SUPPLEMENTARY MATERIAL

Nash et al., Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in *Drosophila*.

LIST OF SUPPLEMENTARY MATERIAL

Supplementary Table 1: Fly stocks used in this study.

Supplementary Table 2: Light sources used in this study.

Supplementary Table 3: Primers used in this study.

SUPPLEMENTARY FIGURES

Supplementary Fig 1. Spectral characteristics of light used in this study.

Supplementary Fig 2. Young *w* males under B:D show increased locomotor activity compared to those in L:D.

Supplementary Fig 3. Clock mutants ($\rho e^{\rho \theta}$) had similarly reduced median lifespan to w^{1118} controls in B:D compared to D:D.

Supplementary Fig 4. Median lifespan of *sine oculis* (*so¹*) mutants (which lack the retina and ocelli) was significantly reduced in B:D compared to D:D.

Supplementary Fig 5. Genetic manipulation of *cry* or *Rh7* expression does not alter lifespan of flies in B:D versus D:D compared to their respective controls.

Supplementary Table 1. Fly stocks used in this study.

*We exchanged the *cry⁰³* allele, originally in this stock, with *cry02*.

**We removed *Rh7¹* allele that was present in this stock.

Supplementary Table 2. Light sources used in this study.

Supplementary Table 3. Primers used in this study.

Supplementary Fig 1. Spectral characteristics of light used in this study.

a White fluorescent spectrum (used in L:D conditions). **b** Spectrum of blue LED (used in B:D conditions) with peak wavelength at 460 nm and white LED with blue light blocked by yellow filter (used in W-B:D condition) with peak wavelength at 584nm. Intensity of each light spectrum is normalized to the peak (set as 100%) of the same spectrum.

Supplementary Fig 2. Young *w* males under B:D show increased locomotor activity compared to those in L:D. **a** Averaged activity counts of all flies in each group, over five consecutive 24 h cycles of L:D or B:D. **b** Summary of experimental details, including percent of rhythmic calculated from D:D days. **c** Representative actograms of individual flies from each group. Gray shaded areas indicate darkness, and white or blue areas indicate white or blue light, respectively. **d** At day 5 and day 15, flies kept in B:D are significantly more active than flies kept in L:D, during the light:dark days (unpaired t-test; ****p<0.0001). No significant difference in activity levels is observed between the same flies which were previously in L:D or B:D, but switched to D:D.

Supplementary Fig 3. Clock mutants (w^{1118} per⁰¹) had similarly reduced median lifespan to w^{1118} controls in B:D compared to D:D.

Supplementary Fig 4. Lifespan of *sine oculis* (*so¹*) mutants, which lack the retina and ocelli, was significantly reduced in B:D compared to D:D. (Log-rank test, p<0.0001)

Supplementary Fig 5. Blue light-sensitive proteins CRY or RH7 are not involved in mediating susceptibility to blue light. **a** Mutants not expressing cryptochrome (*cry⁰²*), or flies with elevated expression of this gene via the *tim*-Gal4>UAS-*cry* driver/responder system (left graphs) show similar lifespan differences between B:D and D:D conditions as their respective controls of a *cry* rescue line and *tim*-Gal4>UAS-*cryb* flies overexpressing a nonfunctional version of CRY (right graphs). **b** Mutants lacking Rhodopsin7 (Rh7¹) and flies overexpressing this gene using the GeneSwitch system induced by the drug RU486 show highly reduced lifespans in B:D compared to D:D. Detailed genotypes are given in Supplementary Table 1.

SUPPLEMENTARY REFERENCES

- 1. Ryder, E. *et al.* The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. *Genetics* **167**, 797-813 (2004).
- 2. Bonini, N. M., Leiserson, W. M. & Benzer, S. The Eyes Absent Gene Genetic-Control of Cell-Survival and Differentiation in the Developing Drosophila Eye. *Cell* **72**, 379-395 (1993).
- 3. Milani, R. Two new eye-shape mutant alleles in Drosophila melanogaster. *Drosophila Information Service* **14**, 52 (1941).
- 4. Dolezelova, E., Dolezel, D. & Hall, J. C. Rhythm defects caused by newly engineered null mutations in Drosophila's cryptochrome gene. *Genetics* **177**, 329-345. (2007).
- 5. Agrawal, P. *et al.* Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light. *Curr Biol* **27**, 2431-2441 e2433 (2017).
- 6. Kaneko, M. & Hall, J. C. Neuroanatomy of cells expressing clock genes in *Drosophila*: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. *J Comp Neurol* **422**, 66-94 (2000).
- 7. Busza, A., Emery-Le, M., Rosbash, M. & Emery, P. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. *Science* **304**, 1503-1506 (2004).
- 8. Kumar, J. P. & Ready, D. F. Rhodopsin plays an essential structural role in Drosophila photoreceptor development. *Development* **121**, 4359-4370 (1995).
- 9. Konopka, R. J. & Benzer, S. Clock mutants of *Drosophila melanogaster*. *Proc. Natl. Acad. Sci. USA* **68**, 2112-2116 (1971).
- 10. Sykiotis, G. P. & Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. *Dev Cell* **14**, 76-85 (2008).
- 11. Ni, J. D., Baik, L. S., Holmes, T. C. & Montell, C. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. *Nature* **545**, 340-344 (2017).