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Determinants of Influenza Mortality Trends: 

Age-Period-Cohort Analysis of Influenza Mortality in the 

United States, 1959-2016

Online Appendix

Influenza Mortality Models 

The Serfling Regression Model 

We used a Serfling regression model in order to estimate mortality from influenza from 1959 to 

2016 and to explore its age, period, and cohort components. We first estimated a mortality 

baseline without influenza by fitting Pneumonia and Influenza (P&I) death counts during the 

summer season, during which the influenza virus does not circulate widely in North America. 

Influenza-related mortality was estimated for each month as the difference between the observed 

P&I death count and the estimated baseline. Since previous analyses have used different 

combinations of summer months to define the baseline (Dushoff et al. 2006; Lemaitre et al. 

2012; Nguyen and Noymer 2013; Simonsen et al. 2005), we tested four summer periods to fit the 

Serfling model (i.e., May to September, May to October, June to September, and June to 

October). The comparison of these estimates with those obtained from the Surveillance-Serfling 

model, which are estimated over the whole year (see below), guided us in selecting the summer 

period for the Serfling model (see Fig. S1). 
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The formulation of our Serfling model is: 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  ∑ 𝛽𝑖𝑡
𝑖10

𝑖=0 + 𝛽11𝑠𝑖𝑛 (
2𝜋𝑡

12
) + 𝛽12𝑐𝑜𝑠 (

2𝜋𝑡

12
) + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡), (S1) 

where 𝑎 is age (a = 0, 1, 2, …, 100), 𝑡 the epidemic period (here from January 1959 to 

December 2016), 𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡 the death count, and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡 the population at risk. The model 

thus includes three key components: (∑ 𝛽𝑖𝑡
𝑖10

𝑖=0 ) controls for secular trends in mortality, while 

(𝛽11𝑠𝑖𝑛 (
2𝜋𝑡

12
) + 𝛽12𝑐𝑜𝑠 (

2𝜋𝑡

12
)) captures influenza seasonality over time, and 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡) 

controls for changes in the age structure of the population over time.  

In contrast to the original formulation and common uses of the Serfling method, which is 

based on linear regression models (Serfling 1963) or Poisson distributions (Thompson et al. 

2009), we used a negative binomial distribution to estimate this model, which accounts for 

overdispersion. This distribution is also better-suited for low-frequency-count data (Hilbe 2011; 

Nguyen and Noymer 2013), which may indeed occur given the single-year age classification 

used here. 

To estimate the mortality baseline for each age and summer period definition, we tested nine 

different polynomial degrees for the secular trend (from the 2nd to the 10th) and two seasonal 

terms (sin and sin + cos). Based on the Akaike information criteria (AIC) we selected the model 

providing the best fit among the 18 alternative parameterizations. The threshold values proposed 

by Hilbe (2011) were used to assist in deciding if the improvement of the model fit was 

statistically significant. 
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The Surveillance-Serfling Model 

In order to estimate influenza mortality, we also use a “Surveillance-Serfling” regression model, 

which includes parameters tracking influenza-like illness (ILI) incidence and influenza 

circulation by subtype between 1997 and 2016. The model is written as: 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  ∑ 𝛽𝑖𝑡
𝑖10

𝑖=0 + 𝛽11𝑠𝑖𝑛 (
2𝜋𝑡

12
) + 𝛽12𝑐𝑜𝑠 (

2𝜋𝑡

12
) + 𝛽13𝑠𝑖𝑛 (

3𝜋𝑡

12
) +

𝛽14𝑐𝑜𝑠 (
3𝜋𝑡

12
) + 𝛽15𝑠𝑖𝑛 (

4𝜋𝑡

12
) + 𝛽16𝑐𝑜𝑠 (

4𝜋𝑡

12
) + 𝛽17𝑠𝑖𝑛 (

6𝜋𝑡

12
) + 𝛽18𝑐𝑜𝑠 (

6𝜋𝑡

12
) +

𝛽19𝑠𝑖𝑛 (
8𝜋𝑡

12
) + 𝛽20𝑐𝑜𝑠 (

8𝜋𝑡

12
) + 𝛽21𝑠𝑖𝑛 (

10𝜋𝑡

12
) + 𝛽22𝑐𝑜𝑠 (

10𝜋𝑡

12
) + 𝛽23𝑓𝑙𝑢𝑔,𝑡 +

𝛽24𝑓𝑙𝑢𝑔,𝑡−1 + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡), 

(S2) 

where 𝑎 is age (a = 0, 1, 2, …, 100),  𝑡 the monthly period (over 211 months, from October 1997 

to December 2016, excluding periods from May through September between 1998 and 2002, for 

which influenza circulation data is not available), 𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡 the death counts, and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡 

the population at risk. Like the traditional Serfling model, this model controls for secular trends 

in mortality (∑ 𝛽𝑖𝑡
𝑖10

𝑖=0 ) and seasonality (with the sin/cos terms), while 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡) tracks 

changes in the age structure of the population over time.  

In addition, 𝑓𝑙𝑢𝑖,𝑔,𝑡 and 𝑓𝑙𝑢𝑖,𝑔,𝑡−1 account for influenza virus circulation during the current (t) 

and the previous (t-1) month, respectively. To define the measure of virus circulation, we tested 

several options, with models that included influenza-like illness (ILI) incidence terms by age 

group g (g = 0, 1-4, 5-24, 25-64, 65+), combined with influenza surveillance data by subtype.  

The measure accounting for ILI incidence by age group is defined for the current month t as: 

𝑓𝑙𝑢𝑔,𝑡 = 𝐼𝐿𝐼𝑡 ∗
𝑜𝑝𝑔,𝑡

𝑇𝑜𝑝𝑡
 . (S3) 
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For each month t, 𝐼𝐿𝐼𝑡 is the percentage of outpatients with ILI symptoms, 𝑜𝑝𝑔,𝑡 the numbers of 

outpatients of age group g with ILI symptoms, and 𝑇𝑜𝑝𝑡 the numbers of outpatients of all ages 

with ILI symptoms. 

Alternatively, the measure combining information from ILI incidence by age group and 

influenza surveillance data by subtype is defined, for age group g and current month t, as: 

𝑓𝑙𝑢𝑖,𝑔,𝑡 = 𝐼𝐿𝐼𝑡 ∗
𝑜𝑝𝑔,𝑡

𝑇𝑜𝑝𝑡
∗

𝑝𝑡𝑖,𝑔,𝑡

𝑇𝑝𝑡𝑔,𝑡
 , (S4) 

 

where 𝑝𝑡𝑖,𝑡 is the numbers of specimens that tested positive for influenza subtype i (i = A-H1N1, 

A-H3N2, A-pH1N1, and B) in month t, and 𝑇𝑝𝑡𝑔,𝑡 the numbers of positive tests for all subtypes 

in age group g and month t.  

For each age, we tried 216 models by combining nine different polynomial degrees (from the 

2nd to the 10th), six orders of cyclical forms (
2𝜋𝑡

12
, …, 

10𝜋𝑡

12
), and the two alternative influenza 

measures described above with and without their respective one-month lag term. We chose the 

model that provided the best fit according to AIC values, as we did for the Serfling model. Table 

S1 presents by single years of age the minimum AIC value obtained from each parametrization 

of influenza measures, the AIC change once the virus subtype information and the one-month lag 

variable are included, the statistical significance of this change, and the model providing the best 

fit. Alternatively, we applied a “backward stepwise” selection approach for each age (not shown 

here), starting with all flu activity terms in the model, removing at each step the least significant 

terms among the non-significant terms at the 5% level, and reintroducing, through re-estimation, 
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the most significant term among those that reach a significance level of 4% (for a more detailed 

description of the backward stepwise procedure, see Draper and Smith (1998)); the results 

obtained from this model selection strategy were not fundamentally different from those obtained 

from model selection based on AIC.  

As shown in Table S1, there is considerable age variation with regard to the parameters that

provided best AIC statistics. For example, neither the addition of one-month lag ILI terms nor

the specification of virus subtype circulation (as in Eq. S4) provided significant improvement in

model fit at age zero. We thus retained the default ILI model for that age, as we did generally 

until about age 20. From age 20 to age 65 approximately, the best models generally included 

terms specifying subtype circulation, usually without one-month lag terms for the younger 

portion of this age group (i.e., from age 20 to age 40), and then including these lag terms for the 

older portion (from age 40 to age 65). Interestingly, regarding the elderly (65+), models 

including lag terms systematically provided the best fit, while terms specifying subtype 

circulation were no longer kept in this age group.
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Table S1 Fitting measures for alternative Surveillance-Serfling model parameterization and the model 

providing the best fit 

Age 

Models with minimum AIC for alternative 

influenza measures 
AIC Change 

Model with Best Fit 

ILI 
ILI + 

Lag 

ILI by 

Subtype 

ILI by Subtype 

+ Lag 
Subtype Lag 

0 1253.18 1249.56 1265.5 1265.92 12.32 -3.62 ILI 

1 919.61 915.5 923.43 922.84 3.82 -4.11 ILI 

2 725.45 723.27 731.26 738.15 5.81 -2.18 ILI 

3 646.39 645.79 650.16 650.75 3.77 -0.6 ILI 

4 573.62 574.81 579.92 583.57 6.3 1.19 ILI 

5 559.41 561.4 558.08 564.56 -1.33 1.99 ILI 

6 501.87 503.59 507.62 513.37 5.75 1.72 ILI 

7 489.08 487.43 490.92 486.73 1.84 -1.65 ILI 

8 455.09 454.21 458.14 463.76 3.05 -0.88 ILI 

9 491.21 489.77 494.59 493.63 3.38 -1.44 ILI 

10 466.71 470.62 470.56 478.43 3.85 3.91 ILI 

11 453.68 450.11 458.19 455.83 4.51 -3.57 ILI 

12 494.51 495.09 497.39 503.53 2.88 0.58 ILI 

13 501.45 503.43 506.76 506.02 5.31 1.98 ILI 

14 561.41 559.46 564.3 564.6 2.89 -1.95 ILI 

15 517.14 510.13 519.99 516.18 2.85 -7.01* ILI + Lag 

16 513.91 515.85 519.42 526.81 5.51 1.94 ILI 

17 581.24 569.74 584.72 579.01 3.48 -11.5* ILI + Lag 

18 634.97 627.68 637.26 635.55 2.29 -7.29* ILI + Lag 

19 620.07 622.02 621.99 624.73 1.92 1.95 ILI 

20 709.84 708.75 710.87 711.1 1.03 -1.09 ILI 

21 737.76 736.37 739.47 737.37 1.71 -1.39 ILI 

22 756.61 753.29 756.38 746.25 -0.23 -3.32 ILI by Subtype + Lag 

23 783.69 776.83 788.22 781.54 4.53 -6.86* ILI + Lag 

24 773.6 764.65 771.15 762.11 -2.45 -8.95* ILI + Lag 

25 772.79 763.86 761.31 752.58 -11.48* -8.73* ILI by Subtype + Lag 

26 828.39 829.37 818.03 820.89 -10.36* 2.86 ILI by Subtype 

27 822.74 823.57 816.73 819.48 -6.01* 2.75 ILI by Subtype 

28 852.38 853.82 833.85 828.98 -18.53* -4.87 ILI by Subtype 

29 868.88 868.56 858.39 861.99 -10.49* 3.6 ILI by Subtype 

30 868.75 864.05 840.67 838.92 -28.08* -1.75 ILI by Subtype 

31 898.65 897.54 888.72 892.16 -9.93* 3.44 ILI by Subtype 

32 895.02 888.72 879.16 870.55 -15.86* -8.61* ILI by Subtype + Lag 
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Age 

Models with minimum AIC for alternative 

influenza measures 
AIC Change 

Model with Best Fit 

ILI 
ILI + 

Lag 

ILI by 

Subtype 

ILI by Subtype 

+ Lag 
Subtype Lag 

33 902.35 902.82 879.92 885.36 -22.43* 5.44 ILI by Subtype 

34 928.21 930.96 904.47 906.11 -23.74* 1.64 ILI by Subtype 

35 957.63 950.01 930.15 920.91 -27.48* -9.24* ILI by Subtype + Lag 

36 993.31 990.27 970.91 965.65 -22.4* -5.26 ILI by Subtype 

37 1003.80 1005.54 974.54 976.54 -29.26* 2.00 ILI by Subtype 

38 1019.02 1019.71 994.78 997.54 -24.24* 2.76 ILI by Subtype 

39 1039.89 1040.3 980.94 982.96 -58.95* 2.02 ILI by Subtype 

40 1096.56 1096.6 1070.03 1071.26 -26.53* 1.23 ILI by Subtype 

41 1117.01 1113.46 1070.26 1064.97 -46.75* -5.29 ILI by Subtype 

42 1139.82 1134.15 1098.46 1091.88 -41.36* -6.58* ILI by Subtype + Lag 

43 1182.14 1178.64 1139.25 1129.00 -42.89* -10.25* ILI by Subtype + Lag 

44 1174.09 1172.45 1139.65 1132.74 -34.44* -6.91* ILI by Subtype + Lag 

45 1189.94 1173.68 1158.7 1137.30 -31.24* -21.4* ILI by Subtype + Lag 

46 1193.53 1188.18 1162.46 1155.31 -31.07* -7.15* ILI by Subtype + Lag 

47 1224.04 1220.95 1182.04 1176.25 -42.00* -5.79 ILI by Subtype 

48 1253.2 1241.69 1219.45 1200.79 -33.75* -18.66* ILI by Subtype + Lag 

49 1230.24 1222.48 1195.82 1187.28 -34.42* -8.54* ILI by Subtype + Lag 

50 1256.68 1239.82 1206.42 1178.99 -50.26* -27.43* ILI by Subtype + Lag 

51 1278.99 1265.01 1257.43 1242.06 -21.56* -15.37* ILI by Subtype + Lag 

52 1315.05 1310.33 1270.05 1264.2 -45.00* -5.85 ILI by Subtype 

53 1294.50 1291.12 1248.83 1241.36 -45.67* -7.47* ILI by Subtype + Lag 

54 1348.10 1338.71 1322.77 1314.32 -25.33* -8.45* ILI by Subtype + Lag 

55 1375.52 1365.52 1330.37 1310.74 -45.15* -19.63* ILI by Subtype + Lag 

56 1340.04 1334.59 1305.5 1298.79 -34.54* -6.71* ILI by Subtype + Lag 

57 1377.11 1360.76 1349.13 1320.86 -27.98* -28.27* ILI by Subtype + Lag 

58 1393.18 1379.07 1363.76 1342.33 -29.42* -21.43* ILI by Subtype + Lag 

59 1366.61 1358.58 1350.46 1343.21 -16.15* -7.25* ILI by Subtype + Lag 

60 1400.24 1385.01 1385.27 1363.20 -14.97* -22.07* ILI by Subtype + Lag 

61 1398.81 1382.72 1386.15 1364.82 -12.66* -21.33* ILI by Subtype + Lag 

62 1406.38 1389.39 1401.95 1383.40 -4.43 -16.99* ILI + Lag 

63 1413.11 1387.61 1398.26 1371.30 -14.85* -26.96* ILI by Subtype + Lag 

64 1411.28 1401.58 1407.53 1405.00 -3.75 -9.7* ILI + Lag 

65 1446.69 1439.4 1439.53 1434.19 -7.16* -5.34 ILI + Lag 

66 1420.72 1412.92 1422.14 1420.16 1.42 -7.80* ILI + Lag 

67 1478.71 1477.89 1469.73 1472.63 -8.98* 2.90 ILI by Subtype 

68 1452.67 1443.32 1459.12 1451.76 6.45 -9.35* ILI + Lag 
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Age 

Models with minimum AIC for alternative 

influenza measures 
AIC Change 

Model with Best Fit 

ILI 
ILI + 

Lag 

ILI by 

Subtype 

ILI by Subtype 

+ Lag 
Subtype Lag 

69 1481.45 1470.96 1478.79 1465.77 -2.66 -10.49* ILI + Lag 

70 1514 1498.86 1520.66 1511.50 6.66 -15.14* ILI + Lag 

71 1528.38 1516.05 1520.66 1511.10 -7.72* -9.56* ILI + Lag 

72 1542.65 1531.88 1550.73 1544.48 8.08 -10.77* ILI + Lag 

73 1581.03 1545.63 1593.46 1569.16 12.43 -35.4* ILI + Lag 

74 1625.8 1601.78 1630.62 1614.63 4.82 -24.02* ILI + Lag 

75 1610.39 1589.52 1612.54 1589.19 2.15 -20.87* ILI + Lag 

76 1669.03 1646.30 1688.18 1678.24 19.15 -22.73* ILI + Lag 

77 1655.57 1634.70 1672.49 1660.45 16.92 -20.87* ILI + Lag 

78 1687.91 1665.14 1698.20 1685.00 10.29 -22.77* ILI + Lag 

79 1671.13 1632.57 1686.63 1648.95 15.50 -38.56* ILI + Lag 

80 1741.59 1702.51 1751.36 1723.60 9.77 -39.08* ILI + Lag 

81 1756.79 1735.71 1762.31 1749.88 5.52 -21.08* ILI + Lag 

82 1796.94 1743.86 1808.05 1765.94 11.11 -53.08* ILI + Lag 

83 1818.83 1754.24 1817.96 1761.74 -0.87 -64.59* ILI + Lag 

84 1836.27 1791.06 1828.33 1798.58 -7.94* -29.75* ILI + Lag 

85 1830.59 1766.90 1841.48 1798.47 10.89 -63.69* ILI + Lag 

86 1887.33 1830.52 1897.01 1858.01 9.68 -56.81* ILI + Lag 

87 1884.98 1845.15 1884.34 1863.21 -0.64 -39.83* ILI + Lag 

88 1868.12 1807.10 1878.52 1837.84 10.40 -61.02* ILI + Lag 

89 1895.92 1839.37 1890.94 1849.60 -4.98 -56.55* ILI + Lag 

90 1885.84 1833.45 1897.95 1872.23 12.11 -52.39* ILI + Lag 

91 1861.53 1818.42 1851.95 1821.22 -9.58* -30.73* ILI + Lag 

92 1854.97 1819.36 1866.54 1851.63 11.57 -35.61* ILI + Lag 

93 1808.29 1756.82 1812.80 1784.57 4.51 -51.47* ILI + Lag 

94 1794.13 1759.20 1780.75 1759.90 -13.38* -20.85* ILI + Lag 

95 1709.93 1682.89 1709.38 1698.82 -0.55 -27.04* ILI + Lag 

96 1655.25 1614.18 1657.18 1629.80 1.93 -41.07* ILI + Lag 

97 1582.43 1545.28 1593.54 1570.11 11.11 -37.15* ILI + Lag 

98 1538.01 1520.43 1541.58 1537.46 3.57 -17.58* ILI + Lag 

99 1468.42 1444.55 1465.76 1445.61 -2.66 -23.87* ILI + Lag 

100 1392.47 1373.31 1395.84 1388.01 3.37 -19.16* ILI + Lag 

* Statistically significant reduction in AIC values. 

Note: The AIC is estimated to be -2LL+2k, where LL is the maximum log-likelihood and k is the number of parameters. A 

threshold value of 6 units is used to define whether the difference between two AIC statistic values is statistically significant, 

according to the selection criteria proposed by Hilbe (2011). 
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Specifying the Summer Season in the Serfling Model 

Figure S1 presents estimates from the Serfling model using four different definitions of the 

summer period (i.e., May to September, May to October, June to September, and June to 

October) along with estimates from the Surveillance-Serfling model, while Fig. S2 shows the 

Lexis surfaces obtained from these models. Serfling estimates of death counts are generally 

sensitive to the definition of the summer period, with numbers yielded by those based on May to 

October or June to October being considerably lower compared to the others. For ages younger 

than 40, estimates obtained from the Surveillance-Serfling model are considerably lower and 

more erratic than those from any of the Serfling models (see Fig. S1). After that age, the 

surveillance model and the Serfling model based on the June to September summer period 

provides highly consistent estimates. Figure S1 shows that estimates from the Serfling model 

using June – September as baseline months fluctuate less over age, compared to other Serfling 

models; we thus retained months June – September to define the summer period in our final 

model (Fig. 4 in the manuscript, reproduced in color below as Fig. S3). 
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Fig. S1 Serfling and Surveillance-Serfling influenza death count estimates by age, between 1997 and 

2016, according to alternative summer periods as baseline months 

May – September 

 

May – October 

 

June – September 

 

June – October 

 

Fig. S2 Lexis surfaces from Serfling estimates, between 1997 and 2016, according to different definitions 

of the summer period 
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a b 

 

 

 

Fig. S3 Lexis surfaces of influenza mortality rates estimated by the Serfling model, 1959-2016 (a) and the 

Surveillance-Serfling model, 1997-2016 (b). The vertical arrows a, b, d, and e indicate periods of severe 

H3N2 epidemics. Arrow c marks the reappearance of H1N1 (1977-1978); arrows f and g indicate periods 

dominated by pH1N1. The solid and dashed black diagonal lines mark the 1947 and 1968 birth cohorts, 

respectively. The surface covered by the dashed square in Fig. 4a is shown in a three-dimensional 

perspective in Fig. 5 (note: this figure is the colored version of Fig.4 in the main manuscript) 
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Age-Period-Cohort Analysis  

In this section, we present several descriptive steps and sensitivity analyses made to evaluate 

period- and cohort-based trends in influenza mortality estimates, obtained from the application of 

the Serfling model to the 1959-2016 period. 

Before fitting any APC models, it is suggested to ascertain first whether the three-factor 

model describes data better than any simpler two-factor age-period (AP) or age-cohort (AC) 

model (Carstensen 2007; Clayton and Schifflers 1987; Holford 1991; Yang and Land 2013). 

Along with this evaluation, we also compared Poisson and Negative Binomial models to select 

the one that provides the best fit to our data. SE for our APC estimates were computed using a 

variance formula that accounts for autocorrelation (Hilbe 2011). The AICs presented in Table S2 

suggest that the full APC model with Negative Binomial distribution for our response variable 

provides the best description of the data in terms of parsimony and goodness of fit.  

 

Table S2 Akaike information criteria (AIC) values for APC models according to Poisson and negative 

binomial distributions  

 
k 

Poisson Negative Binomial 

 

LL AIC LL AIC 

A 48 -98934 197964 -25736 51568 

AP 75 -54503 109156 -23817 47784 

AC 122 -67604 135452 -24609 49462 

APC 148 -50074 100444 -23555 47406 
 

Note: The AIC is estimated to be -2LL+2k, where LL is the maximum log-likelihood and k is the number of parameters. 

Since the results in Table S2 indicate that the (three-factor) APC model accounts for significantly 

more variation than the simpler two-factor models, we proceeded to fit such a model, in which 
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the number of influenza-related deaths at age a and time t, i.e., 𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡, which are expressed 

as follows: 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  𝜃0 + 𝛼𝑎 + 𝛽𝑡 + 𝛾𝑐 + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡),  (S5) 

where 𝜃0 is a constant, 𝛼𝑎 the effect of age group a, 𝛽𝑡 the effect of period t, 𝛾𝑐 the effect of 

cohort c, and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡 the population of age 𝑎 at risk at time t.  

Given the perfect linear dependency among the age, period, and cohort components (Period – 

Age = Cohort), this model has an infinite number of solutions if no additional constraints are 

specified. Several alternatives have been proposed to address this so-called “identification 

problem,” essentially by imposing external constraints that are either explicitly chosen by the 

researcher (e.g., the constraint-based models of Fienberg and Mason (1985)), or implicitly 

defined by the design matrix, which depends on the number of age groups and periods (and thus 

cohorts) included in the model itself (e.g., the ridge and intrinsic estimators of Fu (2000) and 

Yang et al., (2004)). Yet, these solutions are contentious because of the sensitivity of the 

outcomes to the constraint chosen, which validity can never be known with certainty (Clayton 

and Schifflers 1987; Fienberg 2013; Fosse and Winship 2018; Luo 2013; Tarone and Chu 1996). 

The main issue with all these models is indeed that they apportion the linear trend of change over 

time between period and cohort influences without providing a means to assess the validity of 

this decomposition using conventional statistical criteria (all solutions will yield the same 

goodness of fit statistics, e.g., the same AIC, BIC, Likelihood Ratio Test estimates, etc.). Hence, 

results obtained from this method should always be interpreted with caution and be seen as 

tentative or indicative rather than confirmatory. 

The “long term slope” or “linear trend” that can be partitioned among period and cohort 

influences is known in the APC literature as the “drift parameter” (Carstensen 2007; Clayton and 
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Schifflers 1987; Holford 1991). To avoid confusion with antigenic drift, we prefer to use the 

terms long-term slope or linear trend. To analyze the contribution of period and cohort variations 

to the linear trend of influenza mortality over time, we chose to use the APC-detrended and the 

Intrinsic Estimator (IE) approaches to model mortality rates, which are described below.  

 

Period- and Cohort-Detrended Models 

According to Clayton and Schifflers (1987) Eq. S5 can be rewritten as a factor model:  

 

𝑙𝑜𝑔(𝑑𝑒𝑎𝑡ℎ𝑠𝑎,𝑡) =  𝜃0 + 𝛼𝑎 +  𝛽𝑝
𝑑 + 𝛿𝑃(𝑝 − 𝑝0) + 𝛾𝑐

𝑑 + 𝛿𝐶(𝑐 − 𝑐0) + 𝑙𝑜𝑔(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎,𝑡), (S6) 

  

where 𝛽𝑝
𝑑 and 𝛾𝑐

𝑑 are the detrended period and cohort effects, 𝛿𝑃 and 𝛿𝐶 the linear trends of the 

period and cohort effects, 𝑝0 and 𝑐0 the reference period and cohort, respectively, and the 

remaining equation terms are defined as above. Thus, the overall linear trend of the model is  

𝛿 = 𝛿𝑝 + 𝛿𝑐 . (S7) 

Note that, given the identification problem discussed above, the model yields the same fit for an 

infinite number of different partitions of the linear trend (𝛿) among the period (𝛿𝑝) and cohort 

(𝛿𝑐) linear trends.  

Under the assumption that the long-term slope of mortality change can be entirely attributed 

to either period- or cohort-based factors, it is possible to estimate both period-detrended (𝛿𝑝 = 0) 

and cohort-detrended (𝛿𝑐 = 0) as alternative models, denoted here as APCd and ACPd, 

respectively. Different parameterization can be defined to extract the linear trend, either by using 

equal weight on all units in the dataset (Holford (1991)’s approach) or by using the death counts 
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or exposures as weights (Carstensen (2007)’s approach). Yet, the slopes of the linear trends 

obtained from these three approaches are very similar (-2.024%, -1.967%, and -1.978%, 

respectively) and the difference between them is not statistically significant at the 95% 

confidence level. 

 

The Intrinsic Estimator  

In order to address the identification problem arising from the perfect collinearity of the APC 

models, the Intrinsic Estimator (IE) method implicitly identifies a constraint that minimizes the 

APC parameter variance. The IE method can thus be seen in this regard as less arbitrary than 

other methods (Yang et al. 2004) since it does not leave the choice of the constraint to the 

researcher (note that in the case of the detrended method, one still has to choose to assign all the 

long-term slope to either cohort or period influences, which also amounts to the arbitrary 

addition of an external constraint). Yet, there remains controversy as to whether the IE method 

provides results that are truly less arbitrary (Luo 2013; Luo et al. 2016; Masters et al. 2014, 

2016, 2018; Pelzer et al. 2015; te Grotenhuis et al. 2016; Xu and Powers 2016). In addition, a 

recent contribution by Fosse and Winship (2018) shows how the IE can be regrouped within a 

larger class of Moore-Penrose models and calls into question its applicability, at least based on 

extreme examples involving strongly “imbalanced” Lexis configurations, with as few as 5 age 

groups and up to 1,000 periods. That being said, we decided to include the IE estimates along the 

detrended estimates discussed above for comparison purposes, being aware of the limitations of 

all these methods. The results obtained from the APCd, APCd, and IE models are presented in 

Fig. 5, while the coefficients that were used to build this figure are presented at the end of this 

supplement (Table S5). 
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To demonstrate the applicability of the IE method to our data, we added sensitivity tests 

proposed in other studies (Luo et al. 2016; Masters et al. 2016, 2018; Yang and Land 2013). 

Note, however, that these tests, when successful, do not provide definitive support that the IE 

method could identify the “true” age, period, and cohort effects; as underlined above, there exists 

no unique, “best fit” solution to APC models.  

We applied two different sensitivity tests for the IE. To test the robustness of the estimates 

and their sensitivity to model specification, we first changed the reference category from first to 

last of each of the age, period, and cohort terms of the model. Second, we used alternative 

numbers of years to define the cohorts and periods. Figure S4 shows that the three estimates are 

consistent, and do not substantively differ when changing the category of reference or the width 

of the age, period, and cohort intervals. Note that the purpose of the multi-year model (dashed 

line in Fig. S4) is uniquely to assess the sensitivity of the IE’s partition of first-order effects to 

alternative measurements of age, period, and cohort. Since cohort categories were generated as 

linearly dependent on the two-year age group and three-year time period (recall that Cohort = 

Period – Age), they do not correspond to actual cohorts, and thus, second-order cohort effects, 

discussed below, are not accurately obtained using this partition. 
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Fig. S4 Intrinsic estimates of period and cohort relative risks of influenza-related mortality, derived from 

the estimates of the Serfling model. The solid and dotted lines indicate, respectively, estimates from using 

the first and the last age, period, and cohort as reference, while the dashed line provides estimates 

obtained when using two-year periods and three-year age groups (hence labeled as “multi-year”) 

 

Changes in Trends 

Unlike the above age, period and cohort trend estimates (first-order effects), which are dependent 

on the constraint imposed on the model, the changes in the direction of these trends (second-

order effects) are invariant, whatever the constraint imposed, and thus unambiguously 

identifiable (Holford 1991; Keyes et al. 2010). Among these second-order effects, a contrasts 

approach allow us to identify “breakpoints” where period or cohort trends significantly change 

direction and to quantify the extent of these changes (O’Brien 2014; Shahpar and Li 1999; 

Tarone and Chu 1996). Thus, we are able to measure the difference between the slopes of two 

disjoint blocks composed of several consecutive periods or cohorts.  
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A contrast comparing slopes between two disjoint blocks of n consecutive period or cohort 

groups is defined as:  

𝐶 = π𝑘+𝑛 − π𝑘 − (πℎ+𝑛 − πℎ), (S8) 

where πℎ and π𝑘 are respectively the h-th and k-th period or cohort parameter estimates from any 

constraint-based model, with ℎ + 𝑛 ≤ 𝑘. 

Alternatively, by estimating the difference between the linear contrasts defined over the two 

blocks being compared, it is possible to account for the contribution of all periods or cohorts 

included within each block. For two disjoints blocks of four, five, six, and eight consecutive 

period or cohort groupings, the differences in the linear contrasts respectively follow the forms: 

  

𝐶4 = 3π𝑘+3 + π𝑘+2 − π𝑘+1 − 3π𝑘 − (3πℎ+3 + πℎ+2 − πℎ+1 − 3πℎ), (S9) 

  

𝐶5 = 2π𝑘+4 + π𝑘+3 − π𝑘+1 − 2π𝑘 − (2πℎ+4 + πℎ+3 − πℎ+1 − 2πℎ), (S10) 

 

𝐶6 = 5π𝑘+5 + 3π𝑘+4 + π𝑘+3 − π𝑘+2 − 3π𝑘+1 − 5π𝑘 − (5πℎ+5 + 3πℎ+4 + πℎ+3 − πℎ+2 − 3πℎ+1 −

5πℎ),   

(S11) 

 

𝐶8 = 7π𝑘+7 + 5π𝑘+6 + 3π𝑘+5 + π𝑘+4 − π𝑘+3 − 3π𝑘+2 − 5π𝑘+1 − 7π𝑘+7 − (7πℎ+7 + 5πℎ+6 + 3πℎ+5 +

πℎ+4 − πℎ+3 − 3πℎ+2 − 5πℎ+1 − 7πℎ+7). 
(S12) 

 

The SE of the contrast estimate is:  

𝑠𝑒 = √𝑠′𝑉𝜋𝑠, (S13) 
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where 𝑠 is the vector of coefficients defining the contrast (in Eqs. S8 to S12) and 𝑉𝜋 is the 

variance-covariance matrix for the maximum likelihood estimates of the period or cohort effects. 

In Fig. 8 and Table 2, the units of analysis correspond to two-year age, period, and cohort 

groupings (analyses using one-year groupings resulted in estimates that were merely unstable). 

To test the sensitivity of the contrasts presented in Table 2, we re-estimated the models using 

three-year instead of two-year APC groupings and the new contrast estimates are displayed in 

Table S3. Note that due to the change in the number of years in the age, period, and cohort 

groupings, some breakpoints are shifted right or left relative to those reported in Table 2. 

Overall, however, the results in Table S3 are remarkably similar to the results in Table 2.  

 

Table S3 Contrasts in the linear trends between two disjoint blocks of three-year birth cohorts 

# 

Cohorts where 

changes in 

slope occur 

Block 1 Block 2 Contrast a Contrast b 

1 ~ 1896-1898 1881-1898 1896-1913 -0.402*** -0.979*** 

2 ~ 1929-1931 1917-1931 1929-1943 0.166* 0.352* 

3 ~ 1944-1946 1932-1946 1944-1958 0.233** 0.524** 

4 ~ 1956-1958 1944-1958 1956-1970 -0.395*** -0.909*** 

5 ~ 1968-1970 1956-1970 1968-1982 0.431** 0.943** 

6 ~ 1977-1985 1968-1979 1983-1994 -0.423** -1.178* 
Notes: Contrasts a is defined as the difference between the slopes formed by the straight lines connecting the first 

and the last trio of consecutive birth cohorts within each block. Contrast b is defined as the sum of differences of all 

slopes formed by any pair of cohorts taken in each block. 
+ p < .10; * p < .05; ** p < .01; *** p < .001. 

 

 

Finally, in order to provide a broader comparative perspective on influenza mortality, we also 

conducted additional contrast analyses for all-cause mortality and for cardiovascular and 

respiratory diseases mortality, which are the major causes associated with death from influenza 

complications (Reichert et al. 2004; Simonsen et al. 2011). We used data from the Human 
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Mortality Database (2019) and from the National Center for Health Statistics (2018) over the 

period 1959-2016 to browse over the same years for which we have already identified significant 

contrasts (turning points) in influenza mortality. Changes in cohort mortality trends were also 

estimated two, four and 6 years before and after the identified turning points to assess the 

smoothness (or abruptness) of these changes (Table S4 presents contrasts up to four years before 

or after these turning points).  

For example, the first estimated contrast on the first line of Table S4, i.e., -0.458, is the 

change in slope occurring in cohorts born in 1892-1897, i.e., four years before the cohorts born 

in 1896-1901, where the contrast for the cohort trend in influenza mortality is maximum (i.e., -

0.528).  The fact that all the contrasts located on this first line are all significant and of similar 

magnitude indicates that the change in slope for cohort born at the turn of the 20th century is 

rather smooth and not focussed on a specific year. As shown in Table S4, the other changes in 

slope in influenza mortality are usually “centered” in years with significant antigenic events, 

with much smaller, and not significant, contrasts in the previous or following four years. The 

largest changes for all-cause, respiratory-, and cardiovascular-related mortality, on the other 

hand, are more dispersed relative to the turning points identified for influenza.   
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Table S4 Contrasts in the linear trends between two disjoint blocks of two-year birth cohorts for 

deaths related to influenza, cardiovascular, and respiratory diseases, and for all-cause mortality 

Cause id Cohorts 

Contrast a Contrast b 

4 years 

before 

2 years 

before 
Centered 

2 years 

after 

4 years 

after 

4 years 

before 

2 years 

before 
Centered 

2 years 

after 

4 years 

after 

Influenza 

1 ~ 1896-1901 -0.458*** -0.393*** -0.528*** -0.358*** -0.444*** -5.322*** -5.301*** -5.583*** -4.620*** -5.208*** 

2 ~ 1928-1929 0.036 0.172* 0.214* 0.071 -0.012 1.320+ 1.760* 1.801* 1.108 0.464 

3 ~ 1946-1947 0.044 0.041 0.246** 0.032 -0.067 0.008 0.252 0.774** 0.178 -0.286 

4 ~ 1956-1957 -0.173* -0.157+ -0.428*** -0.137 0.006 -0.384* -0.576** -0.976*** -0.440+ -0.005 

5 ~ 1968-1969 0.019 0.038 0.392* 0.171 0.179 0.024 0.253 0.837* 0.558 0.477 

6 ~ 1976-1981 0.05 0.091 -0.334* -0.06 -0.278 0.109 0.070 -0.587+ -0.342 -0.697+ 

CVD1 

1 ~ 1896-1901 -0.142*** -0.127*** -0.152*** -0.128*** -0.163*** -1.713*** -1.624*** -1.718*** -1.557*** -1.760*** 

2 ~ 1928-1929 -0.024 -0.008 0.011 0.022 0.003 -0.127 -0.021 0.087 0.127 0.069 

3 ~ 1946-1947 0.014 0.024 0.066*** 0.093*** 0.074*** 0.039 0.071 0.227*** 0.317*** 0.247*** 

4 ~ 1956-1957 0.102*** 0.064*** 0.029 0.008 0.030 0.269*** 0.159*** 0.058 0.015 0.067+ 

5 ~ 1968-1969 0.033 0.064* 0.122*** 0.114*** 0.075** 0.074 0.169** 0.300*** 0.309*** 0.208*** 

6 ~ 1976-1981 0.000 -0.064* -0.157*** -0.223*** -0.201*** 0.020 -0.158* -0.399*** -0.572*** -0.541*** 

RD2 

1 ~ 1896-1901 -0.058+ -0.089** -0.155*** -0.155*** -0.167*** -0.731* -1.294*** -1.892*** -1.983*** -2.071*** 

2 ~ 1928-1929 -0.158*** -0.195*** -0.167*** -0.161*** -0.179*** -1.921*** -2.265*** -2.225*** -2.117*** -2.071*** 

3 ~ 1946-1947 -0.023 -0.004 0.087** 0.123*** 0.067* -0.096 -0.017 0.292*** 0.432*** 0.230* 

4 ~ 1956-1957 -0.135*** -0.157*** -0.262*** -0.254*** -0.163*** -0.291*** -0.431*** -0.66*** -0.654*** -0.444*** 

5 ~ 1968-1969 0.007 0.011 0.127** 0.136** 0.091+ -0.017 0.066 0.297*** 0.356*** 0.275** 

6 ~ 1976-1981 0.106* 0.073 0.017 -0.106+ -0.175** 0.274* 0.204+ 0.043 -0.254+ -0.467** 

All-

Cause 

1 ~ 1896-1901 -0.015 -0.006 -0.041* -0.029+ -0.079*** -0.182 -0.172 -0.359* -0.332* -0.725*** 

2 ~ 1928-1929 -0.061*** -0.051** -0.025 -0.002 0.016 -0.621*** -0.533*** -0.373* -0.195 0.083 

3 ~ 1946-1947 0.066*** 0.083*** 0.102*** 0.081*** 0.015 0.21*** 0.279*** 0.348*** 0.274*** 0.054 

4 ~ 1956-1957 -0.079*** -0.151*** -0.207*** -0.207*** -0.149*** -0.185*** -0.382*** -0.539*** -0.541*** -0.38*** 

5 ~ 1968-1969 -0.051* 0.017 0.083*** 0.099*** 0.076** -0.138** 0.050 0.219*** 0.264*** 0.198*** 

6 ~ 1976-1981 0.032 -0.031 -0.110*** -0.167*** -0.212*** 0.086 -0.100 -0.272*** -0.406*** -0.537*** 

1 Cardiovascular diseases. 
2 Respiratory diseases. 

Notes: Contrast a is defined as the difference between the slopes formed by the straight lines connecting the first and 

the last pair of consecutive birth cohorts within each block. Contrast b is defined as the sum of differences of all 

slopes formed by any pair of cohorts taken in each block. The grey columns highlight the contrasts centered on 

cohorts listed in the third column (also in grey), i.e., for cohorts with the largest changes in slope in influenza 

mortality; values in red indicate the largest among the five contiguous contrasts, separately for contrasts a and b. 

+p < .10; * p < .05; ** p < .01; *** p < .001. 
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Table S5 APCd, ACPd, and IE period and cohort effects on influenza-related mortality derived from the 

Serfling model, ages 5 to 100, 1959-1960 through 2014-2015 influenza seasons  

Effect Index Years 
APCd ACPd IE 

Coefficient SE Coefficient SE Coefficient SE 

Period 

1 1959-1960 0.933 0.037 0.382 0.037 0.404 0.037 

2 1961-1962 0.965 0.025 0.456 0.025 0.466 0.025 

3 1963-1964 0.344 0.025 -0.125 0.025 -0.105 0.025 

4 1965-1966 0.243 0.034 -0.185 0.034 -0.153 0.034 

5 1967-1968 0.972 0.031 0.585 0.031 0.587 0.031 

6 1969-1970 0.392 0.034 0.045 0.034 0.073 0.034 

7 1971-1972 0.656 0.021 0.350 0.021 0.357 0.021 

8 1973-1974 0.227 0.025 -0.038 0.025 -0.021 0.025 

9 1975-1976 0.150 0.035 -0.074 0.035 -0.062 0.035 

10 1977-1978 -0.146 0.037 -0.330 0.037 -0.303 0.037 

11 1979-1980 -0.127 0.028 -0.270 0.028 -0.285 0.028 

12 1981-1982 -0.657 0.030 -0.759 0.030 -0.743 0.03 

13 1983-1984 -0.31 0.028 -0.371 0.028 -0.387 0.028 

14 1985-1986 -0.218 0.023 -0.239 0.023 -0.248 0.023 

15 1987-1988 -0.046 0.021 -0.025 0.021 -0.045 0.021 

16 1989-1990 -0.175 0.025 -0.114 0.025 -0.131 0.025 

17 1991-1992 -0.276 0.020 -0.174 0.020 -0.188 0.020 

18 1993-1994 -0.275 0.022 -0.132 0.022 -0.150 0.022 

19 1995-1996 -0.235 0.021 -0.052 0.021 -0.068 0.021 

20 1997-1998 -0.147 0.024 0.077 0.024 0.050 0.024 

21 1999-2000 -0.128 0.023 0.137 0.023 0.119 0.023 

22 2001-2002 -0.253 0.024 0.052 0.024 0.032 0.024 

23 2003-2004 -0.090 0.021 0.257 0.021 0.231 0.021 

24 2005-2006 -0.578 0.026 -0.190 0.026 -0.190 0.026 

25 2007-2008 -0.557 0.031 -0.129 0.031 -0.120 0.031 

26 2009-2010 -0.089 0.046 0.380 0.046 0.412 0.046 

27 2011-2012 -0.558 0.037 -0.048 0.037 -0.053 0.037 

28 2013-2014 -0.017 0.044 0.533 0.044 0.520 0.044 

Cohort 

1 1860-1861 -0.733 0.121 0.776 0.121 0.697 0.121 

2 1862-1863 -0.506 0.085 0.962 0.085 0.909 0.085 

3 1864-1865 -0.576 0.085 0.851 0.085 0.782 0.085 

4 1866-1867 -0.461 0.079 0.926 0.079 0.865 0.079 

5 1868-1869 -0.500 0.074 0.846 0.074 0.792 0.074 

6 1870-1871 -0.492 0.071 0.814 0.071 0.76 0.071 

7 1872-1873 -0.417 0.054 0.847 0.054 0.789 0.054 

8 1874-1875 -0.470 0.055 0.753 0.055 0.704 0.055 
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Effect Index Years 
APCd ACPd IE 

Coefficient SE Coefficient SE Coefficient SE 

9 1876-1877 -0.282 0.062 0.901 0.062 0.864 0.062 

10 1878-1879 -0.268 0.06 0.874 0.06 0.844 0.06 

11 1880-1881 -0.183 0.062 0.918 0.062 0.894 0.062 

12 1882-1883 -0.132 0.053 0.928 0.053 0.889 0.053 

13 1884-1885 -0.029 0.052 0.991 0.052 0.958 0.052 

14 1886-1887 0.003 0.059 0.982 0.059 0.955 0.059 

15 1888-1889 0.076 0.05 1.014 0.05 0.979 0.050 

16 1890-1891 0.091 0.05 0.989 0.05 0.961 0.050 

17 1892-1893 0.185 0.042 1.042 0.042 1.009 0.042 

18 1894-1895 0.211 0.039 1.026 0.039 0.994 0.039 

19 1896-1897 0.234 0.039 1.009 0.039 0.982 0.039 

20 1898-1899 0.211 0.039 0.945 0.039 0.923 0.039 

21 1900-1901 0.341 0.038 1.034 0.038 1.009 0.038 

22 1902-1903 0.216 0.036 0.868 0.036 0.846 0.036 

23 1904-1905 0.241 0.034 0.853 0.034 0.836 0.034 

24 1906-1907 0.250 0.033 0.821 0.033 0.803 0.033 

25 1908-1909 0.231 0.035 0.761 0.035 0.745 0.035 

26 1910-1911 0.215 0.034 0.704 0.034 0.688 0.034 

27 1912-1913 0.195 0.036 0.644 0.036 0.629 0.036 

28 1914-1915 0.176 0.039 0.584 0.039 0.569 0.039 

29 1916-1917 0.104 0.038 0.472 0.038 0.458 0.038 

30 1918-1919 0.141 0.037 0.467 0.037 0.456 0.037 

31 1920-1921 0.098 0.037 0.383 0.037 0.374 0.037 

32 1922-1923 0.045 0.039 0.289 0.039 0.280 0.039 

33 1924-1925 0.086 0.037 0.29 0.037 0.284 0.037 

34 1926-1927 0.037 0.037 0.200 0.037 0.195 0.037 

35 1928-1929 -0.007 0.041 0.116 0.041 0.114 0.041 

36 1930-1931 0.028 0.035 0.110 0.035 0.108 0.035 

37 1932-1933 0.053 0.042 0.094 0.042 0.098 0.042 

38 1934-1935 0.041 0.032 0.041 0.032 0.047 0.032 

39 1936-1937 -0.004 0.038 -0.045 0.038 -0.037 0.038 

40 1938-1939 -0.033 0.041 -0.115 0.041 -0.109 0.041 

41 1940-1941 0.027 0.035 -0.096 0.035 -0.084 0.035 

42 1942-1943 0.000 0.039 -0.163 0.039 -0.148 0.039 

43 1944-1945 0.008 0.038 -0.196 0.038 -0.186 0.038 

44 1946-1947 -0.062 0.043 -0.307 0.043 -0.291 0.043 

45 1948-1949 0.051 0.038 -0.235 0.038 -0.225 0.038 

46 1950-1951 0.086 0.038 -0.240 0.038 -0.222 0.038 

47 1952-1953 0.097 0.039 -0.270 0.039 -0.268 0.039 
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Effect Index Years 
APCd ACPd IE 

Coefficient SE Coefficient SE Coefficient SE 

48 1954-1955 0.123 0.041 -0.285 0.041 -0.28 0.041 

49 1956-1957 0.099 0.043 -0.349 0.043 -0.348 0.043 

50 1958-1959 0.011 0.045 -0.478 0.045 -0.478 0.045 

51 1960-1961 0.122 0.045 -0.408 0.045 -0.403 0.045 

52 1962-1963 0.017 0.042 -0.554 0.042 -0.546 0.042 

53 1964-1965 0.013 0.045 -0.599 0.045 -0.569 0.045 

54 1966-1967 -0.056 0.052 -0.709 0.052 -0.688 0.052 

55 1968-1969 -0.126 0.062 -0.820 0.062 -0.790 0.062 

56 1970-1971 -0.063 0.062 -0.797 0.062 -0.783 0.062 

57 1972-1973 -0.067 0.063 -0.842 0.063 -0.807 0.063 

58 1974-1975 -0.082 0.061 -0.898 0.061 -0.843 0.061 

59 1976-1977 0.054 0.056 -0.802 0.056 -0.775 0.056 

60 1978-1979 0.019 0.067 -0.879 0.067 -0.856 0.067 

61 1980-1981 0.069 0.080 -0.869 0.08 -0.869 0.08 

62 1982-1983 0.016 0.077 -0.962 0.077 -0.952 0.077 

63 1984-1985 0.025 0.082 -0.995 0.082 -0.978 0.082 

64 1986-1987 0.106 0.094 -0.955 0.094 -0.933 0.094 

65 1988-1989 -0.092 0.076 -1.193 0.076 -1.143 0.076 

66 1990-1991 0.073 0.070 -1.069 0.070 -1.017 0.070 

67 1992-1993 -0.132 0.089 -1.315 0.089 -1.248 0.089 

68 1994-1995 -0.035 0.092 -1.258 0.092 -1.193 0.092 

69 1996-1997 0.251 0.078 -1.014 0.078 -0.971 0.078 

70 1998-1999 0.165 0.104 -1.14 0.104 -1.057 0.104 

71 2000-2001 0.018 0.112 -1.328 0.112 -1.263 0.112 

72 2002-2003 0.303 0.135 -1.084 0.135 -1.025 0.135 

73 2004-2005 0.481 0.138 -0.946 0.138 -0.911 0.138 

74 2006-2007 0.235 0.172 -1.233 0.172 -1.168 0.172 

75 2008-2009 -0.171 0.138 -1.680 0.138 -1.622 0.138 
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