SUPPLEMENTARY MATERIAL

Nash et al., Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in *Drosophila*.

LIST OF SUPPLEMENTARY MATERIAL

Supplementary Table 1: Fly stocks used in this study.

Supplementary Table 2: Light sources used in this study.

Supplementary Table 3: Primers used in this study.

SUPPLEMENTARY FIGURES

Supplementary Fig 1. Spectral characteristics of light used in this study.

Supplementary Fig 2. Young *w* males under B:D show increased locomotor activity compared to those in L:D.

Supplementary Fig 3. Clock mutants (per^{ρ_1}) had similarly reduced median lifespan to w^{1118} controls in B:D compared to D:D.

Supplementary Fig 4. Median lifespan of *sine oculis* (*so*¹) mutants (which lack the retina and ocelli) was significantly reduced in B:D compared to D:D.

Supplementary Fig 5. Genetic manipulation of *cry* or *Rh7* expression does not alter lifespan of flies in B:D versus D:D compared to their respective controls.

Supplementary Table 1. Fly stocks used in this study.

Stock	Genotype	Source	Reference
CS	Canton S	Paul Hardin	
w ¹¹¹⁸ (iso31)	W ¹¹¹⁸ .;	BDSC stock #5905	1
eya²	; eya²;	BDSC stock #2285	2
SO ¹	; so ¹ ;	Doris Kretzschmar	3
Cry ⁰²	w ¹¹¹⁸ ;; cry ⁰²	Jeff Hall	4
cry-GFP*	w ¹¹¹⁸ ; cry-GFP;cry ⁰²	Paul Hardin	5
tim-Gal4	w ¹¹¹⁸ ; { <i>tim-</i> Gal4};	Jeff Hall	6
UAS-cry	w ¹¹¹⁸ ; {UAS-cry-24};	Patrick Emery	7
UAS-cry ^b	w ¹¹¹⁸ ; {UAS-cry ^b -31};	Patrick Emery	7
ninaE ⁷	;; ninaE ⁷	BDSC stock #2103	8
ninaE ⁸	w ¹¹¹⁸ ;; ninaE ⁸	BDSC stock #2001	8
per ⁰¹	w ¹¹¹⁸ per ⁰¹ ;;	Jeff Hall	9
Tub-GS	{aTub84B-Switch}10	Subhash Katewa	10
Rh7 ¹	w ¹¹¹⁸ ; TI{TI}Rh7 ¹ ;	BDSC stock #76022	11
UAS- <i>Rh7</i> **	w ¹¹¹⁸ ;P{UAS-Rh7.N}	BDSC stock #76027	11

*We exchanged the cry^{03} allele, originally in this stock, with cry^{02} .

**We removed $Rh7^1$ allele that was present in this stock.

Supplementary Table 2. Light sources used in this study.

Referred	Light source	Mfr. and model no.	Peak	Photon flux
to as			wavelength(s)	density
L:D	White	Philips	405 nm, 437 nm,	20-30 µmol·m ⁻² ·s ⁻¹
	fluorescent	F96T12/CW/VHO/EW	546 nm, 577 nm	
	tubes (cool			
	white, 4100K)			
B:D	Blue LED	MarsAqua Dimmable	460 nm	20-30 µmol·m ⁻² ·s ⁻¹
		165W LED Aquarium		
		Light (Channel 1)		
B+O:D	Blue LED +	NovoLux LED blue 40	460 nm, 600 nm	20-30 µmol·m ⁻² ·s ⁻¹
	orange LED	Orange LED		
		Masterled		
W-B:D	W-B:D White LEDs MarsAqua Dimma		584 nm	20-30 µmol·m ⁻² ·s ⁻¹
	with yellow	165W LED Aquarium		
	long-pass filter	Light (Channel 2);		
		Rosco color filter		
		#4590 CalColor 90		
		Yellow		

Supplementary Table 3. Primers used in this study.

Gene Name	Symbol	FlyBase ID	Primers (5' – 3')
Decapping protein 2	DCP2	FBgn0036534	Fwd: CCAAGGGCAAGATCAATGAG
			Rev: GCATCGATTAGGTCCGTGAT
Glutamate-cysteine ligase catalytic	Gclc	FBgn0040319	Fwd: ATGACGAGGAGAATGAGCTG
subunit			Rev: CCATGGACTGCAAATAGCTG
Glutathione S transferase O1	GstO1	FBgn0035907	Fwd: AGCTGTATTCGATGCGCTTT
			Rev: GGTTTGTCGCGAAGATTGAT
Thioredoxin reductase-1	Trxr-1	FBgn0020653	Fwd: AAAAGCAGGATGATGGCAAG
			Rev: CCACAGAACGGTGTCGTAAA
cap-n-collar	спсС	FBgn0262975	Fwd: TCGGAGATGACGAGGAGGAGAGT
	(isoform C)		Rev: GCATTGATGATCGCCTCCTGGT
Glutathione S transferase D1	GstD1	FBgn0001149	Fwd: TGAAGCCGGAGTTCCTGAAGA
			Rev: TGTCGAAGTACAGGCGCTGAT
Glutathione S transferase D2	GstD2	FBgn0010038	Fwd: ACATTGCCATCCTGTCCACTG
			Rev: TCCTGGAGTCACCTTCTTGGC
Heat shock protein 23	Hsp23	FBgn0001224	Fwd: GTGTCGAAAATCGGAAAGGA
			Rev: ACGGAGTTGTCCTGCACTTT
Heat shock protein 68	Hsp68	FBgn0001230	Fwd: CCATCATGACCAAGATGCAC
			Rev: ACGGTGGGACCCTTATAACC
Heat shock protein 70Aa, Ab, Ba,	Hsp70Aa, Ab,	FBgn0013275,	(common to all listed Hsp70 genes)
Bb, Bbb, Bc	Ba, Bb, Bbb,	FBgn0013276,	Fwd: CCCACTTTCATTGGGAATTG
	Вс	FBgn0013277,	Rev: TAGTCTGCTTGCACGGAATG
		FBgn0013278,	
		FBgn0051354,	
		FBgn0013279	
Lactate dehydrogenase	Ldh	FBgn0001258	Fwd: CGTTTGGTCTGGAGTGAACA
			Rev: GCAGCTCGTTCCACTTCTCT

Supplementary Fig 1. Spectral characteristics of light used in this study.

a White fluorescent spectrum (used in L:D conditions). **b** Spectrum of blue LED (used in B:D conditions) with peak wavelength at 460 nm and white LED with blue light blocked by yellow filter (used in W-B:D condition) with peak wavelength at 584nm. Intensity of each light spectrum is normalized to the peak (set as 100%) of the same spectrum.

Supplementary Fig 2. Young *w* males under B:D show increased locomotor activity compared to those in L:D. **a** Averaged activity counts of all flies in each group, over five consecutive 24 h cycles of L:D or B:D. **b** Summary of experimental details, including percent of rhythmic calculated from D:D days. **c** Representative actograms of individual flies from each group. Gray shaded areas indicate darkness, and white or blue areas indicate white or blue light, respectively. **d** At day 5 and day 15, flies kept in B:D are significantly more active than flies kept in L:D, during the light:dark days (unpaired t-test; ****p<0.0001). No significant difference in activity levels is observed between the same flies which were previously in L:D or B:D, but switched to D:D.

Supplementary Fig 3. Clock mutants ($w^{1118}per^{01}$) had similarly reduced median lifespan to w^{1118} controls in B:D compared to D:D.

Supplementary Fig 4. Lifespan of *sine oculis* (*so*¹) mutants, which lack the retina and ocelli, was significantly reduced in B:D compared to D:D. (Log-rank test, p<0.0001)

Supplementary Fig 5. Blue light-sensitive proteins CRY or RH7 are not involved in mediating susceptibility to blue light. **a** Mutants not expressing cryptochrome (cry^{02}) , or flies with elevated expression of this gene via the *tim*-Gal4>UAS-*cry* driver/responder system (left graphs) show similar lifespan differences between B:D and D:D conditions as their respective controls of a *cry* rescue line and *tim*-Gal4>UAS-*cry*^b flies overexpressing a nonfunctional version of CRY (right graphs). **b** Mutants lacking Rhodopsin7 (*Rh7*¹) and flies overexpressing this gene using the GeneSwitch system induced by the drug RU486 show highly reduced lifespans in B:D compared to D:D. Detailed genotypes are given in Supplementary Table 1.

SUPPLEMENTARY REFERENCES

- 1. Ryder, E. *et al.* The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. *Genetics* **167**, 797-813 (2004).
- Bonini, N. M., Leiserson, W. M. & Benzer, S. The Eyes Absent Gene Genetic-Control of Cell-Survival and Differentiation in the Developing Drosophila Eye. *Cell* 72, 379-395 (1993).
- 3. Milani, R. Two new eye-shape mutant alleles in Drosophila melanogaster. *Drosophila Information Service* **14**, 52 (1941).
- 4. Dolezelova, E., Dolezel, D. & Hall, J. C. Rhythm defects caused by newly engineered null mutations in Drosophila's cryptochrome gene. *Genetics* **177**, 329-345. (2007).
- Agrawal, P. *et al.* Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light. *Curr Biol* 27, 2431-2441 e2433 (2017).
- Kaneko, M. & Hall, J. C. Neuroanatomy of cells expressing clock genes in *Drosophila*: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. *J Comp Neurol* **422**, 66-94 (2000).
- Busza, A., Emery-Le, M., Rosbash, M. & Emery, P. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. *Science* **304**, 1503-1506 (2004).
- 8. Kumar, J. P. & Ready, D. F. Rhodopsin plays an essential structural role in Drosophila photoreceptor development. *Development* **121**, 4359-4370 (1995).
- 9. Konopka, R. J. & Benzer, S. Clock mutants of *Drosophila melanogaster*. *Proc. Natl. Acad. Sci.* USA 68, 2112-2116 (1971).
- Sykiotis, G. P. & Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. *Dev Cell* 14, 76-85 (2008).
- 11. Ni, J. D., Baik, L. S., Holmes, T. C. & Montell, C. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. *Nature* **545**, 340-344 (2017).