2010	(800 IU/d) (n = 1718)	0.02(100)	0710			1710	5 9
2 (Finland) 3	No treatment $(n = 1714)$						
14 15	D ₃ (500000 IU every year)	2258 (100)	76.1	Partial ^c	976	19.8 °	3-5 y
Sanders et al, 2010	(n = 1131)	2258 (100)	70.1	1 atta	570	17.0	5-5 y
(Australia) 18	Placebo (n = 1127)						
9		5096 (54)	70.1	D-sti-16	()5 d	22.68	2
50 Smith et al, 2007 51	D_3 (300000 IU every year)	5086 (54)	79.1	Partial ^c	625 ^d	22.6 °	3 у
(United Kingdom)	(n = 4727)						
<u>3</u> 4	Placebo (n = 4713)				_		
D ivedi et al, 2003	D ₃ (100000 IU every 4 mo)	649 (24)	74.8	NA	742	NA	5 y
6 (United Kingdom)	(n = 1345)						
8	Placebo (n = 1341)						

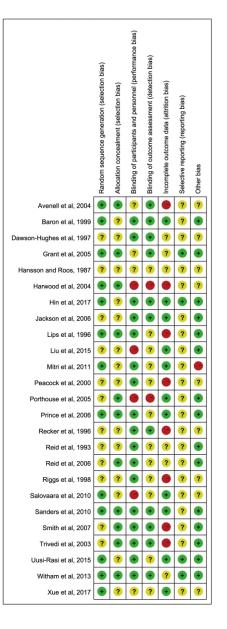
1 2										
3 4 ^(Finland)	Placebo (n = 102)									
5 6 Witham et al, 2013	D ₃ (100000 IU every 3 mo)	77 (49)	76.8	NA	1125	18.0	1 y			
7 (United Kingdom) 8	(n = 80)									
9	Placebo (n = 79)									
10	Calcium (0.6g/d) + D ₃ (800	312 (100)	63.6	Partial ^c	NA	30.8	1 y			
12 12 12	IU/d) (n = 139)									
1(€hina) 13	Placebo (n = 173)									
14 15										
16	Abbreviation: 250HD	, 25-hydroxyvi	tamin D; NA,	not available						
17	^a Women accounted	for 83% of tot	al participant	s in this trial, b	out detailed d	ata not available	for			
18 19	each group.									
20	^b Mean age is 78 y	for total parti	cipants in thi	s trial, but det	ailed data no	t available for e	ach			
21	group.									
22	^c This trial reported p	artial participa	onts with fract	ure history.						
23 24	^d Partial participants	were assessed	for dietary ca	lcium intake.						
25	^e Partial participants	received meas	urement of ba	aseline 250HD	concentration	IS.				
26	^f The RECORD trial reported that the mean baseline 250HD concentrations for a sample of 60									
27	participants was 15.2									
28 29		0			U	·				
30										
31										
32	supplementary Ta	ble 2. The c	haracteristic	s of the inclu	ded studies.					
33 34										
35										
36										
37										
38 39										
40										
41										
42 43										
43 44										
45										
46										
47 48										
49										
50										
51										
52 53										
54										
55										
56										
57 58										
59										
60										

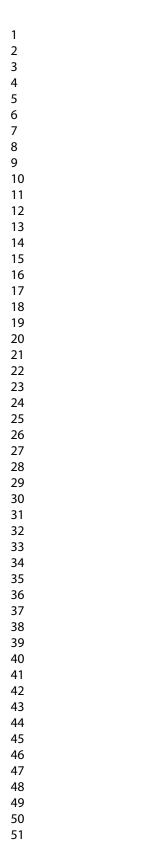
	Treatment			No. of Participar	nts
Source	Duration	Intervention	Total Fracture	Hip fracture	Vertebral Fractu
Avenell et al, 2004	3.8 y	Calcium(1 g/d) (n = 29)	4	1	0
(United Kingdom)		D ₃ (800IU/d) (n = 35)	3	0	0
		Calcium $(1g/d) + D_3$	2	1	0
		(800IU/d) (n = 35)			
		No treatment $(n = 35)$	4	1	1
Baron et al, 1999	4 y	Calcium: 1.2 g/d (n = 464)	4	1	
(United States)		Placebo (n = 466)	14	0	
Dawson-Hughes et al, 1997	/ 3 y	Calcium $(0.5g/d) + D_3$		0	
(United States)		(700IU/d) (n = 187)			
		Placebo (n = 202)		1	
Grant et al, 2005	2-5 у	Calcium(1 g/d) (n = 1311)	166	49	3
(United Kingdom)		D ₃ (800IU/d) (n = 1343)	188	47	4
		Calcium $(1g/d) + D_3$	165	46	0
		(800IU/d) (n = 1306)			
		Placebo (n = 1332)	179	41	1
Hansson and Roos, 1987	3 у	Calcium (1g/d) (n = 25)			1
(Sweden)		Placebo (n = 25)	N.		1
Harwood et al, 2004	1 y	D ₃ (300000 IU once) (n = 38)	0	0	
(United Kingdom)		Calcium $(1g/d) + D_2$	6	1	
		(300000 IU once) (n = 36)			
		Calcium $(1g/d) + D_3$			
		(800IU/d) (n = 39)	<		
		No treatment $(n = 37)$	5	1	
Hin et al, 2017	1 y	D ₃ (4000 IU/d)(n = 102)	6		
(United Kingdom)		D ₃ (2000 IU/d)(n = 102)			
		Placebo (n = 101)	1		
Jackson et al, 2006	7 у	Calcium (1g/d) + D ₃ (400		70	
(United States)		IU/d) (n = 4015)			
		Placebo (n = 3957)		61	

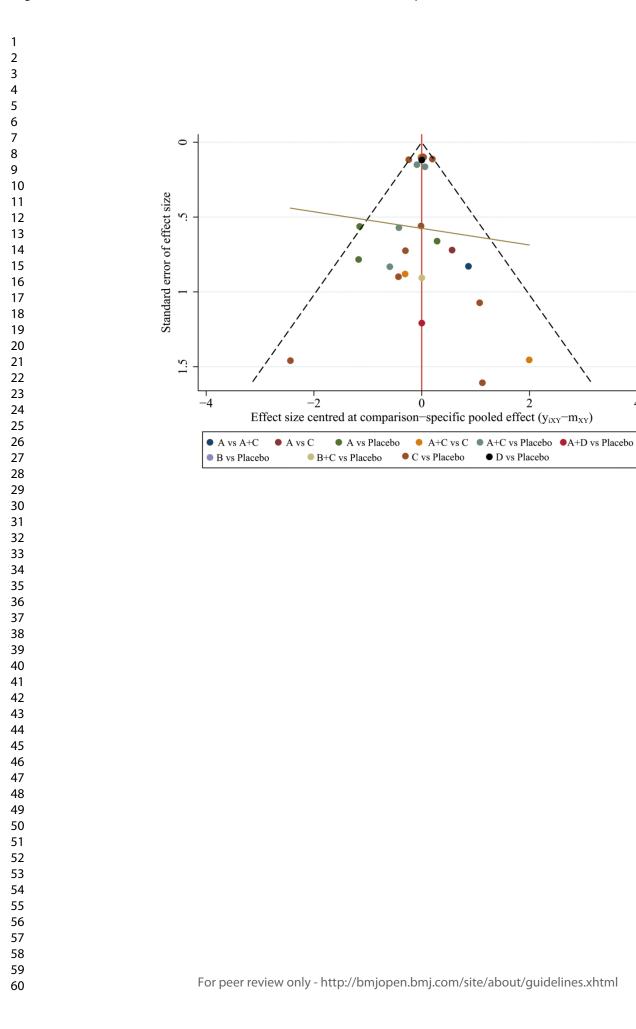
Page 35 of 46

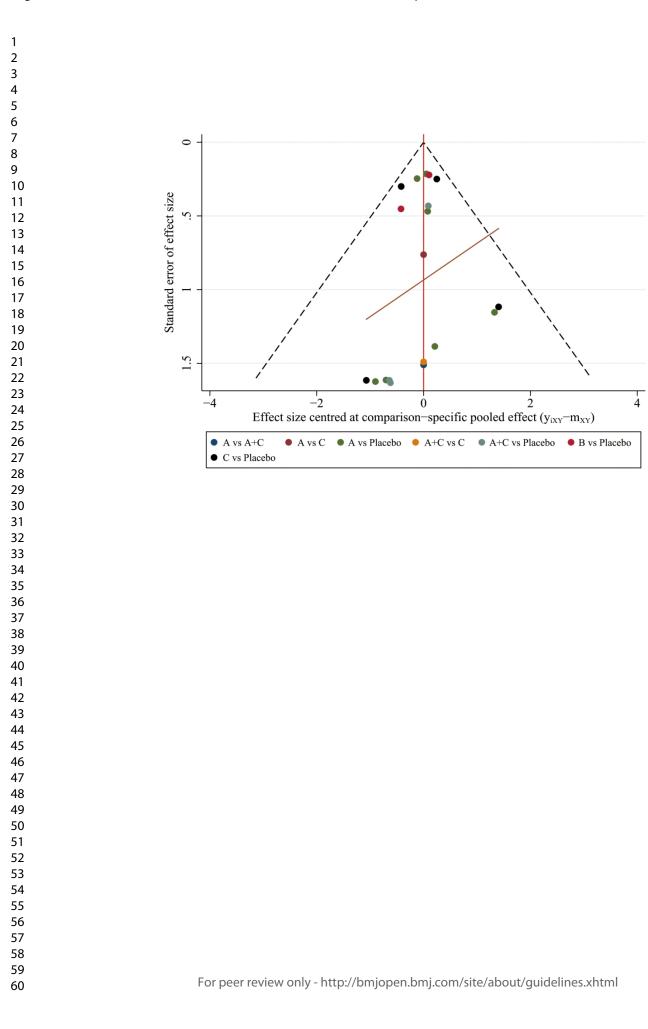

BMJ Open

Lips et al, 1996	3-4 y	400 IU/d (n = 1291)	135	58	
(The Netherlands)		Placebo (n = 1287)	122	48	
Liu et al, 2015	1 y	Calcium (1.5g/d) + D ₃ (600	1		
(China)		IU/d) (n = 50)			
		Placebo (n = 48)	2		
Mitri et al, 2011	4 mo	D ₃ (2000 IU/d)(n = 23)	1		
(United States)		Placebo (n = 24)	0		
Peacock et al, 2000	4 y	Calcium (0.75g/d) (n = 126)			7
(United States)		Placebo (n = 135)			13
Porthouse et al, 2005	1.5-3.5 y	Calcium $(1g/d) + D_3$ (800	58	8	
(United Kingdom)		IU/d) (n = 1321)			
		No treatment (n = 1993)	91	17	
Prince et al, 2006	5 у	Calcium (0.48g/d) (n = 730)	110	11	38
(Australia)		Placebo (n = 730)	126	6	3
Recker et al, 1996	4 y	Calcium (1.2 g/d) (n = 95)			27
(United States)		Placebo (n = 102)			34
Reid et al, 1993	4 y	Calcium (1 g/d) (n = 68)	2	0	0
(New Zealand)		Placebo (n = 67)	7	2	1
Reid et al, 2006	5 у	Calcium (1 g/d) (n = 732)	134	17	27
(New Zealand)		Placebo (n = 739)	147	5	38
Riggs et al, 1998	4 y	Calcium (1.6 g/d) (n = 119)	4		8
(United States)		Placebo (n = 117)			9
	3 у	$Calcium(1g/d) + D_3$	78	4	9
Salovaara et al, 2010		(800 IU/d) (n = 1718)			
(Finland)		No treatment $(n = 1714)$	94	2	13
G I (I 2 010	3-5 y	D ₃ (500000 IU every year)	155	19	35
Sanders et al, 2010 (Australia)		(n = 1131)			
(Austrana)		Placebo (n = 1127)	125	15	28
Swith of all 2007	3 у	D ₃ (300000 IU every year)		66	
Smith et al, 2007 (United Kingdom)		(n = 4727)			
(Cintea Kinguoni)		Placebo (n = 4713)		44	
Trivedi et al, 2003	5 у	D ₃ (100000 IU every 4 mo)	119	21	18
(United Kingdom)		(n = 1345)			
(United Kingdom)		Placebo (n = 1341)	149	24	28

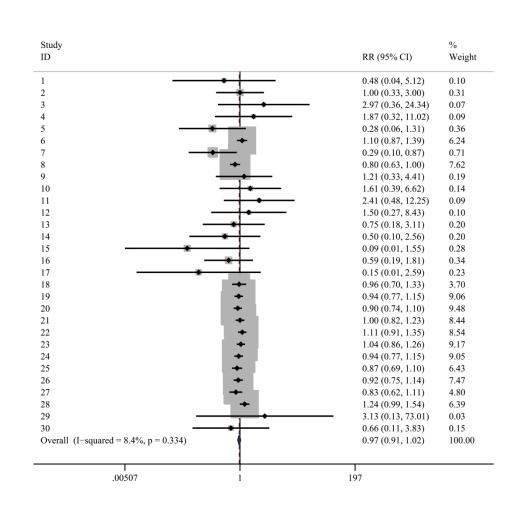

Uusi-Rasi et al, 2015	2 у	D ₃ (800 IU/d) (n = 102)	6	2	
(Finland)		Placebo (n = 102)	6	0	
Witham et al, 2013 (United Kingdom)	1 y	D ₃ (100000 IU every 3 mo)	2		
		(n = 80)			
		Placebo ($n = 79$)	3		
	1 y	Calcium (0.6g/d) + D ₃ (800	3		
Xue et al, 2017		IU/d) (n = 139)			
(China)		Placebo (n = 173)	2		


Supplementary Table 3. The detailed data of outcomes

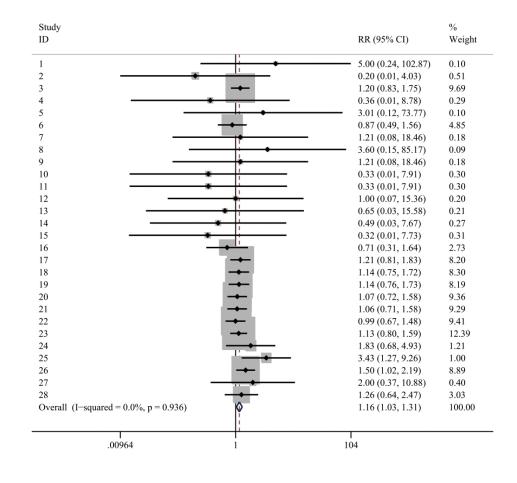

48	
49	
50	
51	
52	
53	
54	


A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)

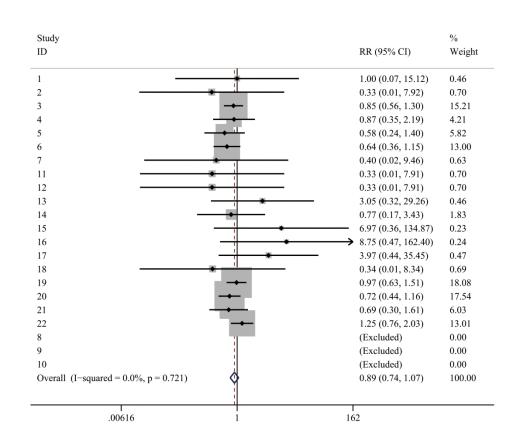
			95%CI	Loop-specific
Loop		IF	(truncated)	$Heterogeneity(t^2)$
A-A+C-C A-A+C-Placebo	•	0.13	(0.00,4.87) (0.00,0.65)	0.000
A–C–Placebo		0.11	(0.00,0.75)	0.043
A+C-C-Placebo	•	0.02	(0.00,0.40)	0.009
	0 2 3 4 5			


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open


3					
4					
5					
6					
7					
8					
9				95%CI	Loop-specific
10					
11	Loop		IF	(truncated)	Heterogeneity(t ²)
12					
13					
14					
15	A-A+C-Placebo		0.77	(0.00,1.78)	0.000
16					
17	A-A+C-C	*	0.41	(0.00,3.63)	0.000
18					
19	A+C-C-Placebo	•	0.23	(0.00,0.83)	0.000
20		T			
21	A-C-Placebo		0.04	(0.00,0.78)	0.022
22		T			
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
JT					

			95%CI	Loop-specific
Loop		IF	(truncated)	Heterogeneity(t ²)
	1			
A+C-C-Placebo		1.78	(0.00,4.83)	0.000
A-A+C-Placebo		1.72	(0.00,4.80)	0.000
A-C-Placebo	-	0.06	(0.00,1.62)	0.000
	0 2 3 4 5			


*** Loop(s) [A-A+C-C] are formed only by multi-arm trial(s) - Consistent by definition

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their combination: a network meta-analysis of randomized controlled trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024595.R3
Article Type:	Original research
Date Submitted by the Author:	09-Sep-2019
Complete List of Authors:	Hu, Zhi-Chao; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Tang, Qian; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Sang , Chang-Min ; Department of Orthopaedics, The Affiliated Hospital of Jiujiang Medical College, Jiujiang, Jiangxi, 332000, China., Department of Orthopaedics Tang, Li; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Li, Xiaobin; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Zheng, Gang; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Seng, Zhen-Hua; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Shen, Zhi-Hao; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics Shen, Zhi-Hao; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics in, wenfei; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzho

	Wu, Ai-Min; The Second Affiliated Hospital and Yuying Children's Hospita of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China, Department of Orthopedics
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Diabetes and endocrinology, Nutrition and metabolism
Keywords:	Calcium, Vitamin D, Fractures, network meta-analysis

Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their

2 3
4
5
6
7
/ 8
o 9
9
10
11 12
12 13
14
15 16
10
17 18
10
19 20
20
21 22
22 23
24 25
25
26 27
27
28
29 30
31
32
33
34 35
35
36 37
37
38 39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

1

combination: a network meta-analysis of randomized controlled trials
Zhi-Chao Hu^{1,2,3}, Qian Tang^{1,2,3}, Chang-Min Sang⁴, Li Tang^{1,2,3}, Xiao-Bin Li^{1,2,3}, Gang Zheng^{1,2,3},
Zhen-Hua Feng^{1,2,3}, Jiang-Wei Xuan^{1,2,3}, Zhi-Hao Shen^{1,2,3}, Li-Yan Shen^{1,2,3}, Wen-Fei Ni^{1,2,3,*} and
Ai-Min Wu^{1,2,3,*}
Affiliations:

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.

10 2. The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.

11 3. Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou,

12 Zhejiang, 325027, China.

13 4. Department of Orthopaedics, The Affiliated Hospital of Jiujiang Medical College, Jiujiang, Jiangxi,

14 332000, China.

- 15 ***Correspondence author:**
- 16 Ai-Min Wu, email: aiminwu@wmu.edu.cn
- 17 Wen-Fei Ni, email: wenfeini@yeah.net
- 18 **Phone:** +86 0577 88002814;
- 19 **Fax:** +86 057788002823;
- 20
- 21 Zhi-Chao Hu and Qian Tang contributed equally to this work.

2
2
3
4
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 24 25 26 27 28 9 30 31 22 33 4 35 36 37 89
6
7
/
8
9
10
11
11
12
13
14
15
10
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
20
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

23	Abstract
24	Objective Inconsistent findings in regard to association between different concentrations of vitamin D,
25	calcium or their combination and the risk of fracture have been reported during the past decade in
26	community-dwelling older people. This study was designed to compare the fracture risk using different
27	concentrations of vitamin D, calcium or their combination.
28	Design A systematic review and network meta-analysis.
29	Data sources Randomized controlled trials in PubMed, Cochrane library, and EMBASE databases
30	were systematically searched from the inception dates to December 31, 2017.
31	Outcomes Total fracture was defined as the primary outcome. Secondary outcomes were hip fracture
32	and vertebral fracture. Due to the consistency of the original studies, a consistency model was adopted.
33	Results A total of 25 randomized controlled trials involving 43510 participants fulfilled the inclusion
34	criteria. There was no evidence that the risk of total fracture was reduced by using different
35	concentrations of vitamin D, calcium or their combination compared with placebo or no treatment. No
36	significant associations were found between calcium, vitamin D, or combined calcium and vitamin D
37	supplements and the incidence of hip, or vertebral fractures.
38	Conclusions The use of supplements that included calcium, vitamin D, or both was not found to be
39	better than placebo or no treatment in terms of risk of fractures among community-dwelling older
40	adults. It means the routine use of these supplements in community-dwelling older people should be
41	treated more carefully.
42	Prospero registration number CRD42017079624

43 Keywords: Calcium; Vitamin D; Fractures; network meta-analysis

44 Strengths and limitations of this study

 This systematic review and meta-analysis combined the evidence from randomized controlled trials. • Our findings may not support the routine use of these supplements in community-dwelling older people. • This work does not necessarily preclude any benefit of vitamin D and calcium supplementation in older, frail individuals. Potential missing data and meta-biases, heterogeneity, which may limit the quality of evidence. Introduction Clinical fractures of the elderly represent a worldwide public health problem that leads to illness and social burden. The patients with osteoporosis in the European Union were estimated to be 27.5 million in 2010, and 3.5 million new fragility fractures were sustained¹. In Asia, the average cost of osteoporotic fractures accounted for 18.95% of the countries' 2014 gross domestic product (GDP)/capita and increased annually²⁻⁴. The overall prevalence of osteoporosis or low bone mass in non-institutional population over the age of 50 in the USA was estimated at 10.3% and 43.9%, respectively, which means that 10.2 million elderly people had osteoporosis and 43.4 million people had low bone mass in 2010⁵. With the demographic trend of ageing and the predicted increase in life expectancy, the cost of fracture treatment is expected to rise. Dietary allowances for calcium range from 700 to 1200 mg/d and vitamin D of 600-800 IU/d have long been recommended for the prevention of osteoporotic fractures in the elderly⁶⁷. The supplements of calcium and vitamin D are commonly taken to maintain bone health. However, the previous randomized controlled trials (RCT) and meta-analyses concerning vitamin D, calcium, or their combination for fractures yielded different efficacy outcomes. For instance, two meta-analyses demonstrated calcium or vitamin D supplementation alone has a small benefit on bone

BMJ Open

67	mineral density (BMD), but no clinically important to prevent fractures ⁸ , while an updated
68	meta-analysis and a pooled analysis found calcium plus vitamin D supplementation can significantly
69	reduce hip fractures by 30% and total fractures by 15% ^{10 11} . Two RCTs reported that low dose of
70	vitamin D supplementation (less than 800 IU/d) can reduce the incidence of falls ¹² and may prevent
71	fractures without adverse effects ¹³ , but other RCTs showed no significant reduction in the incidence of
72	hip or other peripheral fractures ¹⁴ ¹⁵ and its possible effects were seen only in patients with initial
73	calcium insufficiency. Based on the evidence from meta-analysis, Bischoff-Ferrari et al ¹⁶ illustrated
74	that high-dose vitamin D supplementation (800 IU/d or higher) not only reduced the risk of falls and
75	hip fractures, but also prevented non-vertebral fractures. In contrast, a study reported annual high-dose
76	oral vitamin D resulted in an increased risk of falls and fractures ¹⁷ . On the other hand, low-dose
77	calcium supplementation (less than 800mg/d) effectively led to a sustained reduction in the rate of bone
78	loss ¹⁸ and turnover. Although it was also reported that the high dose of calcium (800 mg/d or higher)
79	was associated with a lower risk of clinical fractures ¹⁹ . The high-dose calcium with high-dose vitamin
80	D can't prevent fractures according to the evidence from reported RCT ²⁰ , but a meta-analysis
81	supported their combination can prevent bone loss and significantly reduce the risk of hip fractures and
82	all osteoporotic fractures ²¹ . Thus, it's challenging to conclude a dose-response relation between the
83	intakes of vitamin D, calcium, or their combination and the main outcomes in these heterogeneous
84	literatures.
85	Therefore, this study was designed to compare the fracture risk using different concentrations of
86	vitamin D, calcium or their combination, and comprehensively evaluate the optimal concentration to

- 87 guide clinical practice and public prevention in community-dwelling older people.
- 88 Methods

89 Search strategy and selection criteria

This review and meta-analysis is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension statement for network meta-analysis. Our meta-analysis was registered prospectively in PROSPERO (CRD42017079624) and the Checklist PRISMA 2009 (**Supplementary Table 1**) will be used and check our final reports ²².

We restricted our meta-analysis to the inclusion criteria should meet following details: (1) RCTs; (2) Interventions must be one of the following three: vitamin D only, calcium only, both vitamin D and calcium; (3) Complete outcome data of fracture; (4) Trials enrolling adults older than 50 years and living in their communities; (5) Only studies that lasted more than a year. Exclusion criteria were (1) Calcium or vitamin D combined with other therapies (eg: hormones, exercise); (2) Trials in which vitamin D analogues (eg: calcitriol) or hydroxylated vitamin D were used; (3) Trials in which dietary intake of calcium or vitamin D (eg: from milk) was evaluated; (4) Patients suffering from illness or long-term use of certain drugs affecting the stability of the calcium metabolism, such as metabolic bone disease, bone tumour, treatment of steroids and so on.

Participants must be randomly assigned to two or more following groups: (1) high calcium (800 mg/d or higher) only; (2) low calcium (less than 800 mg/d) only; (3) high vitamin D (800 IU/d or higher) only; (4) low vitamin D (less than 800 IU/d) only; (5) high calcium (800 mg/d or higher) + high vitamin D (800 IU/d or higher); (6) high calcium + low vitamin D (less than 800 IU/d); (7) low calcium (less than 800 mg/d) + high vitamin D; (8) low calcium + low vitamin D; (9) placebo. The interventions should be compared with placebo.

109 Two authors (ZHF and GZ) independently searched the electronic literature database of PubMed,

110 Embase, Cochrane database on December 31, 2017 (detailed search strategies are reported in

BMJ Open

supplementary Table 2). Related articles and reference lists were searched to avoid original miss. The reference studies of previous systematic reviews, meta-analysis, and included studies were manually searched to avoid initial miss. After 2 authors assessed the potentially eligible studies independently,

- any disagreement was discussed and resolved with the third independent author (QT).

Data collection and assessment of risk of bias

Two reviewers (ZHS and XBL) independently extracted data, and the third reviewer (LT) checked the consistency between them. A standard data extracted form was used at this stage, including the authors, publishing date, country, participant characteristics; doses of calcium, vitamin D, or their combination; dietary calcium intake; baseline serum 25-hydroxyvitamin D concentration; and trial duration. For continuous outcomes, the mean, SD (standard deviation) and participant number will be extracted. For dichotomous outcomes, we extracted the total numbers and the numbers of events of both groups. The data in other forms was recalculated when possible to enable pooled analysis.

We used the Cochrane risk of bias tool to assess risk bias of included studies. The tool has seven domains including random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting and other bias. The classification of the judgment for each domain was low risk of bias, high risk of bias, or unclear risk of bias and two authors (ZHF and GZ) independently evaluated the risk of studies.

Data synthesis and statistical analysis

The data was extracted and input into the STATA software (version 12.0; StataCorp, College Station, TX, USA) for network meta-analysis. And we generated network plots for each outcome to illustrate which interventions had been compared directly in the included studies. Network meta-analysis is an extension of standard meta-analysis to compare multiple treatments based on

133	randomized controlled trial evidence, which forms a connected network of comparisons. Treatment
134	effect estimates from network meta-analysis exploit both the direct comparisons within trials and the
135	indirect comparisons across trials. To choose the random effects or fixed effects model, we either make
136	a judgement about what is most likely to be appropriate based on the assumptions of the different
137	models or conduct both fixed or random effects and compare which seems to fit the data better ²³ .
138	Relative risk (RR) with 95% confidence intervals (CIs) was calculated for dichotomous outcomes
139	while weighted mean difference (WMD) with 95% CIs for the continuous. Inconsistency refers to
140	differences between direct and various indirect effect estimates for the same comparison. To assess
141	inconsistency, we estimated the inconsistency factors in closed loop based on the method described by
142	Chaimani et al ²⁴ . The heterogeneity in each closed loop was estimated by utilizing inconsistency factor
143	(IF). If the 95% confidence intervals (95% CI) of IF values are not truncated at zero, it suggests that the
144	inconsistency among studies has statistical significance. We used the surface under the cumulative
145	ranking probabilities (SUCRA) to indicate which treatment was the best one. The funnel plot was used
146	to identify possible publication bias if the number of studies was larger than 10.
147	Patient and public involvement
148	No patients were involved in setting the research question or the outcome measures, and no patients
149	were involved in developing plans for design or implementation of the study. Furthermore, no patients
150	were asked to advice on interpretation or writing up of results. Since this meta-analysis used
151	aggregated data from previous trials, it is unable to disseminate the results of the research to study
152	participants directly.
153	Result

154 Data Retrieval

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
22
23
24
25
26
27
28
29
30
31
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59

155	In summary, a total of 7909 potential records were initially identified through PubMed (5187),
156	Embase (2688), Cochrane Data base (34). Based on our review of the title and abstract, 99 full-text
157	papers were reviewed and 25 studies ^{13 17 19 20 25-45} met inclusion criteria (Figure 1).
158	Study and Patient Characteristics
159	The characteristics of all 25 included studies were summarized and shown in supplementary Table
160	3. And the detailed data of outcomes was collected in supplementary Table 4 . The papers had similar
161	distributions of sex, age, country, intervention and all of them were community-dwelling older people.
162	Hansson et al ²⁹ did not report the residential status of participants, although a previous meta-analysis
163	classified this status as community. The trial by Hansson et al was included, but a sensitivity analysis
164	was performed that excluded that trial (supplementary Figure 1).
165	Supplementary Figure 2 showed the assessment of the risk of bias. All studies were randomized;
166	17 were double-blind, placebo-controlled trials; 13 trials described an adequate random sequence
167	
107	generation process; and 11 trials described the methods used for allocation concealment. No obvious
168	generation process; and 11 trials described the methods used for allocation concealment. No obvious publication bias was reported according to the supplementary Figure 3 , supplementary Figure 4 and
	publication bias was reported according to the supplementary Figure 3, supplementary Figure 4 and supplementary Figure 5.
168	publication bias was reported according to the supplementary Figure 3, supplementary Figure 4 and
168 169	publication bias was reported according to the supplementary Figure 3, supplementary Figure 4 and supplementary Figure 5.
168 169 170	publication bias was reported according to the supplementary Figure 3, supplementary Figure 4 and supplementary Figure 5. Inconsistence and heterogeneity check
168 169 170 171	publication bias was reported according to the supplementary Figure 3, supplementary Figure 4 and supplementary Figure 5. Inconsistence and heterogeneity check The statistical inconsistency between direct and indirect comparisons was generally low according to

- 175 0% and 0% respectively, which indicated no obvious heterogeneity was observed in all these results
- 176 (supplementary Figure 9, supplementary Figure 10, supplementary Figure 11).

Primary outcome: total fracture

For estimating the vitamin D, calcium or their combination efficacy against total fractures, we looked at data from 24965 individuals from 18 studies^{13 17 19 20 25 26 28 30 31 33-35 37 39 40 43-45}. Pooled estimates included 15 studies with one treatment, 1 study with two treatments, and 2 studies with three treatments.

- The network plot of comparisons on total fractures was shown in **Figure 2A**. The forest plot for the network meta-analysis was shown in **Figure 3**. The RR values and 95% CIs are summarized in **Figure 3**. The direct and indirect comparisons indicated no differences among the vitamin D, calcium or their combination that remained in the main network. Neither do the statistical differences between interventions and placebo (P<0.05). So we didn't continue to make ranking graph of distribution of probabilities on total fractures.
- •

188 Secondary outcomes: hip fracture and vertebral fracture

189 A total of 41845 individuals were included from 16 studies^{13 17 19 20 25-28 30 32 33 37 39 40 42 43 for evaluate}

190 the drug efficacy against hip fractures. Pooled estimates included 13 studies with one treatment, 1 study

191 with two treatments, and two studies with three treatments.

The network plot of comparisons on hip fractures was shown in **Figure 2B**. The forest plot for the network meta-analysis was shown in **Figure 4**. The RR values and 95% CIs are summarized in **Figure** 4. The direct and indirect comparisons indicated no differences among the vitamin D, calcium or their combination that remained in the main network. Neither do the statistical differences between drug experimental groups and placebo (P<0.05). So we didn't continue to make ranking graph of distribution of probabilities on total fractures.

198 A total of 17612 individuals were collected from 12 studies^{13 17 19 20 25 28 29 36 38-41} involving vertebral

BMJ Open

fractures. Pooled estimates included 10 studies with one treatment, and two studies with three

treatments. The network plot of comparisons on vertebral fractures was shown in Figure 2C. The forest plot for the network meta-analysis was shown in Figure 5. The RR values and 95% CIs are summarized in Figure 5. The direct and indirect comparisons indicated no differences among the vitamin D, calcium or their combination that remained in the main network. Neither do the statistical differences between drug experimental groups and placebo (P<0.05). So we didn't continue to make ranking graph of distribution of probabilities on total fractures. In a separate sensitivity analysis, we excluded Hansson's study²⁹ (supplementary Figure 1). However, there was still no significant association of vitamin D, calcium or their combination with total fracture. Discussion Vitamin D supplementation and calcium are suggested as interventions to treat and prevent fracture. We found the previous meta-analyses and RCTs are critically inconsistent in efficacy of different doses of vitamin D with calcium on fractures. Results of this meta-analysis showed that calcium, calcium plus vitamin D, and vitamin D supplementation alone were not significantly associated with a lower incidence of hip, vertebral, or total fractures in community-dwelling older adults. Sensitivity analyses that excluded low-quality trials and studies that exclusively enrolled patients with particular medical conditions did not alter these results. A meta-analysis conducted by Jia-Guo Zhao et al⁴⁶ showed that no significant difference was found in the incidence of hip or other fractures, which was similar to our result. However, the object of Zhao's study was to investigate whether calcium, vitamin D, or combined calcium and vitamin D

supplement are associated with a lower facture incidence while our study was designed to evaluate the optimal concentration of them. Meanwhile, in Zhao's meta-analysis, the participants of the included study reported by Massart⁴⁷ were adult maintenance hemodialysis patients, which may result in the imbalance of calcium in the body. Patients on hemodialysis may also be receiving 1,25-dihydroxyvitamin D, which may affect their response to vitamin D supplementation. So we did not include that trial in our network meta-analysis. What's more, we didn't include studies that lasted less than a year because we thought this time-frame was too short to see anti-fracture efficacy. And we suspected that a network meta-analysis might be a more suitable choice concerning all these different interventions mixed. Bischoff-Ferrari et al ⁴⁸ reported that high-dose vitamin D supplementation (800 IU/d or higher) played an important role in the reduction of the risk of falls and hip fractures, as well as prevented non-vertebral fractures in adults 65 years or older. However, their findings may have been influenced by the trial of Chapuy et al 49, which only enrolled participants living in an institution. What's more, differences in conclusions of previous meta-analyses and the current meta-analysis were due to the recently published trials which reported neutral or harmful associations of vitamin D supplementation and fracture incidence more and more. Study findings here indicated that vitamin D might result in a higher risk for hip fracture, but this conclusion did not reach statistical significance. This finding may be attributable to lack of statistical power in this meta-analysis. Most recently there was a meta-analysis published in the Lancet by Bolland et al⁵⁰, whose findings suggested that vitamin D supplementation does not prevent fractures or falls, or have clinically meaningful effects on bone mineral density. Although it was similar to our study to some extent, they are really different. First, we only included community-dwelling older people. We found that some

BMJ Open

meta-analyses equated community-dwelling older people with those in nursing institution. The lack of exercise, dietary intake and exposure to sunlight made people in nursing institution turned more susceptible to the use of supplements including vitamin D, calcium or their combination. Although the studies involving participants living in nursing institution were only a small part, but it could change the whole outcomes and produce false positive results. We found only Avenell's study paid attention to this question when they conducted a subgroup analysis, but they did not discussed separately. Meanwhile, we only enrolled adults older than 50 years and trial duration more than 1 year to reduce the statistical heterogeneity in network meta-analysis. Furthermore, the current analyses included calcium supplementation, where the Bolland's study focused on vitamin D. However, possible limitations of this study protocol include potential missing data and meta-biases, heterogeneity, which may limit the quality of evidence. Some RCTs were of poor quality and, for example, used unclear allocation concealment. So we made a sensitivity analysis by excluding low-quality trials. Meanwhile, some study characteristics such as baseline serum 25-hydroxyvitamin D concentrations might be to contribute heterogeneity so future analyses are still needed to explore this potential heterogeneity. What's more, we combined bolus dosing by injection with oral supplements taken daily/monthly/yearly, which might have different effects on vitamin D status in the body. In addition, the report ignored the effect of treatment with vitamin D on plasma 25-hydroxy-vitamin D concentrations and sub-types of fracture, such as pathologic fractures; this work does not necessarily preclude any benefit of vitamin D and calcium supplementation in older, frail individuals. Conclusions In this meta-analysis of randomized clinical trials, we found that the use of different concentrations of

vitamin D, calcium or their combination in community-dwelling older adults was not associated with a

lower risk of fractures. Our findings may not support the routine use of these supplements incommunity-dwelling older people.

267 Contributors

ZCH and AMW conceived the study. The search strategy was developed by LT and XBL. ZHF, GZ and QT will complete electronic search, select publications and assess their eligibility. ZHS and XBL will extract information of the included studies after screening. JWX will check the data entry for accuracy and completeness. ZCH and LT will give advice for data analysis and presentation of study result. LYS and CMS contributed to the text revision. WFN and AMW supervised the overall conduct of the study. All the authors drafted and critically reviewed and approved the final manuscript. Funds and Acknowledgement This work was funded by the National Natural Science Foundation of China (81501933, 81572214), Zhejiang Provincial Natural Science Foundation of China (LY14H060008), Zhejiang Provincial Medical Technology Foundation of China (2018254309, 2015111494), Wenzhou leading talent innovative project (RX2016004) and Wenzhou Municipal Science and Technology Bureau

279 (Y20170389). The funders had no role in the design, execution, or writing of the study.

- **Conflicts of interest**
- 281 None declared
- 282 Patient consent
- 283 Not required.
- **Provenance and peer review**

285 Not commissioned; externally peer reviewed.

286 Data availability statement

BMJ Open

1 2		
3 4 5	287	All data relevant to the study are included in the article or uploaded as supplementary information.
6 7	288	References
8 9	289	1. Svedbom A, Hernlund E, Ivergard M, et al. Osteoporosis in the European Union: a compendium of
9 10	290	country-specific reports. Arch Osteoporos 2013;8:137. doi: 10.1007/s11657-013-0137-0
11	291	2. Mohd-Tahir NA, Li SC. Economic burden of osteoporosis-related hip fracture in Asia: a systematic
12	292	review. Osteoporos Int 2017;28(7):2035-44. doi: 10.1007/s00198-017-3985-4
13 14	293	3. Kim J, Lee E, Kim S, et al. Economic Burden of Osteoporotic Fracture of the Elderly in South Korea: A
15	294	National Survey. Value Health Reg Issues 2016;9:36-41. doi: 10.1016/j.vhri.2015.09.007
16	295	4. Qu B, Ma Y, Yan M, et al. The economic burden of fracture patients with osteoporosis in western
17 18	296	China. Osteoporos Int 2014;25(7):1853-60. doi: 10.1007/s00198-014-2699-0
19	297	5. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in
20	298	the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone
21	299	Miner Res 2014;29(11):2520-6. doi: 10.1002/jbmr.2269
22 23	300	6. Consensus conference: Osteoporosis. JAMA 1984;252(6):799-802.
24	301	7. Ross AC. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr
25	302	2011;14(5):938-9. doi: 10.1017/S1368980011000565
26 27	303	8. Shea B, Wells G, Cranney A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. VII.
28	304	Meta-analysis of calcium supplementation for the prevention of postmenopausal
29	305	osteoporosis. <i>Endocr Rev</i> 2002;23(4):552-9. doi: 10.1210/er.2001-7002
30 31	306	9. Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic
32	307	review and meta-analysis. Lancet 2014;383(9912):146-55. doi:
33	308	10.1016/s0140-6736(13)61647-5 [published Online First: 2013/10/15]
34	309	10. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of
35 36	310	fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos
37	311	Int 2016;27(1):367-76. doi: 10.1007/s00198-015-3386-5
38	312	11. Group D. Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture
39 40	313	trials in US and Europe. <i>BMJ</i> 2010;340:b5463. doi: 10.1136/bmj.b5463
41	314	12. Flicker L, MacInnis RJ, Stein MS, et al. Should older people in residential care receive vitamin D to
42	315	prevent falls? Results of a randomized trial. J Am Geriatr Soc 2005;53(11):1881-8. doi:
43 44	316	10.1111/j.1532-5415.2005.00468.x [published Online First: 2005/11/09]
44	317	13. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol)
46	318	supplementation on fractures and mortality in men and women living in the community:
47	319	randomised double blind controlled trial. <i>Bmj</i> 2003;326(7387):469. doi:
48 49	320	10.1136/bmj.326.7387.469 [published Online First: 2003/03/01]
50	321	14. Lyons RA, Johansen A, Brophy S, et al. Preventing fractures among older people living in
51	322	institutional care: a pragmatic randomised double blind placebo controlled trial of vitamin D
52 53	323	supplementation. Osteoporos Int 2007;18(6):811-8. doi: 10.1007/s00198-006-0309-5
54	324	[published Online First: 2007/05/03]
55	325	15. Law M, Withers H, Morris J, et al. Vitamin D supplementation and the prevention of fractures and
56 57	326	falls: results of a randomised trial in elderly people in residential accommodation. Age
57 58	327	Ageing 2006;35(5):482-6. doi: 10.1093/ageing/afj080 [published Online First: 2006/04/28]
59	328	16. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Prevention of nonvertebral fractures with oral
60		
		14

1 2		
3	329	vitamin D and does dependency a moto analysis of randomized controlled trials. Arch Intern
4		vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern
5	330	Med 2009;169(6):551-61. doi: 10.1001/archinternmed.2008.600 [published Online First:
6 7	331	2009/03/25]
8	332	17. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures
9	333	in older women: a randomized controlled trial. <i>Jama</i> 2010;303(18):1815-22. doi:
10	334	10.1001/jama.2010.594 [published Online First: 2010/05/13]
11 12	335	18. Nakamura K, Saito T, Kobayashi R, et al. Effect of low-dose calcium supplements on bone loss in
12	336	perimenopausal and postmenopausal Asian women: a randomized controlled trial. J Bone
14	337	Miner Res 2012;27(11):2264-70. doi: 10.1002/jbmr.1676
15	338	19. Prince RL, Devine A, Dhaliwal SS, et al. Effects of calcium supplementation on clinical fracture and
16 17	339	bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women.
18	340	Arch Intern Med 2006;166(8):869-75. doi: 10.1001/archinte.166.8.869 [published Online
19	341	First: 2006/04/26]
20	342	20. Salovaara K, Tuppurainen M, Karkkainen M, et al. Effect of vitamin D(3) and calcium on fracture
21 22	343	risk in 65- to 71-year-old women: a population-based 3-year randomized, controlled
22	344	trialthe OSTPRE-FPS. <i>J Bone Miner Res</i> 2010;25(7):1487-95. doi: 10.1002/jbmr.48
24	345	[published Online First: 2010/03/05]
25	346	21. Boonen S, Lips P, Bouillon R, et al. Need for additional calcium to reduce the risk of hip fracture
26 27	347	with vitamin d supplementation: evidence from a comparative metaanalysis of randomized
27	348	controlled trials. J Clin Endocrinol Metab 2007;92(4):1415-23. doi: 10.1210/jc.2006-1404
29	349	[published Online First: 2007/02/01]
30	350	22. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
31 32	351	meta-analyses: the PRISMA statement. <i>PLoS Med</i> 2009;6(7):e1000097. doi:
33	351	
34		10.1371/journal.pmed.1000097
35	353	23. Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. <i>Genet</i>
36 37	354	<i>Epidemiol</i> 2005;28(2):123-37. doi: 10.1002/gepi.20048 [published Online First: 2004/12/14]
38	355	24. Chaimani A, Higgins JP, Mavridis D, et al. Graphical tools for network meta-analysis in STATA. <i>PLoS</i>
39	356	One 2013;8(10):e76654. doi: 10.1371/journal.pone.0076654 [published Online First:
40	357	2013/10/08]
41 42	358	25. Avenell A, Grant AM, McGee M, et al. The effects of an open design on trial participant
42	359	recruitment, compliance and retentiona randomized controlled trial comparison with a
44	360	blinded, placebo-controlled design. <i>Clin Trials</i> 2004;1(6):490-8. doi:
45	361	10.1191/1740774504cn053oa [published Online First: 2005/11/11]
46 47	362	26. Baron JA, Beach M, Mandel JS, et al. Calcium supplements for the prevention of colorectal
47	363	adenomas. Calcium Polyp Prevention Study Group. N Engl J Med 1999;340(2):101-7. doi:
49	364	10.1056/nejm199901143400204 [published Online First: 1999/01/14]
50	365	27. Dawson-Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on
51 52	366	bone density in men and women 65 years of age or older. N Engl J Med 1997;337(10):670-6.
52 53	367	doi: 10.1056/nejm199709043371003 [published Online First: 1997/09/04]
54	368	28. Grant AM, Avenell A, Campbell MK, et al. Oral vitamin D3 and calcium for secondary prevention of
55	369	low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D,
56 57	370	RECORD): a randomised placebo-controlled trial. Lancet 2005;365(9471):1621-8. doi:
58	371	10.1016/s0140-6736(05)63013-9 [published Online First: 2005/05/12]
59	372	29. Hansson T, Roos B. The effect of fluoride and calcium on spinal bone mineral content: a
60		,

Page 17 of 46

1

BMJ Open

2		
3	373	controlled, prospective (3 years) study. <i>Calcif Tissue Int</i> 1987;40(6):315-7. [published Online
4 5	374	First: 1987/06/01]
6	375	30. Harwood RH, Sahota O, Gaynor K, et al. A randomised, controlled comparison of different calcium
7	376	and vitamin D supplementation regimens in elderly women after hip fracture: The
8 9	377	Nottingham Neck of Femur (NONOF) Study. Age Ageing 2004;33(1):45-51. [published Online
9 10	378	First: 2003/12/30]
11	379	31. Hin H, Tomson J, Newman C, et al. Optimum dose of vitamin D for disease prevention in older
12	380	people: BEST-D trial of vitamin D in primary care. Osteoporos Int 2017;28(3):841-51. doi:
13 14	381	10.1007/s00198-016-3833-y [published Online First: 2016/12/18]
14	382	32. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of
16	383	fractures. <i>N Engl J Med</i> 2006;354(7):669-83. doi: 10.1056/NEJMoa055218 [published Online
17	384	First: 2006/02/17]
18 19	385	33. Lips P, Graafmans WC, Ooms ME, et al. Vitamin D supplementation and fracture incidence in
20		
21	386	elderly persons. A randomized, placebo-controlled clinical trial. Ann Intern Med
22	387	1996;124(4):400-6. [published Online First: 1996/02/15]
23	388	34. Liu BX, Chen SP, Li YD, et al. The Effect of the Modified Eighth Section of Eight-Section Brocade on
24 25	389	Osteoporosis in Postmenopausal Women: A Prospective Randomized Trial. Medicine
26	390	(Baltimore) 2015;94(25):e991. doi: 10.1097/md.000000000000991 [published Online First:
27	391	2015/06/25]
28	392	35. Mitri J, Dawson-Hughes B, Hu FB, et al. Effects of vitamin D and calcium supplementation on
29 30	393	pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of
31	394	diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled
32	395	trial. Am J Clin Nutr 2011;94(2):486-94. doi: 10.3945/ajcn.111.011684 [published Online First:
33	396	2011/07/01]
34 35	397	36. Peacock M, Liu G, Carey M, et al. Effect of calcium or 25OH vitamin D3 dietary supplementation
36	398	on bone loss at the hip in men and women over the age of 60. J Clin Endocrinol Metab
37	399	2000;85(9):3011-9. doi: 10.1210/jcem.85.9.6836 [published Online First: 2000/09/22]
38	400	37. Porthouse J, Cockayne S, King C, et al. Randomised controlled trial of calcium and
39 40	401	supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary
40	402	care. <i>Bmj</i> 2005;330(7498):1003. doi: 10.1136/bmj.330.7498.1003 [published Online First:
42	403	2005/04/30]
43	404	38. Recker RR, Hinders S, Davies KM, et al. Correcting calcium nutritional deficiency prevents spine
44 45	405	fractures in elderly women. J Bone Miner Res 1996;11(12):1961-6. doi:
46	406	10.1002/jbmr.5650111218 [published Online First: 1996/12/01]
47	400	39. Reid IR, Ames RW, Evans MC, et al. Effect of calcium supplementation on bone loss in
48		
49 50	408	postmenopausal women. <i>N Engl J Med</i> 1993;328(7):460-4. doi:
51	409	10.1056/nejm199302183280702 [published Online First: 1993/02/18]
52	410	40. Reid IR, Mason B, Horne A, et al. Randomized controlled trial of calcium in healthy older women.
53	411	Am J Med 2006;119(9):777-85. doi: 10.1016/j.amjmed.2006.02.038 [published Online First:
54 55	412	2006/09/02]
55 56	413	41. Riggs BL, O'Fallon WM, Muhs J, et al. Long-term effects of calcium supplementation on serum
57	414	parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res
58	415	1998;13(2):168-74. doi: 10.1359/jbmr.1998.13.2.168 [published Online First: 1998/03/12]
59 60	416	42. Smith H, Anderson F, Raphael H, et al. Effect of annual intramuscular vitamin D on fracture risk in

2		
3	417	elderly men and womena population-based, randomized, double-blind, placebo-controlled
4 5	418	trial. <i>Rheumatology (Oxford)</i> 2007;46(12):1852-7. doi: 10.1093/rheumatology/kem240
6	419	[published Online First: 2007/11/14]
7	420	43. Uusi-Rasi K, Patil R, Karinkanta S, et al. Exercise and vitamin D in fall prevention among older
8		
9	421	women: a randomized clinical trial. <i>JAMA Intern Med</i> 2015;175(5):703-11. doi:
10	422	10.1001/jamainternmed.2015.0225 [published Online First: 2015/03/24]
11	423	44. Witham MD, Price RJ, Struthers AD, et al. Cholecalciferol treatment to reduce blood pressure in
12 13	424	older patients with isolated systolic hypertension: the VitDISH randomized controlled trial.
14	425	JAMA Intern Med 2013;173(18):1672-9. doi: 10.1001/jamainternmed.2013.9043 [published
15	426	Online First: 2013/08/14]
16	427	45. Xue Y, Hu Y, Wang O, et al. Effects of Enhanced Exercise and Combined Vitamin D and Calcium
17	428	Supplementation on Muscle Strength and Fracture Risk in Postmenopausal Chinese Women.
18 19	429	Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2017;39(3):345-51. doi:
20		
21	430	10.3881/j.issn.1000-503X.2017.03.008 [published Online First: 2017/07/12]
22	431	46. Zhao JG, Zeng XT, Wang J, et al. Association Between Calcium or Vitamin D Supplementation and
23	432	Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and
24 25	433	Meta-analysis. <i>Jama</i> 2017;318(24):2466-82. doi: 10.1001/jama.2017.19344 [published
25 26	434	Online First: 2017/12/28]
27	435	47. Massart A, Debelle FD, Racape J, et al. Biochemical parameters after cholecalciferol repletion in
28	436	hemodialysis: results From the VitaDial randomized trial. Am J Kidney Dis
29	437	2014;64(5):696-705. doi: 10.1053/j.ajkd.2014.04.020 [published Online First: 2014/05/27]
30 21	438	48. Bischoff-Ferrari HA, Willett WC, Orav EJ, et al. A pooled analysis of vitamin D dose requirements
31 32	439	for fracture prevention. N Engl J Med 2012;367(1):40-9. doi: 10.1056/NEJMoa1109617
33	440	[published Online First: 2012/07/06]
34	441	49. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in elderly
35	442	
36 37		women. <i>N Engl J Med</i> 1992;327(23):1637-42. doi: 10.1056/nejm199212033272305
38	443	[published Online First: 1992/12/03]
39	444	50. Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: a
40	445	systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol
41	446	2018;6(11):847-58. doi: 10.1016/s2213-8587(18)30265-1 [published Online First:
42 43	447	2018/10/09]
43 44	440	
45	448	
46		
47		
48 49		
49 50	449	Legends:
51		
52		
53		
54 55	450	Figure 1. The selection of literature for included studies.
55 56		
57		
58		
59		
60	451	Figure 2. The network plot of comparisons on total fractures (A), hip fractures (B) and vertebral
		17

BMJ Open

3
4
5
6
7
, 0
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
20 21 22 23 24 25 26 27 28 29 30
23
2/
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
50 57
58
59
60

452 fractures (C). A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high
453 vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)

Figure 3. The forest plot for the risk of total fractures. A: high calcium (800 mg/d or higher); B: low

455 calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than

456 800 IU/d)

457 Figure 4. The forest plot for the risk of hip fractures. A: high calcium (800 mg/d or higher); B: low
458 calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than
459 800 IU/d)

460 Figure 5. The forest plot for the risk of vertebral fractures. A: high calcium (800 mg/d or higher); B:
461 low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less
462 than 800 IU/d)

463 supplementary Figure 1. A sensitivity analysis excluded the trial of Hansson et al. A: high calcium

464 (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher);

465 D: low vitamin D (less than 800 IU/d)

466 supplementary Figure 2. Risk of Bias Assessment of All Included Studies

467 **supplementary Figure 3.** Publication bias for the total fractures. A: high calcium (800 mg/d or higher);

B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less
than 800 IU/d)

470 supplementary Figure 4. Publication bias for the hip fractures. A: high calcium (800 mg/d or higher);

471 B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less

472 than 800 IU/d)

 473 supplementary Figure 5. Publication bias for the vertebral fractures. A: high calcium (800 mg/d or
474 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low

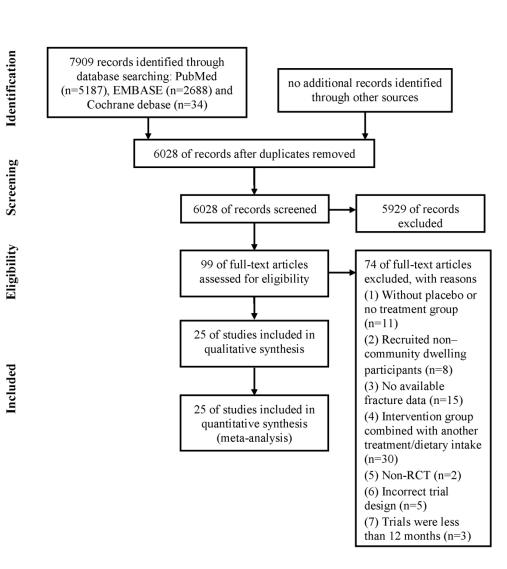
475 vitamin D (less than 800 IU/d)

476 supplementary Figure 6. Inconsistency test for the total fractures. A: high calcium (800 mg/d or

477 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low

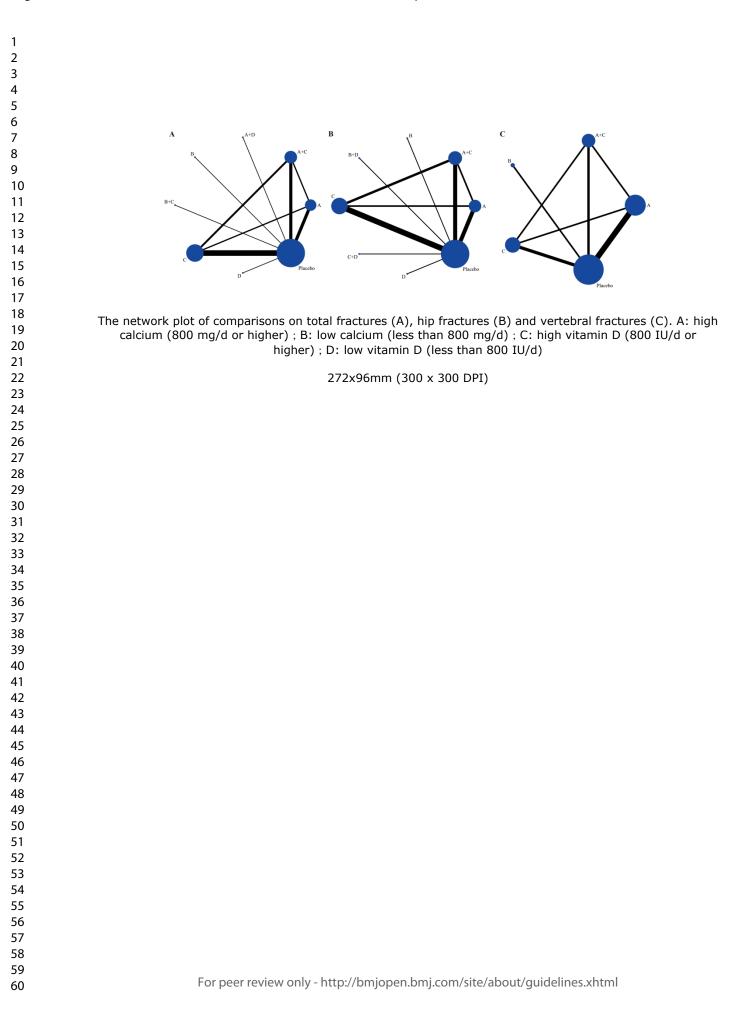
478 vitamin D (less than 800 IU/d)

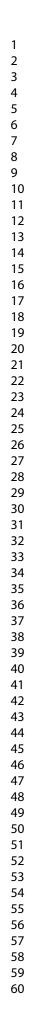
479 supplementary Figure 7. Inconsistency test for the hip fractures. A: high calcium (800 mg/d or

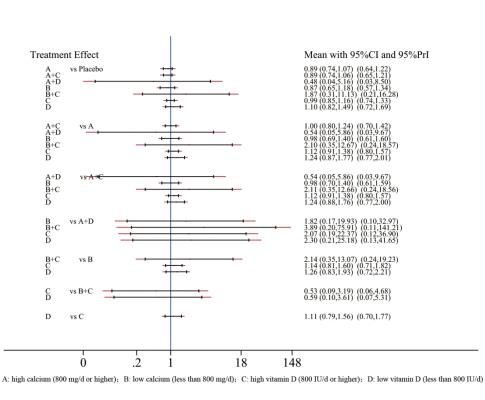

480 higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low

481 vitamin D (less than 800 IU/d)

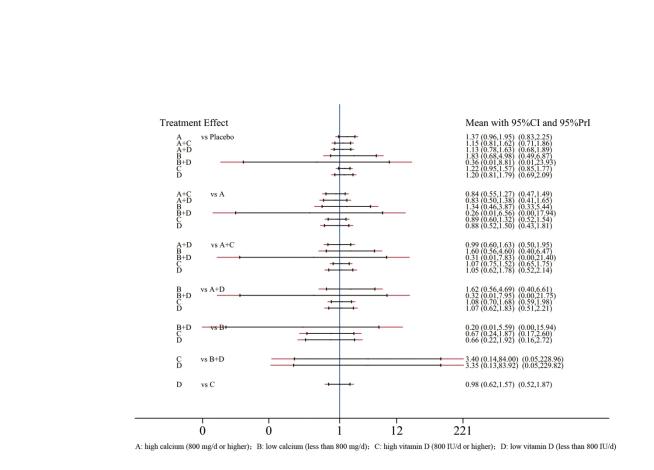
higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low


484 vitamin D (less than 800 IU/d)


1		
2		
3	10.5	
4	485	supplementary Figure 9. Heterogeneity test for the total fractures. A: the result of random effects
5		
6 7	486	model; B: the result of fixed effects model.
8		
8 9		
9 10		
10		
12	487	supplementary Figure 10. Heterogeneity test for the hip fractures. A: the result of random effects
13		
14	100	
15	488	model; B: the result of fixed effects model.
16		
17		
18		
19		
20	489	supplementary Figure 11. Heterogeneity test for the vertebral fractures. A: the result of random
21		
22	490	effects model; B: the result of fixed effects model.
23	170	checks model, B. the festil of milde checks model.
24		
25		
26		
27	491	
28	.,	
29		
30		effects model; B: the result of fixed effects model.
31		
32		
33		
34		
35 36		
30 37		
38		
38 39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59 60		
00		



The selection of literature for included studies.


171x176mm (300 x 300 DPI)

The forest plot for the risk of total fractures. A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)

The forest plot for the risk of hip fractures. A: high calcium (800 mg/d or higher) ; B: low calcium (less than 800 mg/d) ; C: high vitamin D (800 IU/d or higher) ; D: low vitamin D (less than 800 IU/d)

Mean with 95%CI and 95%PrI

0.81 (0.61,1.08) (0.54,1.21)

0.59 (0.27,1.30) (0.20,1.81)

0.88 (0.60,1.30) (0.51,1.53)

0.98 (0.68,1.40) (0.59,1.62)

0.74 (0.32,1.69) (0.23,2.39)

1.09 (0.67,1.77) (0.55,2.17)

1.21 (0.77,1.90) (0.64,2.29)

1.48 (0.62,3.55) (0.43,5.12)

1.64 (0.70,3.87) (0.49,5.52)

1.11 (0.65,1.89) (0.52,2.35)

The forest plot for the risk of vertebral fractures. A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d) ; C: high vitamin D (800 IU/d or higher) ; D: low vitamin D (less than 800 IU/d)

47

BMJ Open

Section/topic	#	Checklist item	Reported on page #
TITLE			-
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			-
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION	-		
Rationale	3	Describe the rationale for the review in the context of what is already known.	3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS	-		-
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5

Section/topic	#	Checklist item	Reported on page #			
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6			
Data collection process	10	10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.				
BData items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6			
⁵ Risk of bias in ⁶ individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6			
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7			
Synthesis of results	Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.					
Risk of bias across studies						
²⁵ Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7			
RESULTS		•	-			
9 Study selection 9	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8			
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8			
4 Risk of bias within 5 studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	8			
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	9-10			
40 41 42 43 44 45 46		Page 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

Section/topic	#	Checklist item	Reported on page #
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9-10
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8
Additional analysis	8-10		
⁴ DISCUSSION	-	•	•
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers).	10-12
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias).	12
Conclusions	13		
⁴ FUNDING	-	•	•
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	13
8 9 0 1 2 3 4 4 5 6 7 8 9 9 0 1 2		Solution of the second se	
2 3 4 5 5 7		Page 3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

1

Supplementary Table 2. Search Strategy for Each Database

Database	Search strategy
Pubmed	#1 "calcium"[MeSH Terms] OR "calcium"[All Fields]
	#2 "vitamin d"[MeSH Terms] OR "vitamin d"[All Fields] OR
	"ergocalciferols"[MeSH Terms] OR "ergocalciferols"[All Fields]
	#3 "fractures, bone"[MeSH Terms] OR ("fractures"[All Fields] AND "bone"[All
	Fields]) OR "bone fractures"[All Fields] OR "fracture"[All Fields]
	#4 #1 or #2
	#5 #3 and #4

Page 31 of 46

5 Source	Intervention	Women, No. (%)	Mean Age, y	Previous Fracture	Calcium Intake, mg/d	Baseline 25OHD, ng/mL	Treatment Duration
venell et al, 2004	Calcium(1 g/d) (n = 29)	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
United Kingdom)	No treatment $(n = 35)$						
1 2	D ₃ (800IU/d) (n = 35)	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
3	No treatment $(n = 35)$						
4 5	Calcium $(1g/d) + D_3$	NA ^a (83)	78 ^b	Yes	NA	NA	3.8 y
б	(800IU/d) (n = 35)						
7 8	No treatment (n = 35)						
9 Saron et al, 1999	Calcium: 1.2 g/d (n = 464)	258 (28)	61.0	NA	877	NA	4 y
0 United States)	Placebo (n = 466)						
2 Dawson-Hughes et al,	Calcium $(0.5g/d) + D_3$	213 (54)	71.1	NA	729	29.6 °	3 у
3 4 97 (United States)	(700IU/d) (n = 187)						- 5
5	Placebo (n = 202)						
6 Frant et al, 2005	Calcium(1 g/d) (n = 1311)	2241 (85)	77	Yes	NA	15.2 ^{e,f}	2-5 y
8 Bynited Kingdom)	Placebo (n = 1332)	22.11 (00)		100		10.2	209
0	$D_{3}(800IU/d) (n = 1343)$	2264 (85)	77	Yes	NA	15.2 ^{e,f}	2-5 y
1 2	Placebo (n = 1332)	2204 (83)		105	NA NA	13.2	2-5 y
3		2222 (0.5)				1 5 0 0 f	
4 5	Calcium $(1g/d) + D_3$	2232 (85)	77.5	Yes	NA	15.2 ^{e,f}	2-5 y
6	(800IU/d) (n = 1306)						
7	Placebo (n = 1332)			9			
8 Jansson and Roos, 9	Calcium $(1g/d)$ (n = 25)	50 (100)	65.9	Yes	NA	NA	3 у
987 (Sweden)	Placebo (n = 25)						
1 Harwood et al, 2004 2	D_3 (300000 IU once) (n = 38)	75 (100)	80.5	Yes	NA	11.6	1 y
Binited Kingdom) 4	No treatment $(n = 37)$						
5	Calcium $(1g/d) + D_2$	112 (100)	81.7	Yes	NA	11.9	1 y
6 7	(300000 IU once) (n = 36)						
8	Calcium $(1g/d) + D_3$						
9 0	(800IU/d) (n = 39)						
1	No treatment $(n = 37)$						
2 lin et al, 2017 3	D ₃ (4000 IU/d)(n = 102)	150 (49)	71.7	Partial ^c	710	20.1	1 y
5 Ønited Kingdom)	D ₃ (2000 IU/d)(n = 102)						
5 6	Placebo (n = 101)						
ackson et al, 2006	Calcium (1g/d) + D ₃ (400	7972 (100)	62.4	Partial ^c	1151	18.9 °	7у
8 United States)	IU/d) (n = 4015)						

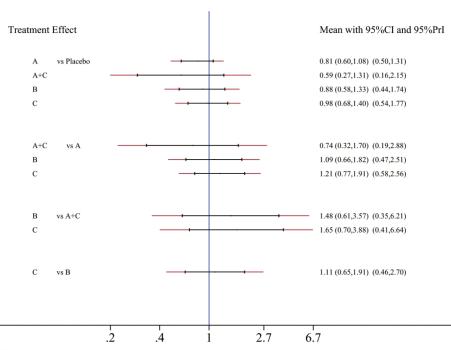
	Placebo (n = 3957)						
ips et al, 1996	400 IU/d (n = 1291)	1916 (74)	80.0	No hip fracture	868	10.6 °	3-4 y
The Netherlands)	Placebo (n = 1287)						
Liu et al, 2015	Calcium (1.5g/d) + D ₃ (600	98 (100)	62.1	No	1500	NA	1 y
(C hina)	IU/d) (n = 50)						
1 2	Placebo (n = 48)						
Mitri et al, 2011	D ₃ (2000 IU/d)(n = 23)	25 (53)	58.0	NA	926	25.3	4 mo
4 (United States)	Placebo (n = 24)						
Peacock et al, 2000	Calcium (0.75g/d) (n = 126)	187 (72)	73.8	Partial ^c	597	25.0	4 y
7 (gunited States)	Placebo (n = 135)						
9 Porthouse et al, 2005	Calcium (1g/d) + D ₃ (800	3314 (100)	76.8	Partial ^c	1080	NA	1.5-3.5 y
(United Kingdom)	IU/d) (n = 1321)						
22 23	No treatment $(n = 1993)$						
Prince et al, 2006	Calcium (0.48g/d) (n = 730)	1460 (100)	75.2	Partial ^c	915	31.0 ^e	5 y
25 (Australia)	Placebo (n = 730)						
27 Recker et al, 1996 28	Calcium (1.2 g/d) (n = 95)	197 (100)	73.5	Partial ^c	434	25.5 °	4 y
(9) nited States)	Placebo (n = 102)						
SO Reid et al, 1993	Calcium (1 g/d) (n = 68)	135 (100)	58	No vertebral	750	37.5	4 y
(New Zealand)	Placebo (n = 67)			fracture			
33 Repid et al, 2006	Calcium (1 g/d) (n = 732)	1471 (100)	74.3	Partial ^c	857	20.7	5 y
(New Zealand)	Placebo (n = 739)						
3 6 Raggs et al, 1998	Calcium (1.6 g/d) (n = 119)	236 (100)	66.2	No	714	30.1	4 y
8 (United States)	Placebo (n = 117)						
0	$Calcium(1g/d) + D_3$	3432 (100)	67.3	Partial	957	19.8 °	3 у
Salovaara et al, 2010	(800 IU/d) (n = 1718)						
l2 (Finland) I3	No treatment $(n = 1714)$						
14 15	D ₃ (500000 IU every year)	2258 (100)	76.1	Partial ^c	976	19.8 °	3-5 y
Sanders et al, 2010	(n = 1131)						
(Zustralia) 18	Placebo (n = 1127)						
19 50	D ₃ (300000 IU every year)	5086 (54)	79.1	Partial ^c	625 ^d	22.6 °	3 у
0 Smith et al, 2007 51	(n = 4727)						
(⊉nited Kingdom) 53	Placebo (n = 4713)						
4	D ₃ (100000 IU every 4 mo)	649 (24)	74.8	NA	742	NA	5 y
5 rivedi et al, 2003 6	(n = 1345)						
6 (United Kingdom)	Placebo (n = 1341)						
8 Dusi-Rasi et al, 2015	D ₃ (800 IU/d) (n = 102)	204 (100)	73.9	NA	1082	26.7	2 y

1 2										
3 4 ^(Finland)	Placebo (n = 102)									
5 6 Witham et al, 2013	D ₃ (100000 IU every 3 mo)	77 (49)	76.8	NA	1125	18.0	1 y			
7 (United Kingdom) 8	(n = 80)									
8 9	Placebo (n = 79)									
10	Calcium (0.6g/d) + D ₃ (800	312 (100)	63.6	Partial ^c	NA	30.8	1 y			
1Xiue et al, 2017 1(Ehina) 13	IU/d) (n = 139)									
	Placebo (n = 173)									
14 15										
16	Abbreviation: 250HD	, 25-hydroxyvi	tamin D; NA, n	ot available						
17	^a Women accounted	for 83% of tot	al participants	in this trial, b	ut detailed da	ata not available	for			
18	each group.									
19 20	^b Mean age is 78 y	for total parti	cipants in this	trial, but det	ailed data no	t available for e	ach			
21	group.		•	,						
22	^c This trial reported p	artial participa	ints with fractu	ure history.						
23	^d Partial participants									
24 25	^e Partial participants				concentration	S				
26	^f The RECORD trial re						[:] 60			
27	participants was 15.2	-				-	00			
28		ing/inc, but d				oup.				
29 30										
31										
32	supplementary Ta	able 3. The c	haracteristics	of the includ	ded studies.					
33										
34 35										
36										
37										
38										
39 40										
41										
42										
43										
44 45										
46										
47										
48 49										
50										
51										
52										
53 54										
55										
56										
57										
58 59										
59 60										

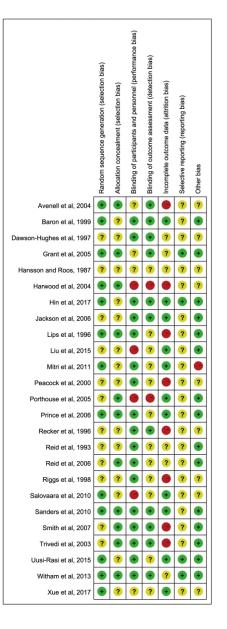
	Treatment			No. of Participar	nts
Source	Duration	Intervention	Total Fracture	Hip fracture	Vertebral Fractu
Avenell et al, 2004	3.8 y	Calcium(1 g/d) (n = 29)	4	1	0
(United Kingdom)		D ₃ (800IU/d) (n = 35)	3	0	0
		Calcium $(1g/d) + D_3$	2	1	0
		(800IU/d) (n = 35)			
		No treatment $(n = 35)$	4	1	1
Baron et al, 1999	4 y	Calcium: 1.2 g/d (n = 464)	4	1	
(United States)		Placebo (n = 466)	14	0	
Dawson-Hughes et al, 1997	/ 3 y	Calcium $(0.5g/d) + D_3$		0	
(United States)		(700IU/d) (n = 187)			
		Placebo (n = 202)		1	
Grant et al, 2005	2-5 у	Calcium(1 g/d) (n = 1311)	166	49	3
(United Kingdom)		D ₃ (800IU/d) (n = 1343)	188	47	4
		Calcium $(1g/d) + D_3$	165	46	0
		(800IU/d) (n = 1306)			
		Placebo (n = 1332)	179	41	1
Hansson and Roos, 1987	3 у	Calcium (1g/d) (n = 25)			1
(Sweden)		Placebo (n = 25)	N.		1
Harwood et al, 2004	1 y	D ₃ (300000 IU once) (n = 38)	0	0	
(United Kingdom)		Calcium $(1g/d) + D_2$	6	1	
		(300000 IU once) (n = 36)			
		Calcium $(1g/d) + D_3$			
		(800IU/d) (n = 39)	<		
		No treatment $(n = 37)$	5	1	
Hin et al, 2017	1 y	D ₃ (4000 IU/d)(n = 102)	6		
(United Kingdom)		D ₃ (2000 IU/d)(n = 102)			
		Placebo (n = 101)	1		
Jackson et al, 2006	7 у	Calcium (1g/d) + D ₃ (400		70	
(United States)		IU/d) (n = 4015)			
		Placebo (n = 3957)		61	

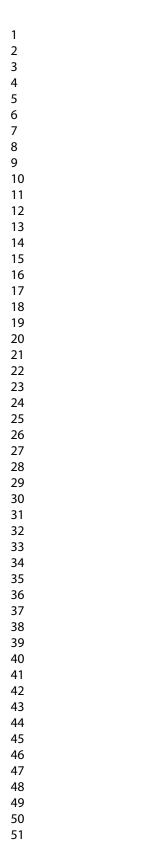
Page 35 of 46

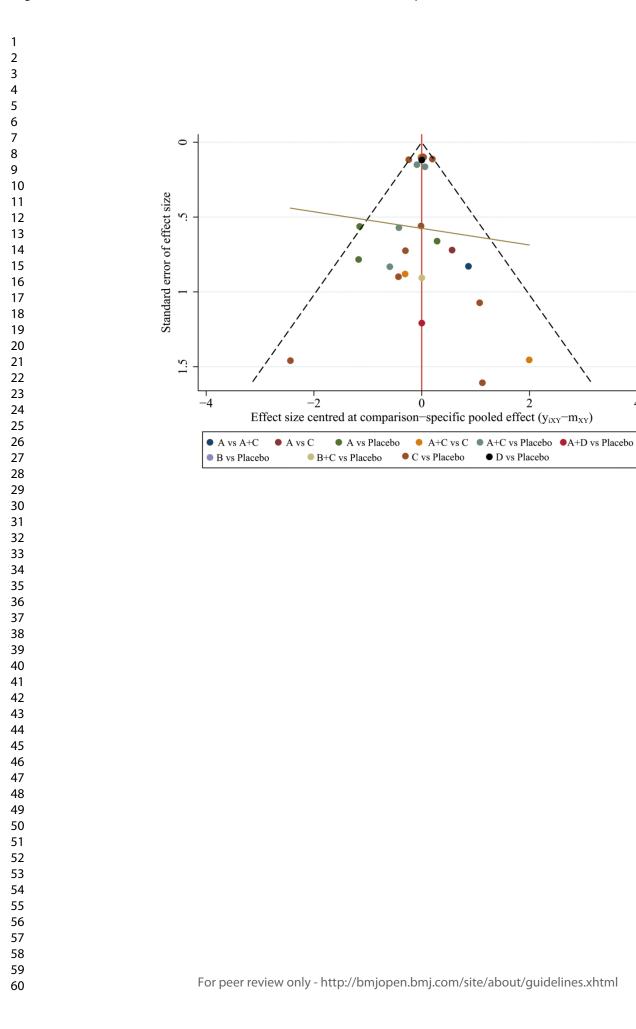
BMJ Open

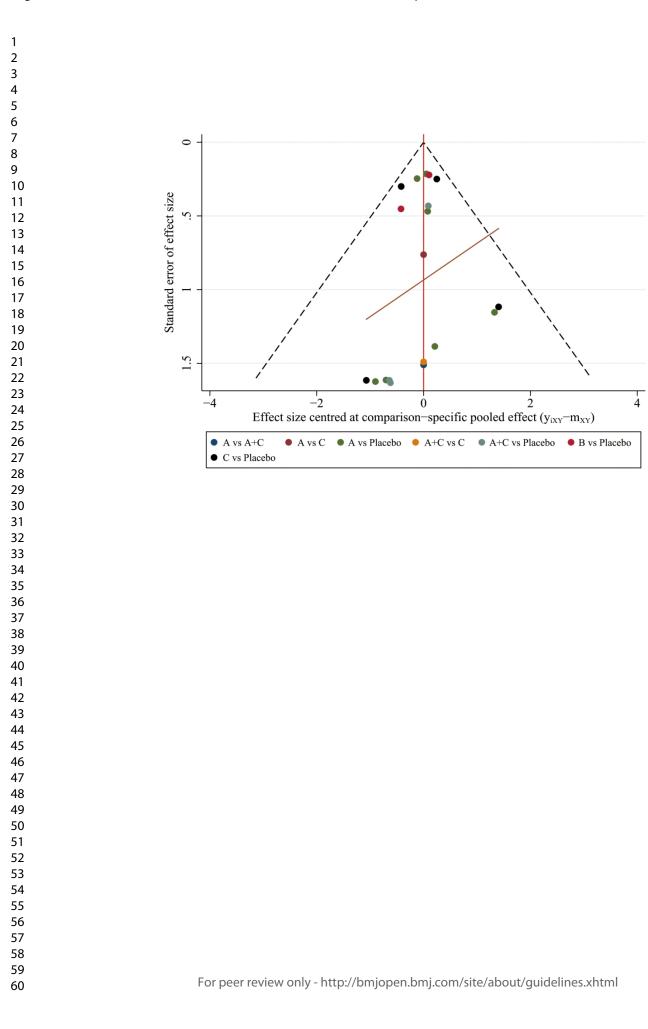

Lips et al, 1996	3-4 y	400 IU/d (n = 1291)	135	58	
(The Netherlands)		Placebo (n = 1287)	122	48	
Liu et al, 2015	1 y	Calcium (1.5g/d) + D ₃ (600	1		
(China)		IU/d) (n = 50)			
		Placebo (n = 48)	2		
Mitri et al, 2011	4 mo	D ₃ (2000 IU/d)(n = 23)	1		
(United States)		Placebo (n = 24)	0		
Peacock et al, 2000	4 y	Calcium (0.75g/d) (n = 126)			7
(United States)		Placebo (n = 135)			13
Porthouse et al, 2005	1.5-3.5 y	Calcium $(1g/d) + D_3$ (800	58	8	
(United Kingdom)		IU/d) (n = 1321)			
		No treatment (n = 1993)	91	17	
Prince et al, 2006	5 у	Calcium (0.48g/d) (n = 730)	110	11	38
(Australia)		Placebo (n = 730)	126	6	3
Recker et al, 1996	4 y	Calcium (1.2 g/d) (n = 95)			27
(United States)		Placebo (n = 102)			34
Reid et al, 1993	4 y	Calcium (1 g/d) (n = 68)	2	0	0
(New Zealand)		Placebo (n = 67)	7	2	1
Reid et al, 2006	5 у	Calcium (1 g/d) (n = 732)	134	17	27
(New Zealand)		Placebo (n = 739)	147	5	38
Riggs et al, 1998	4 y	Calcium (1.6 g/d) (n = 119)	4		8
(United States)		Placebo (n = 117)			9
	3 у	$Calcium(1g/d) + D_3$	78	4	9
Salovaara et al, 2010		(800 IU/d) (n = 1718)			
(Finland)		No treatment $(n = 1714)$	94	2	13
G I (I 2 010	3-5 y	D ₃ (500000 IU every year)	155	19	35
Sanders et al, 2010 (Australia)		(n = 1131)			
(Austrana)		Placebo (n = 1127)	125	15	28
Swith of all 2007	3 у	D ₃ (300000 IU every year)		66	
Smith et al, 2007 (United Kingdom)		(n = 4727)			
(Cintea Kinguoni)		Placebo (n = 4713)		44	
Trivedi et al, 2003	5 у	D ₃ (100000 IU every 4 mo)	119	21	18
(United Kingdom)		(n = 1345)			
(United Kingdom)		Placebo (n = 1341)	149	24	28

Uusi-Rasi et al, 2015	2 у	D ₃ (800 IU/d) (n = 102)	6	2	
(Finland)	Placebo (n = 102) 6		0		
	1 y	D ₃ (100000 IU every 3 mo)	2		
Witham et al, 2013		(n = 80)			
(United Kingdom)		Placebo ($n = 79$)	3		
	1 y	Calcium (0.6g/d) + D ₃ (800	3		
Xue et al, 2017		IU/d) (n = 139)			
(China)		Placebo (n = 173)	2		

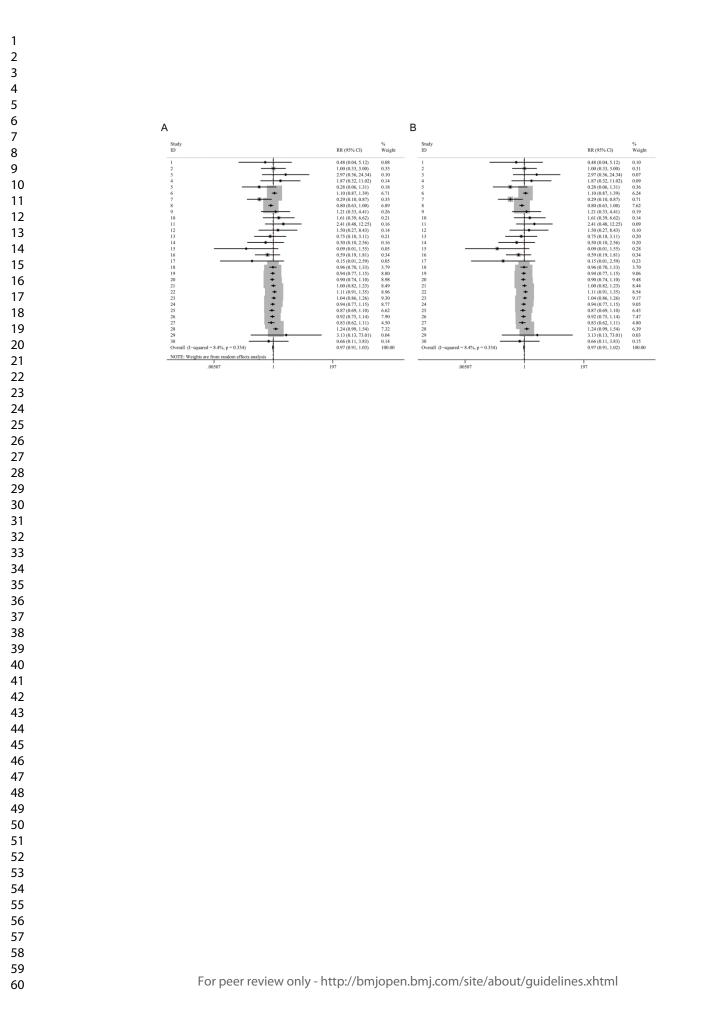

Tocct Click only

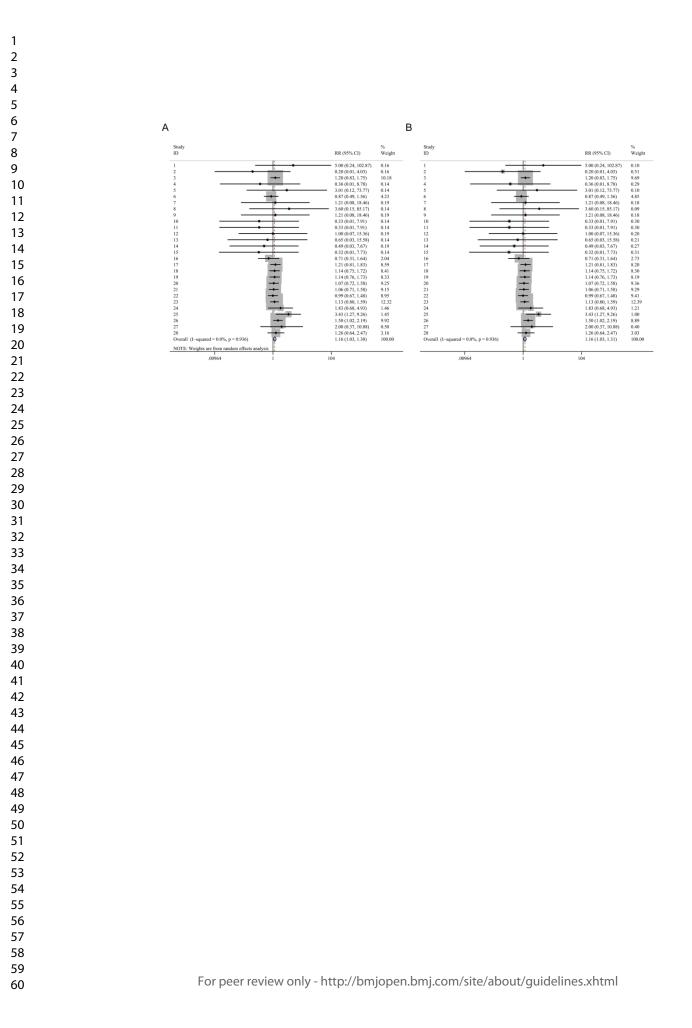

Supplementary Table 4. The detailed data of outcomes

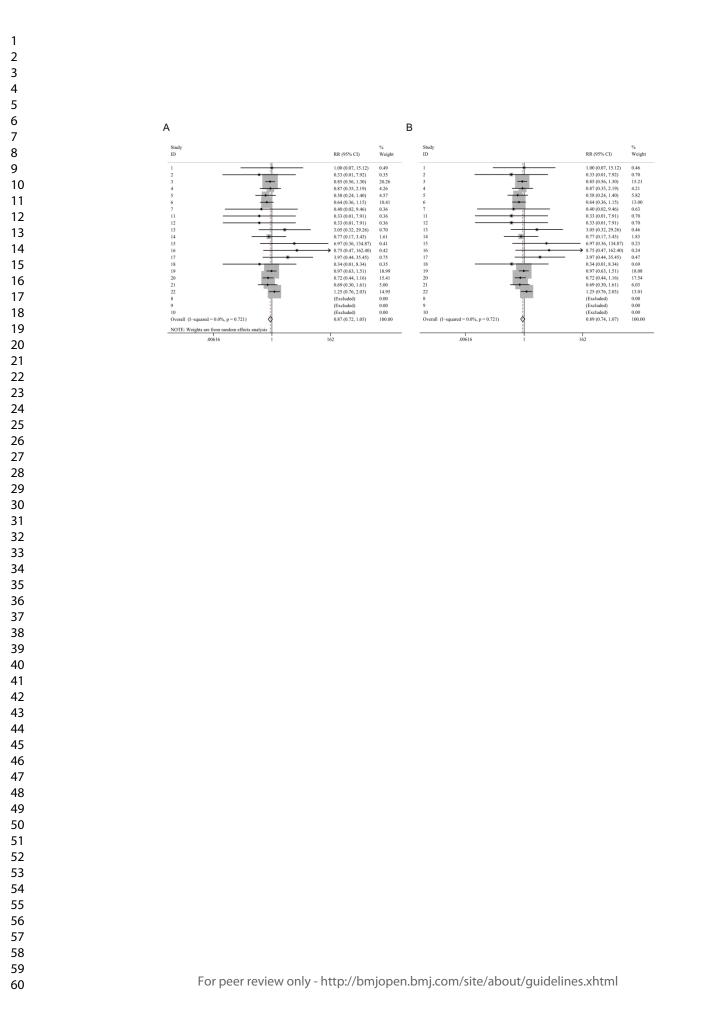

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


A: high calcium (800 mg/d or higher); B: low calcium (less than 800 mg/d); C: high vitamin D (800 IU/d or higher); D: low vitamin D (less than 800 IU/d)

			95%CI	Loop-specific
Loop		IF	(truncated)	$Heterogeneity(t^2)$
A-A+C-C A-A+C-Placebo	•	2.00 0.13	(0.00,4.87) (0.00,0.65)	0.000
A–C–Placebo		0.11	(0.00,0.75)	0.043
A+C-C-Placebo	•	0.02	(0.00,0.40)	0.009
	0 2 3 4 5			


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open


3					
4					
5					
6					
7					
8					
9				95%CI	Loop-specific
10					
11	Loop		IF	(truncated)	Heterogeneity(t ²)
12					
13					
14					
15	A-A+C-Placebo		0.77	(0.00,1.78)	0.000
16					
17	A-A+C-C	*	0.41	(0.00,3.63)	0.000
18					
19	A+C-C-Placebo	•	0.23	(0.00,0.83)	0.000
20		T			
21	A-C-Placebo		0.04	(0.00,0.78)	0.022
22		T			
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
JT					

			95%CI	Loop-specific
Loop		IF	(truncated)	Heterogeneity(t ²)
A+C-C-Placebo		1.78	(0.00,4.83)	0.000
A-A+C-Placebo		1.72	(0.00,4.80)	0.000
A–C–Placebo	-	0.06	(0.00,1.62)	0.000
	0 2 3 4 5			

*** Loop(s) [A-A+C-C] are formed only by multi-arm trial(s) - Consistent by definition

