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Supplementary Methods 

Interferometric Transduction of Mechanical Motion. The motion of the graphene mechanical 
resonators was transduced with optical interferometry and lock-in amplification. Motion was 
actuated with a combination of a 𝑉"# and 𝑉$# electrical bias1 between the graphene and the Si++ 

which produces a drive force, 𝐹" ∝ 𝑉"#	𝑉$# cos𝜔𝑡. A 633 nm probe laser (<1 µW) was focused 
down onto the graphene trampoline using a 40x, 0.6 NA objective. A low-finesse Fabry-Perot 
cavity, formed between the Si++ and the graphene, applies a small modulation to the reflected 
light as the resonator vibrates. We used a polarizing beam splitter and a quarter waveplate to split 
the reflected light from the incident beam. The intensity of the reflected beam was converted to a 
voltage using a silicon avalanche photodiode before being fed into a lock-in amplifier referenced 
to the applied VAC electrical drive signal. The mode shape of the graphene drums2 could be 
visualized by scanning the 633 nm probe laser across the device using a fast steering mirror with 
diffraction limited resolution. All measurements were done under vacuum at less than 10-5 Torr 
to minimize air damping. This optical setup is shown in Supplementary Figure 1. 

Measurement of Frequency Shift Responsivity and Frequency Noise. To apply heating 
radiation, we used a 532 nm laser modulated with an acousto-optic modulator (AOM). The AOM 
was driven with a sine wave. A dichroic beam splitter was used to couple the heating laser into 
the optical path. We measured the incident power with a Thorlabs S120VC optical power meter 
just before entering the objective and estimate that the absorbed power is 2.3% of this value. 
When the suspended graphene absorbs light its mechanical resonance shifts. To track this 
resonance shift, we used frequency modulation3 with a phase-locked-loop (PLL). The suspended 
graphene was electrically driven on resonance and the phase between the drive signal and 
amplitude signal was detected with a Zurich HFLI2 lock-in amplifier. The PLL feeds back on 
any deviation in phase by adjusting the drive frequency to keep this phase constant. The 
feedback bandwidth setting of the PLL was typically set between 1-50 kHz to not limit the 
frequency response. By reading out the adjusted drive frequency time series data, the PLL tracks 
any changes to mechanical resonance induced by the absorption of light or inherent frequency 

Supplementary Figure 1. Sketch of the optical interferometer setup used to measure the 
motion of and apply heating radiation to the suspended graphene. 



fluctuations. This frequency time series data was then fit to a sine function with a frequency 
matching the AOM modulated frequency of the heating laser, with a modulated frequency 
between 40-100 Hz. To prevent any frequency drift due to substrate heating from interfering 
with the result, this fit was performed over many independent 100 ms time intervals and 
averaged. The amplitude obtained from the fit was used to calculate the frequency shift 
responsivity. Measurements of frequency noise were also performed with the PLL in the absence 
of heating radiation. This frequency noise time series data was used to calculate the Allan 
deviation4, defined as 

𝜎$. =
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where 𝑓9 is the average frequency measured over the 𝑚th time interval of length 𝑡.  

  



Supplementary Note 1. 

We characterized 12 devices for this work. Supplementary Figure 2 shows a gallery of SEM 
images of all the graphene nanomechanical bolometers (GNB) characterized. Supplementary 
Table 1 shows the mechanical and bolometric properties of these devices. The most sensitive 
noise equivalent power (device a) was calculated by measuring the Allan deviation at 1 ms, 
which we measured to be 𝜎? = 1.9 × 10:D. 

 

  

 	𝜂 (pW 
Hz-1/2) 

BWH 
(kHz) 

BWIJ 
(kHz) 

𝑅L (W-1) 𝜎$ 
(10-5) 

𝑓7 
(MHz) 

Q 𝑉"# 
(V) 

𝑤 
(µm) 

 𝑑 
(µm) 

a 7 11 6.4 300,000 2.1 16.6 2300 4 0.20 6 

b 14 26 6.9 100,000 1.4 21.8 2700 -1 0.34 6 

c 14 26 6.9 93,000 1.3 25.0 3100 -1 0.34 6 

d 20 16 3.1 210,000 4.3 9.6 3400 1 0.52 8 

e 22 14 10 180,000 4.1 10.7 910 0.25 0.50 8 

f 25 12 4.8 260,000 6.5 11.1 2200 1 0.45 8 

g 25 28 3.1 98,000 2.5 11.0 3600 1 1.4 8 

h 41 65 5.0 39,000 1.6 25.4 4400 2 1.4 6 

i 100 120 8.0 25,000 2.7 24.0 2600 -2 1.4 6 

j 300 550 13 7,500 2.3 21.9 1400 -2 - 6 

k 1100 1300 10 3,700 4.2 8.1 720 1 - 8 

l 1500 1200 9.2 2,600 3.8 11.4 1100 1 - 8 

Supplementary Table 1: Shows the detector sensitivity (𝜂) at a 100 Hz bandwidth, the 
bandwidth estimated from the thermal response time (BWH), the mechanical bandwidth (BW9),  
frequency responsivity (𝑅L) to absorbed power, Allan Deviation (𝜎$) over a 10 ms integration 
time, initial resonance frequency (𝑓7), mechanical quality factor (𝑄), gate voltage used for the 
measurements (𝑉"#),	tether width (𝑤), and initial diameter (𝑑), for the 12 bolometers 
characterized in this work. Source data are provided as a Source Data file. Devices are indicated 
by a-l and correspond to the images in Supplementary Figure 2. 



Supplementary Note 2.  

Thermal Circuit. The response bandwidth and the overall response spectrum (Figure 3c in the 
main text) of our GNB are well described by a thermal RC circuit model, shown schematically in 
Supplementary Figure 3a. In this model, 𝑅H is the combined thermal resistance of all four tether 
supports, 𝐶 is the thermal capacitance given by the heat capacity of the suspended graphene, and 
𝐼 is the amplitude of absorbed power that is modulated at frequency 𝜔. The surrounding support 
has relatively large thermal mass and is therefore assumed to be a thermal sink.  

The effective thermal impedance of the circuit is 

𝑍H = T
1
𝑅H

+
1

V−𝑖𝜔𝐶X
Y

:;

=
𝑅H

1 + 𝑖𝜔𝑅H𝐶
= 𝑅Z

1 − 𝑖𝜔𝑅H𝐶	
1 + 𝜔.(𝑅H𝐶).	

 

The temperature difference between the graphene and the surrounding support is given by the 
thermal Ohm’s law Δ𝑇 = 𝐼|𝑍H|, or 

 Δ𝑇(𝜔) = 𝐼
𝑅H

^1 + 𝜔.𝑅H.𝐶.
 (1) 

Supplementary Figure 2. SEM images gallery of all devices characterized. Devices 
are labeled by letters a-l. Devices a-i are trampolines and devices j-l are drumheads.  
Scale bars are 3 µm.  

 



The characteristic time of the response is given by the thermal RC time constant: 

𝜏H = 𝑅H𝐶. 

 

Frequency-shift Responsivity. This 𝛥𝑇 will lead to a shift in the resonance frequency of the 
membrane. We relate ΔT to the frequency shift responsivity 𝑅L by examining the change in 
resonance frequency (Δ𝑓7) that results from thermal contraction of the graphene sheet. The 
equation for the mechanical resonance for a thin circular membrane is given by  

𝑓7 =
4.808
4	𝜋	𝑟 f

𝜎
𝜌	 

where 𝑟 is the radius, 𝜎 is the in-plane stress, and 𝜌 is the 2D mass density. When the 
temperature of the suspended membrane increases, the stress changes according to the stress-
strain relation, Δ𝜎 = −(𝛼	Δ𝑇) i

;:j
, where 𝑌 is the Young’s modulus, 𝜎7 is the initial stress, 𝜈 is 

the Poisson ratio, and  𝛼 is the thermal expansion coefficient5, which is negative for graphene for 
the temperature range used in our experiments. To first order, 

Δ𝑓7 =
4.808
4	𝜋	𝑟 f

𝜎 + Δ𝜎
𝛾	𝜌 − 𝑓7 = 𝑓7 Tf1 +

Δσ
σ7

− 1Y ≈ 𝑓7 	p
Δ𝜎
2𝜎7

q 

By the definition of 𝑅L 

𝑅L ≡
Δ𝑓7

𝑓7	𝑃tuv
=

Δσ
2𝑃tuv𝜎7

 

or 

Supplementary Figure 3: Thermal circuit model and data. a) Schematic of the thermal 
circuit model used to model the bolometer performance. b) The frequency responsivity 
vs. bias voltage for the graphene trampoline. The bias voltage increases the stress on the 
trampoline which decreases its frequency responsivity. Source data are provided as a 
Source Data file. 



𝑅L = −
αY

2𝑃tuv𝜎7(1 − 𝜈)
ΔT 

Therefore, with Supplementary Equation 1, 

 𝑅L(𝜔) = −
αY

2𝜎7(1 − 𝜈)
𝑅Z

^1 + 𝜔.𝑅Z.𝐶.
 (2) 

We find excellent agreement between the model and the data for 𝑅L(𝜔) (for example, see Fig. 3c 
in the main text). Moreover, the responsivity should be independent of incident power, in accord 
our measurements (see Fig. 2b in the main text). 

Taking the thermal resistance as 𝑅H	~
z{|
}

, where 𝜌H is the 2D thermal resistivity, and 𝑙 and 𝑤 are 

the tether length and width, respectively, and in the limit 𝜔 ≪ ;
�{�

, Supplementary Equation 2 

becomes 

 𝑅L =
𝛼𝑌𝜌H

2	𝜎7(1 − 𝜈)
𝑙
𝑤 (3) 

The general 𝑅L ∝
;
}

 prediction agrees well with the data (see Fig. 2c in main text.) We note that 
𝑅L is independent of the device area. 

For a given device, 𝑅L will decrease with added stress in the graphene. To check this prediction, 
we apply electrostatic stress with a back-gate bias 𝑉"#, which pulls the graphene structure toward 
the silicon back-gate, while simultaneously measuring 𝑅L. As predicted, we see that 𝑅L decreases 
monotonically with increasing bias, as shown in Supplementary Figure 3b.  

Noise-equivalent Power. The noise-equivalent power is defined as 

𝜂 =
𝜎L√𝑡

� 𝑑𝑓𝑑𝑃tuv
�
 

In principle, �L
�����

 could be a function of 𝑃tuv, but in our system it is a constant. Thus, 

𝜂 =
𝜎L√𝑡

𝑓7 p
Δ𝑓7
𝑓7𝑃tuv

q
=
𝜎$√𝑡
𝑅L

 

where we have substituted the Allan deviation for fractional noise, 𝜎$ = 𝜎L/𝑓7, and used the 
definition of the frequency-shift responsivity, 𝑅L ≡ Δ𝑓7/(𝑓7𝑃tuv). Using Supplementary 
Equation 3, 𝜂 is given by  

𝜂 = 𝜎$√𝑡	
2𝜎7(1 − 𝜈)
𝛼𝑌𝜌H

𝑤
𝑙  



The predicted tether-width dependence 𝜂 ∝ 𝑤 agrees well across all devices tested in this work 
(Figure 2f main text), despite some variations in the Allan deviation. Thus, lower stress devices 
with a narrower tether width will have a lower noise-equivalent power (i.e. will be more 
sensitive to light.) As with 𝑅L, 𝜂 is independent of the device area. 

Through narrowing the tether width 𝑤 and increasing the tether length 𝑙, we expect a 𝑅H	~	10;; 
K W-1 (near the blackbody radiation limit6) to be within feasible experimental reach (the most 
sensitive devices characterized in this work have 𝑅H	~	10� K W-1 see Supplementary Note 7). 
For our most sensitive GNB (device a), we would expect being able to access 𝜂~1 fW Hz-1/2, 
while still preserving a bandwidth of ~ 10 Hz. As a comparison, a 100 nm thick, 5 μm diameter 
bulk microbolometer with a heat capacity of 𝐶	~	10:;7 J K-1 and 𝑅H	~	10;; K W-1 would have a 
bandwidth of ~10 mHz (see the following subsection Response Bandwidth), which would be 
over a 1000 × slower than our GNB and impractical for most applications. 

Response Bandwidth. In the thermal circuit model, 𝜏H = 𝑅H𝐶 defines the 3-dB response 

bandwidth by BW = √�
.��{�

. Taking the thermal resistance as 𝑅H	~
z{|
}

 and 𝐶 = 𝑐𝜌𝐴, where 𝑐	is 

the membrane specific heat, 𝜌 is the membrane mass density, and 𝐴 is the membrane area, we 
have 

BW =
√3

2𝜋𝑐𝜌𝜌H𝑙
𝑤
𝐴 

The measured bandwidth data agrees well with model prediction BW ∝ 𝑤 (see Fig. 3e in the 
main text). The BW we measure is likely lower than what we would expect for pristine graphene, 
as the mass density inferred from the resonance frequency gate dependence (see Supplementary 
Note 7) is about ~7.5 × greater than pristine graphene. Our experiments did not broadly sample 
the device area 𝐴, so we could not robustly test the prediction BW ∝ 𝐴:;. However, our limited 
data do agree with the area prediction. If the area dependence holds, the BW for a 1 μm diameter 
drumhead would reach ~40 MHz, and together with pristine graphene, the BW could reach 
~200 MHz. 

Finally, combining Supplementary Equation 3 with 𝜂 = ��√�
��

 and BW = √�
.��{�

, we obtain  

BW = �
√3
2𝜋

𝛼H
𝜎$√𝑡𝑐𝜌

1
𝐴� ⋅ 𝜂 

where 𝛼H ≡ V�L
L�
X /Δ𝑇 = − �i

.	��(;:j)
 is defined as the frequency coefficient of temperature. The 

prediction 𝐵𝑊 ∝ 𝜂 agrees well with our data, as shown in Figure 3f in the main text. 

Mechanical Linewidth and Quality Factor. The mechanical damping time constant can be 
extracted from an amplitude frequency response curve (see Fig. 1d in main text). We use a model 
for a damped driven oscillator7 



A. = 𝐼
𝐹.

(𝜔7. − 𝜔.). + 4	𝛽.	𝜔. 

where 𝛽 is the 1/e decay rate, 𝐹 is the driving force, 𝜔 = 2𝜋𝑓, and 𝜔7 = 2𝜋𝑓7. We use this 
decay time to estimate the “mechanical bandwidth” from the resonance linewidth in the same 

way as from the thermal time constant, BW ¡ = √�
.�	
𝛽. The quality factor is calculated according 

to 𝑄 = �L�
¢

. 

Supplementary Note 3. 

Bandwidth Measurement using Resonant Frequency-Shift Response. We can measure the 
bandwidth of the GNB by increasing the modulation frequency of the heating laser and 
monitoring the response, thus directly measuring 𝑅L(𝜔) and 𝜂(𝜔), and thus the bandwidth 𝐵𝑊. 
While tracking the resonant frequency shifts with the PLL, we output a voltage proportional to 
the frequency shift from the PLL and input this into a second lock-in amplifier channel in the 
Zurich HFLI2. This signal is referenced to input of the AOM. By sweeping the frequency of the 
AOM drive signal we could quickly extract how the resonant frequency shift amplitude drops as 
the modulation frequency of the heating laser increases. Representative data for this 
measurement is shown in Fig. 3c in the main text.  The 3dB point provides a direct measure of 
BW. 

Bandwidth Measurement using Off-Resonant Thermomechanical Response. We were 
unable to measure the bandwidth by looking at the change in frequency shift with the phase 
locked loop (PLL) when the device bandwidth exceeded that of the PLL. Instead, we infer 
bandwidth from the off-resonant frequency response of thermomechanical8,9 displacement of the 
graphene membrane. The out-of-plane displacement of a curved membrane occurs when thermal 
stress tightens and flattens the membrane (Supplementary Figure 4). In the limit of small 
displacement and first-order thermal expansion, the mechanical displacement amplitude will be 
proportional to the change in temperature, 𝐴 ∝ Δ𝑇.  

The displacement amplitude is a direct response to thermomechanical tensioning of the 
membrane, just as with the frequency-shift response of the bolometer. For the off-resonant 

Supplementary Figure 4. Sketch of the off resonant GNB amplitude displacement, 𝐴, due to 
a change in temperature, 𝛥𝑇.  



measurement, we modulate the heating laser at frequencies below mechanical resonance without 
applying any electrical actuation. The temporal response of the thermomechanical tensioning is 
expected to be the same in both the resonant frequency shift and the off-resonant amplitude 
response: 

𝑅L(𝜔) ∝ 𝐴(𝜔) 

Thus, the off-resonant approach provides a good measure of the bolometer bandwidth. Solving 
the thermal circuit model (see Supplementary Note 2) yields the complex amplitude  

𝐴(𝜔) ∝
1 − 𝑖𝜔𝜏H
1 + 𝜔.𝜏H.

 

where 𝜏H = 𝑅H𝐶 is the thermal response time fit parameter and 𝜔 is the angular frequency of the 
heating source. 

 

In off-resonant experiments, we use the 532 nm heating laser to create an AC heat source and a 
633 nm interferometer to measure the deflection of the graphene. The real and imaginary 
amplitudes (defined by the phase difference between the mechanical amplitude and the heating 
laser intensity) are shown in Supplementary Figure 5 for two different GNBs. The black traces 
are the model fits. The bandwidth can be obtained from the fitted thermal response time 𝜏H 
according to: 

BW =
√3
2𝜋	𝜏H

. 

We compared the response bandwidth obtained from the off-resonant and resonant approaches, 
denoted BWH and BW, respectively. The selected results are shown in Supplementary Table 2 for 
devices e, f, and i (see Supplementary Figure 2). These results provide evidence that the BW 
obtained from the two approaches are equivalent, and that thermomechanical tensioning is 

Supplementary Figure 5. Real and imaginary amplitude of thermal expansion induced 
displacement for two trampolines with different tether widths. These were fit to the thermal 
circuit model to extract the thermal response time, 𝜏Z. a) Corresponds to device e in Figure 1. 
b) Corresponds to device i in Supplementary Figure 1. Source data are provided as a Source 
Data file. 



responsible for both off-resonant deflection and resonant frequency shifts. We also compared the 
BW to the equivalent bandwidth obtained from the mechanical resonance linewidth (denoted 
BW ¡). A full comparison is provided in Supplementary Table 1. The results show that the 
response bandwidth ascertained from either the resonant or off-resonant approach is not 
determined or limited by the mechanical linewidth, as is expected3. For example, the bandwidth, 
BWH, for device l differs from the its linewidth bandwidth by over a factor of 100. 

Device BWH from 𝐴(𝜔)  
(kHz) 

BW from 𝑅L(𝜔) 
(kHz) 

BW ¡ (kHz) 

e 14 14 10 

f 12 11 4.8 

l 1200 -- 9.2 

 

Supplementary Note 4. 

The figure of merit commonly used to compare different bolometers10 is calculated using FOM =
NETD × 𝜏H × 𝐴© where NETD is the noise equivalent temperature difference and 𝐴© is the 
detector area11. The NETD is proportional to the noise-equivalent power through the relation11	

NETD =
4𝐹.𝜂©

𝜋	𝐴© p
Δ𝐿
Δ𝑇q√𝑡

 

where 𝐹 is the optical aperture (typically 𝐹 = 1), Δ«
ΔZ

= 0.84 W m-2 sr-1 K-1 is the luminance 
variation with scene temperature around 300 K, 𝜂© is the noise equivalent power to incident 
radiation, and 𝑡 is the measurement time. Increasing the thermal resistance improves 𝜂© at the 
expensive of bandwidth and increasing the detector area improves the NETD at the expensive of 
pixel pitch. Therefore, the FOM removes geometric considerations when comparing bolometer 
technologies because both the thermal resistance and the pixel area can usually be tuned by 
changing the geometry. This is true for our GNB, as it is common to fabricate suspended 
graphene sheets with diameters ranging from 1 − 25 µm (ref.  12) and we have demonstrated that 
the thermal resistance can be tuned by varying the trampoline tether width. Doing this 
calculation for the most sensitive trampoline, with 𝜂© = 300 pW Hz-1/2, 𝑡 = 10 ms, 𝜏H = 26 µs, 
we obtain  FOM = 1.18 × 10D mK ms µm2. The lowest reported FOM for room-temperature 
microbolometers10,11,13,14 is of order 10D mK ms µm2. Thus, despite not yet being optimized and 
a low optical absorption (2.3%), our GNB has already matched these record-low FOM values.  

Supplementary Table 2. This table shows the bandwidth estimated from the thermal response 
time (BWH), the mechanical bandwidth measured from the quality factor (BW9), and the 3dB 
bandwidth measured directly (BW). The direct bandwidth measurement agrees with the 
bandwidth limited by the thermal response time in agreement with frequency modulation.  



Supplementary Note 5.  

Optical Absorption Estimate from Cavity Effects. The GNB device architecture used in our 
studies forms a Fabry-Perot cavity. Optical cavity effects due to reflections at interfaces will lead 
to an optical absorption that is a function of the device dimensions and the wavelength of the 
absorbed light. We calculate the complex amplitude of the reflected electromagnetic wave from 
the Si and SiO2 system at the location of the suspended graphene. Summing over all reflections 
according to the wave transfer matrix method for calculating transmission and reflection through 
multilayer media15 gives the wave-transfer matrix 

𝐌 = 𝐌𝐁(SiO. → Si) × 𝐌𝐓(SiO.) × 𝐌𝐁(vac → SiO.) × 𝐌𝐓(vac) 

𝐌 = V𝐴 𝐵
𝐶 𝐷X =

⎝

⎛

𝑛v + 𝑛¹
2𝑛v

𝑛v − 𝑛º
2𝑛v

𝑛» − 𝑛º
2𝑛»

𝑛» + 𝑛º
2𝑛» ⎠

⎞ ×	¾𝑒
:À.�ÁÂ�ÂÃ 0

0 𝑒À
.�ÁÂ�Â

Ã
Ä ×

⎝

⎛

𝑛¹ + 1
2𝑛¹

𝑛¹ − 1
2𝑛¹

𝑛¹ − 1
2𝑛¹

𝑛¹ + 1
2𝑛¹ ⎠

⎞

× ¾𝑒
:À.��ÅÃ 0

0 𝑒À
.��Å
Ã
Ä, 

where 𝐌𝐁 describes a dielectric boundary reflection and 𝐌𝐓 describes the propagation through a 
homogeneous medium. We calculate 𝐌 by using standard values for the refractive index of SiO2 
and Si (𝑛¹ = 1.5 and 𝑛v = 4.14) and by measuring the thickness of the oxide layer and the 
distance between the graphene and the oxide with atomic force microscopy (see Supplementary 
Figure 6 for schematic displaying 𝑑¹ and 𝑑Æ), from which we obtain 𝑑¹ = 353 nm and 𝑑Æ =
552 nm, respectively, and use 𝜆 = 532 nm. 

In terms of the wave-transfer matrix components 𝐶 and 𝐷, the amplitude of the complex 
reflected wave is  𝑢É = − �

Ê
= (−0.55 + 0.26	𝑖). The electric field intensity at the graphene can 

be written as the sum of the incident and reflected wave |𝑢|. = |1 + 𝑢É|.. The power absorbed 
by the graphene can be written as a function of electric field intensity at the graphene because the 
reflection coefficient of graphene is small (𝑟~0.01)16, 

𝛽 = 𝜋𝛼|1 + 𝑢É|. = 0.6% 

Supplementary Figure 6. Sketch of the GNB where 𝑑Ì is the distance between the suspended 
graphene and the SiO2 and 𝑑º is the oxide layer thickness protecting the silicon back gate.  



where 𝛽 is the absorption coefficient. We note that an engineered cavity could be used to 
enhance the absorption to  𝛽 = 𝜋𝛼|1 + 1|. = 9.2%.  

Supplementary Note 6.  

Photothermal Back-action Frequency Responsivity. Here we estimate the frequency shift due 
to photothermal backaction16. Depending on the location of the graphene membrane in the 
optical field of the cavity, this photothermal backaction could either enhance or weaken the GNB 
thermomechanical responsivity. Our modeling and calculations show that photothermal 
backaction does not cause a significant frequency shift in a GNB when compared to 
photothermal tensioning. 

The effective frequency 𝜔ÍÎÎ and damping ΓÍÎÎ	due to photothermal backaction can be written 
as16 

𝜔ÍÎÎ = 𝜔7 �1 −
1

1 + 𝜔7.𝜏.
∇𝐹
𝐾 	�

;
.
 

ΓÍÎÎ = Γ �1 + 𝑄𝜔7𝜏	
1

1 + 𝜔7.𝜏.
∇𝐹
𝐾 � 

where 𝜏 is the thermal response time, ∇𝐹 = �ÒÓÔÕ
�Ö

 is the derivative of the photothermal force as a 
function of displacement (ref. 16), and 𝐾 = 𝑚𝜔7. is the effective spring constant. Approximating 
𝜔ÍÎÎ with a series expansion, because ∇𝐹/𝐾 ≪ 1 for low absorbed powers, we obtain 

𝜔ÍÎÎ ≈ 𝜔7 �1 −
1

2(1 + 𝜔7.𝜏.)
∇𝐹
𝐾 � = 𝜔7 −

1
2T

ΓÍÎÎ
Γ − 1
𝑄𝜏 Y 

Then, the frequency responsivity due to photothermal backaction, given by 𝑅L,×$ =
ØÙÚÚ:Ø�
Ø�����

, is 

the relative change in the effective resonance frequency with respect to absorbed power, is  

𝑅L,×$ ≈
1
2 p

1
𝑄𝜔7𝜏

ΓÍÎÎ/Γ − 1
	𝑃tuv

q 

In this work, we did not have a back-reflecting mirror to enhance cavity effects. Therefore, we 
use the measured results from Ref. 16 and assume an optimized photothermal backaction setup to 
estimate the upper limit of the frequency responsivity due to photothermal back-action. We use 
ÛÙÚÚ/Û:;
	����

~2 mW-1, 𝑄~500, 𝑃tuv~𝑃ÜÝÞ × 0.023, 𝜔7 = 2𝜋 × 5 MHz, and we estimate 𝜏~300 ns 

instead of the theoretical estimate provided in Ref. 16 to account for the slower than theoretically 
predicted thermal response time in suspended graphene8. The 𝜏~300 ns estimate used here is 
consistent with the thermal response time from our measurements and that of Dolleman et al.8 
Altogether, we estimate 𝑅L,×$~10. W-1 for a 10-micron drumhead with a back-reflecting mirror. 
Therefore, the change in frequency due to photothermal back-action, even assuming a perfect 



reflecting back mirror, is a factor of 10. − 10ß lower than direct photothermal tensioning (see 
Supplementary Table 1 for 𝑅L.) Moreover, because for a given absorbed power and displacement 
the device heats up to a higher temperature resulting in a larger photothermal force—and thus 
∇𝐹 ∝ 𝑅H— any enhancement to ∇𝐹 due to an increased 𝑅H would be canceled by an increase in 
thermal response time, where 𝜏 ∝ 𝑅H	. Consequently, the trampolines, which possess a larger 𝑅H, 
would see little if any enhancement in photothermal backaction when compared to the 
drumheads.    

Supplementary Note 7. 

Resonance Frequency Gate Dependence. The resonance frequency gate dependence 
(𝑓(𝑉"#))—as seen in Supplementary Figure 7—can be used to infer17 the graphene membrane 
mass density (𝜌), Young’s modulus (𝑌), and initial stress (𝜎7). In turn, these quantities provide 
independent ways to experimentally calculate 𝐶, 𝑅H, 𝑅L, and the absorption 𝛽. The relevant 
equations are derived from the capacitive potential energy of the graphene sheet and the Si++ 
back-gate.  

Referring to the schematic given in Supplementary Figure 6, the series capacitance of the 
vacuum and oxide is 

1
𝐶Í
=
𝑑Æ
𝜖7𝐴

+
𝑑º

𝜖7𝜖É𝐴
=

𝑑
𝜖7𝐴

 

where 𝐴 is the area of the drumhead and 𝜖É = 3.9 is the relative permittivity of SiO2, 𝑑Æ is the 
distance between the suspended graphene and oxide (which is in vacuum), and 𝑑¹ is the 
thickness of the oxide between the Si++ and vacuum, and 𝑑 = 𝑑Æ +

�Â
áâ

. The capacitive potential 

energy is 

𝑈# =
𝜖7𝑉"#.

2 ä
𝑑𝐴

𝑑Æ +
𝑑¹
𝜖É
− 𝑥

 

where 𝑥 is the displacement of the suspended membrane, and 𝑉"# is the applied DC gate bias. 
We then use 𝑈# in the Lagrangian procedure outlined in Ref. 17 to obtain 

 
(2𝜋𝑓). =

2.4048.𝜎7
𝑟.𝜌 −

𝜖7𝑉"#.

𝑑�𝜌 + 0.1316
𝑌	𝜖7.𝑉"#ß

(1 − 𝜈.)𝜌	𝜎. (4) 

 
𝜎 = 𝜎7 +

𝑌	𝑟.𝜖7.𝑉"#ß

(1 − 𝜈.)	128	𝑑ß𝜎. (5) 



where 𝑟 is the radius of the drumhead, 𝜖7 is the permittivity of free space, and 𝑑 = 𝑑Æ +
�Â
áæ

 is the 

effective capacitive distance, which we measure from atomic force microscopy to be 𝑑 = 642 
nm. 

Fitting the experimental data of 𝑓(𝑉"#) for a given membrane device using Supplementary 
Equations 4-5 yields the parameters 𝜌, 𝑌, and 𝜎7. Using the data for the drumhead device l 
shown in Supplementary Figure 6, we extract 𝜎7 = 0.1 N m-1, 𝜌 = 7.5 × 𝜌ç, and 𝑌 = 110 N m-1, 
where 𝜌ç is the intrinsic mass density of monolayer graphene (~7.7 × 10:è kg m-2). The amount 
of contaminating mass observed in this device is consistent with other graphene nanomechanical 
systems that used a PMMA transfer technique to suspended graphene sheets16,18. We expect that 
the mass density and modulus of all trampoline and drumhead devices on the chip containing 
device l will be the same, namely 𝜌 = 7.5 × 𝜌ç and 𝑌 = 110 N m-1.  

Membrane Heat Capacity. The heat capacity 𝐶 can be estimated from the mass density 𝜌 =
7.5 × 𝜌ç. The heat capacity for the GNB is 

𝐶 = (𝑐ç + 6.5𝑐©)𝜌ç × a. 

where 𝑎. is the device area (typically ~ 25 - 50 µm2), 𝑐ç = 700 J kg-1 K-1 is the specific heat of 
graphene, and 𝑐© ~ 1500 J kg-1 K-1 is the specific heat of PMMA. Together, the heat capacity for 
device l is 𝐶	~	4 × 10:;� J K-1. 

Thermal Resistance. We can determine the thermal resistance 𝑅H experimentally from the 
measured 𝜏H and 𝐶 with the expression:  

 𝑅H =
𝜏H
𝐶  (6) 

For the data shown in Figure 3c (device e), 𝜏H = 20 µs and 𝐶~2 × 10:;� J K-1 gives 𝑅H	~ 9.8 × 
107 K W-1. For the device l (Supplementary Figure 2), 𝜏H = 230 ns and 𝐶~4 × 10:;� J K-1 gives 
𝑅H	~ 0.57 × 106 K W-1. 

Supplementary Figure 7: The resonance frequency plotted vs. bias voltage for device l (see 
Supplementary Figure 1). To extract the resonance frequencies, amplitude-frequency response 
curve data was fit using damped driven oscillator at varying gate voltages. Using these values, the 
mass density, initial stress, and elastic modulus were extracted. Source data are provided as a 
Source Data file. 



Frequency-shift Responsivity. Experimental values for 𝑌, 𝜎7, 𝐶 obtained from 
electromechanical measurements together with 𝜏H obtained from off-resonant bandwidth 
measurements can be used to calculate the frequency-shift responsivity, which for a circular 
drumhead is given by 

 𝑅L =
𝑌	𝛼

2	𝜎7(1 − 𝜈)
	𝜏H
𝐶  (7) 

For the drumhead device l, 𝜏H = 230 ns and 𝐶~4 × 10:;� J K-1. Using 𝛼 = −7.4 × 10:ê K-1 
(ref. 18) and the Poisson ratio for graphene 𝜈 = 0.16, we calculate a frequency responsivity of 
𝑅L~	2900 W-1, which agrees within 10% of the independently measured value from frequency 
shifts measurements 𝑅L~2600 W-1, also for Device l. 

For the trampoline device e, we use the heat capacity and mass density measured from the gate 
dependence of device l. However, we expect that the initial stress on the device was changed 
during the focused ion beam shaping. To estimate the initial stress more accurately, we use finite 
element analysis to determine the amount of initial stress required in a trampoline geometry to 
reproduce the measured 𝑓7 = 10.7 MHz, which we find to be 𝜎7 = 0.19 N m-1. Using these 
values along with measured 𝜏H = 20 µs and 𝐶~2 × 10:;� J K-1 (and assuming this model can be 
applied to trampolines), Supplementary Equation 7 gives 𝑅L~	250000 W-1, which reasonably 
close to the directly measured value of 𝑅L~180000 W-1. 

Optical Absorption Estimated from Mechanical Properties. Using the above frequency 
responsivity (Supplementary Equation 7) together with measured values of Δ𝑓7, 𝑓7, and the 
incident power (𝑃ÜÝÞ) allows for a calculation of the optical absorption coefficient 

𝛽 ≡
Δ𝑓7

𝑓7	𝑅L𝑃ÜÝÞ
 

For the drumhead device l and trampoline device e, we find 𝛽 = 2% and 𝛽 = 1.6%, respectively. 
These values agree well with expected absorption for monolayer graphene19,20  𝛽 = 2.3%. The 
absorption obtained from cavity modeling was 𝛽 = 0.6% but the mass density shows that the 
graphene is likely coated with contaminants, perhaps PMMA residue or amorphous carbon. This 
residue will absorb some light, which would raise 𝛽 above 0.6%, closer to the measured 2.0%. 
To quote the most conservative value for the noise equivalent power, we use the highest estimate 
for the absorption at 𝛽 = 2.3% for our calculation in the main text. 

Supplementary Note 8. 

Graphene Temperature. The temperature change of the GNB can be inferred from Fourier’s 
Law 

 Δ𝑇 = 𝑃tuv𝑅H = 𝛽𝑃ÜÝÞ𝑅H (9) 

where 𝛽 is the optical absorption. Using the relation for absorbed power, 𝑃tuv = Δ𝑓7/(𝑓7𝑅L), the 
temperatures change can also be written 



Δ𝑇 =
Δ𝑓7
𝑓7𝑅L

𝑅H 

or 

 
Δ𝑇 =

Δ𝑓7
𝑓7
2𝜎7(1 − 𝜈)

𝛼𝑌  (10) 

When we illuminated trampoline device e (see Supplementary Figure 1) with high incident 
power, 𝑃ÜÝÞ = 400 μW, we observed the resonance frequency increase from 10.7 MHz to 35 
MHz. According to Supplementary Equation 10 for this device and these experimental 
conditions, Δ𝑇~	890 K. Using Supplementary Equation 9 yields a similar, consistent value of 
Δ𝑇~	920 K. Assuming the silicon oxide boundary of the device is a thermal sink at fixed at 
room temperature (293 K), the temperature of the graphene membrane was ~1200 K. The high 
temperature of the GNB during this experiment did not damage the GNB device in any 
measurable way. We also note that the GNB continued to operate at this high temperature. 
However, this high temperature probably annealed some of the PMMA contaminating mass as 
the resonant frequency returned to a higher value after cooling back to room temperature.  

Supplementary Equation 9 can be used to estimate the temperature change due to a line-width 
frequency shift: 

Δ𝑇 =
1
𝑄
2𝜎7(1 − 𝜈)

𝛼𝑌  

We have substituted �L�
L�
= 𝑄:;, where 𝑄is the quality factor. For devices in this work 𝑄~1000. 

With 𝜎7 = 0.1 N m-1, 𝜈 = 0.16	, 𝛼 = −7.4 × 10:ê K-1 (ref. 18), and 𝑌 = 110 N m-1, we 
calculate	Δ𝑇~200 mK. 

Minimum Detectable Temperature. The minimum detectable temperature of the resonator is 
defined as  

𝜂H =
𝜎L√𝑡

�𝑑𝑓𝑑𝑇�
 

According the thermal Ohm’s Law, Δ𝑇 = 𝑇 − 𝑇7 = 𝑃tuv𝑅H, 𝑑𝑓/𝑑𝑇 ∝ 𝑑𝑓/𝑑𝑃tuv. Therefore, 
𝑑𝑓/𝑑𝑇 is constant because 𝑑𝑓/𝑑𝑃tuv is constant (see Fig. 2b in main text). So, 

𝑑𝑓
𝑑𝑇 =

Δ𝑓7
Δ𝑇 =

Δ𝑓7
𝑃tuv𝑅H

=
𝑓7Δ𝑓7

𝑓7𝑃tuv𝑅H
=
𝑓7𝑅L
𝑅H

 

and 

𝜂H =
𝜎L√𝑡
𝑓7𝑅L	

𝑅H 



or 

 𝜂H = 𝜂𝑅H (8) 

where 𝜂 = ��√�
L���	

 is the noise-equivalent power. Using 𝑅H	~ 0.57 × 106 K W-1 calculated using 

Supplementary Equation 6 and the measured 𝜂 = 1500 pW Hz-1/2 for the drumhead device l 
(Supplementary Figure 2), Supplementary Equation 8 gives 𝜂Z = 0.8	mK Hz-1/2. For the 
trampoline device e, with 𝑅Z	~ 1 × 108 K W-1 and 𝜂 = 20 pW Hz-1/2, we calculate 𝜂H = 1.1	mK 
Hz-1/2. 

Using the modelling from Supplementary Note 2, we rewrite the minimum detectable 
temperature as 

𝜂H = 𝜎A√𝑡
2	𝜎0(1 − 𝜈)

𝛼𝑌  

we see that 𝜂H is independent of device dimensions. In agreement with this prediction, the 
calculated 𝜂H for all the devices using 𝜂H = 𝜂𝑅H has a narrow distribution 𝜂H = 1.2 ± 0.7 mK 
Hz-1/2, despite variations in geometry, noise, initial strain, etc. 

Upper incident power limit of the GNB. The upper range of incident power of the GNB can be 
estimated from the temperature stability of graphene, 𝑇ì~3000 K (ref. 21), and the expression 
Δ𝑇 = 𝛽𝑃ÜÝÞ𝑅H. We approximate the upper power range 

𝑃ÜÝÞí ~
𝑇ì
𝛽𝑅H

 

For the trampoline device e (see Supplementary Figure 2), we use the inferred 𝛽 = 1.6% and 
𝑅H = 9.8 × 10è K W-1 and estimate 𝑃ÜÝÞí ~1.9 mW. The maximum power input for drumhead 
will be higher. For the drumhead device l, we use the inferred 𝛽 = 2.0% and 𝑅H	~ 0.57 × 106 K 
W-1, and estimate 𝑃ÜÝÞí ~263 mW. 

Temperature Fluctuations. Fundamentally, fluctuations in temperature22 will limit the noise-
equivalent power 

𝜂Hî = f
4	𝑘×	𝑇.

𝑅H
 

These temperature fluctuations arise from the quantized nature of energy exchange between the 
bolometer and the environment. For trampoline device e, 𝑅H~10� K W-1 and 
𝜂Hî	~	223	fW	Hz:;/., The measured noise-equivalent power for device e is about 100 × greater 
than 𝜂Hî. Currently our GNBs are still quite far from the fundamental fluctuation limit, and are 
instead limited by sources of frequency noise.  
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