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Supplementary methods 1: Study Population  32 

The cohort started in January 1990 (n=7983) and was extended in February 2000 (n=3011) and 33 

February 2006 (n=3932). Follow-up examinations take place every 3 to 4 years. MRI was 34 

implemented in 2005, and 5912 persons scanned until 2015 were eligible for this study. We 35 

excluded individuals with incomplete acquisitions, scans with artifacts hampering automated 36 

processing, participants with MRI-defined cortical infarcts and participants with dementia or 37 

stroke at the time of scanning (SI Appendix Fig. 1). This resulted in 5656 subjects to be 38 

included in this study. The Rotterdam Study has been approved by the Medical Ethics 39 

Committee of the Erasmus MC and by the Ministry of Health, Welfare and Sport of the 40 

Netherlands, implementing the Wet Bevolkingsonderzoek ERGO (Population Studies Act: 41 

Rotterdam Study). All participants provided written informed consent to participate in the study 42 

and to obtain information from their treating physicians.  The scan protocol of the Rotterdam 43 

Study is carefully balanced between the restrictions of time, costs and inconvenience for the 44 

participants and the relevance and quality of the acquired imaging data, to ensure participant 45 

compliance and reproducible image quality (to reduce motion artefacts). Each MRI scan that is 46 

acquired is visually examined by a research physician in the Rotterdam Scan Study. 47 
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Supplementary methods 2: Measurements of characteristics 48 

All participants were monitored for dementia at baseline and following visits to the study center 49 

using the Mini-Mental State Examination (MMSE) and the Geriatric Mental State (GMS) 50 

organic level. Further investigation was initiated for participants who scored lower than 26 for 51 

their MMSE or above 0 for their GMS1. Additionally, the entire cohort was continuously 52 

checked for dementia through electronic linkage between the study center and medical records 53 

from general practitioners and the regional institute for outpatient mental health care. Available 54 

information on cognitive testing and clinical neuroimaging was used when required for diagnosis 55 

of dementia subtype. Final diagnosis was established by a consensus panel led by a consultant 56 

neurologist, according to a standard criteria for dementia (using the Third Revised Edition of the 57 

Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R))2,3. Until January 1st 2016, 58 

92% of the potential person-time follow-up was complete. Participants were censored at date of 59 

dementia diagnosis, death or loss to follow-up, or at January 1st 2016, whichever came first. Of 60 

5496 subjects included in this analysis, 159 developed dementia within 10 years of follow-up 61 

(mean follow-up time 4.34±2.25 years). 62 

Mild cognitive impairment (MCI) was assessed in individuals over the age of 60 years, for which 63 

both subjective and objective cognitive deficits were required. An objective cognitive deficit was 64 

based on a cut-off of 1.5 standard deviations below the Rotterdam Study age- and education-65 

specific means in three cognitive domains, i.e. the memory, information processing speed and 66 

executive functioning domain. Subjective cognitive deficits were defined as having answered yes 67 

to any of six questions regarding difficulties in memory (difficulties finding words, or 68 

remembering plans) or daily functioning (difficulties managing finances, getting dressed, or 69 

using the phone). 70 
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Systolic and diastolic blood pressure was measured twice in the right arm in sitting position after 71 

five minutes of rest, of which the average was used. Body mass index (BMI) was defined as 72 

weight in kilograms (kg) divided by height in meters squared (m2). Participants were asked by 73 

interview whether they were a current or past smoker, which was used to define their smoking 74 

status. Glucose, total cholesterol and HDL cholesterol were measured in blood of the fasting 75 

state.  76 

  77 



6 
 

Supplementary methods 3: Deep learning and convolutional neural networks 78 

Deep learning techniques require a set of input and respective output to find and optimize a non-79 

linear relation between the two. By providing data to a set of algorithms, the method is able to 80 

train a by the user designed model. Generally, the user designs the model architecture by 81 

selecting the model components. Subsequently, the machine learning method iteratively adjusts 82 

the model parameters according to that iteration’s trained model performance, to create an 83 

optimized model using backpropagation by supervised or unsupervised learning4,5. By letting the 84 

model itself choose which relevant features to extract from the input, deep learning facilitates the 85 

model to freely search the input-space and find the most important, possibly new, input features.  86 

Convolutional neural networks (CNNs) are a subset amongst deep learning techniques. They 87 

allow multi-dimensional input images and inspect these inputs by scanning them for relevant 88 

information6,7. Deep learning and CNN models have been rising in popularity and have been 89 

actively studied in recent years, reaching state-of-the-art performances in many applications 90 

amongst which medical imaging8–10.  91 

CNNs regard an image as a field of numerical values, view small portions of this image 92 

(receptive field) and perform multiplications with a weight-matrix (filter) to extract certain 93 

information (feature) from this portion. By inspecting the entire image using this filter in a grid-94 

wise manner, the filter extracts specific information which is then saved to a new matrix or 95 

image (feature map). Repeating this process for the resulting feature maps, the network 96 

iteratively refines or searches for more information inside of the image that is relevant to the 97 

output.  98 
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These convolutional layers (CONV layers) are then typically combined with a variety of 99 

different techniques and algorithms that allow the network to appropriately extract the 100 

information from the input. Commonly used techniques are rectified linear units activation 101 

(ReLU), max-pooling layers (MP), fully connected layers (FC), batch normalization and 102 

dropout7,10. 103 

  104 
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Supplementary methods 4: Network training 105 

The CNN has been trained using the data from the training set of 3688 subjects. Here, over- and 106 

undersampling had been applied to the training set. Thus, effectively data of 3688 subjects was 107 

used out of 3848 available subjects available for the training set, to distribute the samples more 108 

evenly over the age range of the population (Nimg,train_balanced=8060 images, mean age 109 

68.52±13.71sd). To avoid overfitting on the training set and to improve overall model 110 

performance, data augmentation was also applied during training11. Data augmentation included 111 

random small translations and mirroring in planes. We also used follow-up MRI scans of each 112 

subject as a ‘natural data augmentation’ technique.  113 

The best model was selected based on its performance on the validation set. Here the 114 

performance is measured as the model accuracy based on the root mean squared error (RMSE) of 115 

the gap, as RMSE penalizes outliers more than MAE. 116 
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Supplementary methods 5: Attention mapping 117 

Attention map intensity values were normalized to range 0-1, where 1 indicates the value for 118 

areas most associated with the network’s decision. We expanded the Grad-CAM visualization 119 

technique to a 3-dimensional space.  120 

Attention maps were computed for every individual. Since all brain images were registered to the 121 

same template space, a global average voxel-wise attention map could be made over attention 122 

maps of all subjects to obtain a global attention map for the age prediction network.  123 

We computed the change in attention map over age per voxel, to investigate the change in 124 

regions predictive for brain age between age groups. To this end, for each voxel, a linear 125 

regression from age to attention map value was performed, resulting in a line of which the slope 126 

represents the increase in attention map value with age for the given voxel  127 
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Supplementary text 1: Sex covariate effect on CNN model performance 128 

We can consider a split evaluation between male and female subjects. Supplementary Figure 3 129 

shows the network found no significant difference between the two groups (p=0.34). By 130 

including sex as a covariate, the covariate can reduce the difference in resulting age predictions 131 

between male and female subjects. 132 

The trained model was able to reduce prediction error and correct for male and female biases 133 

observed in the image by the model. By including the additional input of sex, the model is able to 134 

prevent over- and under prediction for male and female ages, respectively, as shown in 135 

Supplementary Figure 4. Here we present the performance in gap on male and female subjects, 136 

both early adapted models were trained under the same training settings and used the exact same 137 

training and validation sample sets. The model that includes the additional input of the subject’s 138 

respective sex, was able to reduce the overall gap between male and female subjects to be 139 

insignificant (p-value=0.23). This also brought the mean gap for males and females closer to zero 140 

(one-sample t-test: pmale=0.88 and pfemale=0.05). 141 

Given that the sex as covariates improved the model performance, we hypothesised that brain 142 

age prediction gap might have different predictive value for males and females. We did stratified 143 

analysis and have not found any differences between males (HR=1.16, 95% CI 1.09-1.24) and 144 

females (HR=1.14, 95% CI 1.09-1.20) 145 

  146 
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Supplementary text 2: Important regions attention map 147 

Although aging affects the entire GM volume in the brain, as shown in Supplementary Figure 148 

5, significant negative association between GM volume and age have been reported for several 149 

specific brain regions, i.e. a reduction in GM volume with age12,13. According to literature12,13 the 150 

insula, superior temporal areas and multiple gyri have shown significant age-related GM volume 151 

differences. However, due to the large size of most of these regions often only parts of these 152 

region were highlighted by the network. Interestingly, brain structures affected by age with 153 

higher p-value in literature12,13, were also more highlighted by the network, e.g.: caudate nucleus, 154 

amygdala, hippocampus and thalamus. 155 

  156 
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Supplementary Table 1. Characteristics of subjects with the 5-year age-stratified lowest 192 

quintile age gap values compared to the 5-year age-stratified highest quintile age gap 193 

values, and correlation estimates between these characteristics and the age gap in the full 194 

sample. 195 

 196 

  197 

Characteristic Value lowest quintile 
(n=340)* 

Value highest quintile 
(n=350)* 

p-value Correlation estimates 
(95% CI) 

Age gap (years) -5.7 ± 3.9 6.9 ± 4.5 <0.001 - 

Grey matter volume (mL) 605.0 ± 56.9 577.6 ± 56.2 <0.001 0.11 (0.07;0.16) 

Systolic blood pressure (mmHg) 138.9 ± 21.6 143.1 ± 21.0 0.009 -0.19 (-0.24;-0.15) 

Mild cognitive impairment, n (%) 15 (4.4) 31 (8.9) 0.013 0.07 (0.01;0.13) 

Diastolic blood pressure (mmHg) 82.1 ± 10.8 84.1 ± 11.1 0.014 0.06 (0.01;0.11) 

Fasting glucose level (mmol/L)  5.5 ± 1.2 5.7 ± 1.1 0.021 -0.01 (-0.06;0.03) 

Current or past smoker, n (%) 102 (30.0) 130 (37.1) 0.027 0.34 (0.30;0.38) 

Body mass index (kg/m2) 27.2 ± 3.9 27.8 ± 4.5 0.043 0.08 (0.04;0.13) 

Mini-Mental State Examination score 28.0 ± 1.8 27.7 ± 2.1 0.095 0.07 (0.02;0.12) 

Total cholesterol (mmol/L) 5.6 ± 1.0 5.5 ± 1.1 0.323 0.00 (-0.05;0.05) 

APOEε4 carrier, n (%) 92 (27.1) 103 (29.4) 0.418 0.01 (-0.04;0.06) 

Female, n (%) 187 (55.0) 203 (58.0) 0.428 0.02 (-0.03;0.07) 

HDL cholesterol (mmol/L) 1.4 ± 0.4 1.5 ± 0.4 0.549 0.00 (-0.04;0.05) 

Age (years) 65.5 ± 10.8 65.3 ± 11.0 0.771 -0.58 (-0.61;-0.55) 

Years of education 12.4 ± 3.8 12.3 ± 4.0 0.829 0.10 (0.05;0.14) 

Intracranial volume (mL) 1465.8 ± 163.2 1466.3 ± 164.1 0.971 0.10 (0.06;0.15) 

*Values are presented in mean ± SD unless stated otherwise. 
Abbreviations: confidence interval (CI); number of participants (n); standard deviation (SD). 
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 198 

Supplementary Figure 1. Flowchart showing the number of excluded participants per category.  199 

  200 
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 201 

Supplementary Figure 2. Graphical representation of the network architecture. The overall 202 

approach can be seen as four convolutional blocks ending on a pooling layer, which halves 203 

feature map dimensions. Hereafter, global average pooling extracts the final feature maps to a 204 

one-dimensional array of a single value per feature map. Fully connected layers are used to 205 

propagate to a single regression output. Abbreviations: kxkxk convolutional layer, with strides of 206 

sxsxs (CONV(k,s)); kxkxk max-pooling layer, with strides of sxsxs (Maxpooling(k,s)); batch 207 

normalization (Batchnorm); rectified linear unit (ReLU); dropout with probability p 208 

(Dropout(p)). 209 

  210 
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 211 

Supplementary Figure 3. The probability density of the gap value (PAD) for male and female 212 

subjects. The distribution shows the difference in prediction for these two groups. Distributions 213 

are similar as mean ηfemale = 0.51 and variance σ2
female = 5.72 for female, whereas ηmale = 0.04 and 214 

σ2
male = 5.69 for male. Resulting t-test showed no significant difference between the two groups 215 

as t(550) = -0.96 and p = 0.34. 216 

  217 
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 218 

Supplementary Figure 4. Effect of adding sex as a covariate to the model on the gap value 219 

distribution (red=male; blue=female). A comparison of the probability density functions for gap 220 

of two early trained models along with their respective t-test results. Both models have the exact 221 

same architecture with one the exception. a) Model uses only a single brain-MRI voxels input. b) 222 

Model uses two inputs, i.e. brain-MRI voxels and respective sex. Models were trained under the 223 

exact same settings. 224 

  225 
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 226 

Supplementary Figure 5. Grad-CAM attention map and attention map change overlaid on a 227 

brain template. (A) Grad-Cam attention map intensity per voxel. Voxel values in the attention 228 

map have been set at 0.65 minimum threshold and capped at 0.95 maximum to exclude 229 

background values and focus on more important regions. (B) Increase in attention map intensity 230 

over chronological age per voxel. Map include only voxels with a significant increase in voxel 231 

values (p<3e-7 after Bonferroni correction by number of GM voxels). 232 

  233 
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 234 

Supplementary Figure 6. Grad-CAM attention map intensity per voxel overlaid on a brain 235 

template.  236 
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237 
 Supplementary Figure 7. Correlation between brain pathology associated features and the age 238 
gap. 239 


