Cell Reports, Volume 18

Supplemental Information

Metabolic Stress Drives Keratinocyte Defenses

against Staphylococcus aureus Infection

Matthew Wickersham, Sarah Wachtel, Tania Wong Fok Lung, Grace Soong, Rudy Jacquet, Anthony Richardson, Dane Parker, and Alice Prince

Figure S1. Related to Figure 1 – **Comparative growth of** *S. aureus* **mutants** – (A) Growth curves of various *S. aureus* strains under aerobic (blue) and anaerobic (red) conditions. (B) Growth curves of metabolic mutants of *S. aureus* in various media used in experiments presented. (C) A SeaHorse analyzer was used to monitor the metabolic activity via OCR, ECAR and PPR (proton production rate) of uninfected primary keratinocytes (HEKn) or those exposed to WT, Δpyk , and a complemented Δpyk strain ($\Delta pyk::\Delta pyk$) for 3 hours (MOI 20:1) prior to analysis. (D) PPR measurements were taken using a SeaHorse analyzer of uninfected primary keratinocytes (HEKn) or those exposed to various *S. aureus* strains or to heat-killed organisms for 3 hours (MOI 20:1). (E) Proton production rate of bacteria in the absence of keratinocytes was included for comparison. The addition of glucose, oligomycin and 2-DG are indicated as vertical lines. Representative experiments are shown. **P* < 0.05 by one-way ANOVA. SeaHorse statistical significances are compared to PBS alone.

Figure S2. Related to Figure 3 – Effects of PI3K and mTOR inhibition on proliferation and cytokine production – (A, B) Immunoblots of phospho-AMPK and cytokines measured by ELISA of HaCaTs exposed to PBS or *S. aureus* for 2 or 24 hours in the presence of wortmannin. Densitometry normalized to actin included for comparison. (C, D) Immunoblots and cytokines measured by ELISA of HEKn cells exposed to PBS or *S. aureus* for 2 or 24 hours in the presence of rapamycin. Densitometry normalized to actin included for comparison. Representative experiments are shown. For all graphs, each data point is the mean value \pm SEM (n = 3).