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1. Overlap between the semantic constraints of subject noun and verb 
We summarise here the further analyses conducted to investigate the possible sources of the 

model fit seen for the verb topic RDM from verb onset. We focus in particular on the shared 

semantic properties of the subject noun and the following verb. 
Psycholinguistic studies have shown robust priming effects of agents (or subject nouns) on 

the verbs with which they typically occur (1, 2). The authors explain this in terms of event 

knowledge, that is, information about real-world events triggered by the agent and verb in a 

sentence is dynamically combined by comprehenders. Consistent with this account, the 

congruency across words also facilitates online sentence interpretation (3). In the current study, 

one aspect of the congruency between the subject noun and the verb is the semantic constraints 

they have in common over DO nouns. In other words, a subject noun and a verb can be linked to 

each other in an event structure because they tend to occur with similar DO nouns. The use of 
computational modelling methods (e.g., LDA) enables us to quantity this relationship through 

statistics-based measures from large-scale corpus (e.g., co-occurrence frequency).  

 

 

Figure S1 Illustrations of (A) the relationship between the semantic constraints over the DO noun 

from the subject noun and the verb, (B) topic modelling of verb’s semantic constraints and (C) topic 

modelling of both subject’s and verb’s semantic constraints over the DO noun (TM = Topic Model).  

Given that a subject noun and a DO noun can co-occur with different intervening verbs, a 

subject noun is likely to provide relatively broader semantic constraints over DO nouns in contrast 

to a verb (see Figure S1A for illustration). Thus, we hypothesize that the early model fit of verb topic 

RDM is due to semantic constraints that are congruent across the subject noun and the verb. These 

should be activated once the subject noun is recognised (4, 5) as part of the subject noun’s broad 

semantic constraints.  

 



 
 

3 
 

 
Figure S2 Illustrative results from the topic model that quantifies both subject nouns’ and verbs’ 

semantic constraints over DO nouns (TM-sv). Results of three pairs of subject noun & verb are 

shown: (A) ‘woman’ & ‘spot’, (B) ‘man’ & ‘cultivate’, (C) ‘man’ & ‘load’. The left column in each 

subplot shows, from top to bottom, the subject noun topic vector, the verb topic vector, and the 

subject noun & verb overlap topic vector obtained through element-wise multiplication (re-

normalized for illustration purpose). The right two columns show the two most preferred topics in 

the subject noun & verb overlap topic vector, with each topic being represented by its ten most 

probable words.  

 

To test this hypothesis, we trained a topic model including both the subject noun and the verb 

to quantify their semantic constraints over the DO noun simultaneously (15,629 subject nouns and 

4,217 verbs, Figure S1C). This is different from the topic model built on the verb-DO noun co-

occurrence only, as reported in the main text (Figure S1B). For simplicity, these two topic models 

are referred to below as TM-sv and TM-v respectively. In TM-sv, the subject noun topic vector 

exhibits significantly higher topic entropy than the verb topic vector (subject noun: 2.65±0.55, verb: 
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2.21±0.92, two-tailed two-sample t-test, t = 7.86, p = 1.5e-14), suggesting that the subject nouns 

used in this study indeed provide less specific semantic constraints compared with the verbs. See 

also the relatively more distributed pattern in subject noun topic vectors and the sparser pattern in 

verb topic vectors in Figure S2. Note that we are not able to model the entire subject phrase (i.e., 
modifier and the subject noun) due to the limitations of current topic modelling methods. 

We further constructed subject noun & verb overlap topic vectors through element-wise 

multiplication between the subject noun and verb topic vectors in TM-sv, capturing their shared 

semantic constraints. Although all subject nouns used in this study are human agents and the verbs 

are actions likely performed by humans, the shared semantic constraints between the subject noun 

and the verb include but are not limited to animacy, as shown in Figure S2. Moreover, the topic 

distribution of the shared semantic constraints varies across subject noun and verb pairs, providing 

the variance needed to construct a valid model RDM. 
We extended the original verb epoch reported in the main text (aligned to verb onset) 50ms 

back into the subject noun, then tested several RDMs based on the results from TM-sv. Model fit 

for the ‘pure’ subject noun topic RDM is already present in bilateral temporal regions 50ms before 

verb onset, but these effects dissipate within 100ms after verb onset (Figure S3A). The subject 

noun & verb overlap topic RDM (TM-sv) shows similar left hemisphere effects before and 

immediately after verb onset, but model fit now continues until 224ms after verb onset with peak 

effects found in L MTG at 198ms, terminating well before verb recognition point (RP), estimated at 

339 ms (Figure S3B). The results suggest that subject noun semantics remained activated as the 
verb begins to be heard but die off as the semantics of the new cohort, triggered following verb 

onset, begin to be activated. Consistent with this account, the more selective subject noun & verb 

overlap topic RDM, which contains only those subject noun topics that are also likely to be preferred 

by the verb, exhibits a longer-lasting model fit but also dies off well before verb RP. This drop off in 

model fit presumably reflects the growing activation of verb-specific semantics as the system 

begins to converge on the exact word being heard, so that the correlational structure in the data 

RDM of neural activity will change in ways that no longer match a correlational structure in a model 
RDM based only on subject noun/verb overlap. For example, the verb ‘ate’ in the context ‘the elderly 

man …’ will begin to evoke semantic properties related to ‘eating’ and its probable DO nouns that 

are not encoded in the semantics of the subject noun. Model fit for the two verb topic RDMs (based 

on TM-v and TM-sv separately) is already present 50ms before verb onset and remains evident 

throughout the verb (Figure S3 C&D) with similar spatiotemporal distributions, as expected given 

the high correlation between the two RDMs (Spearman’s r = 0.81). 
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Figure S3 ssRSA results for different model RDMs across the verb epoch. The subject noun topic 

RDM (A) is based on the TM-sv topic model (see text); the subject noun & verb overlap topic RDM 

(B) captures the shared semantic constraints between the subject noun and the verb; the two verb 

topic RDMs (C&D) are based on the TM-v and the TM-sv models respectively - the results for the 

TM-v topic model are provided for comparison; the final RDM (E) shows the effects on verb topic 

RDM model fit (for D) of partialling out the semantic constraints shared by the subject noun and the 

verb (as in B). TM-sv indicates the topic model trained by both the subject noun’s and the verb’s 

co-occurrence with the DO noun, TM-v indicates the topic model trained by only the verb’s co-

occurrence with the DO noun. 

 

To evaluate more directly these claims about the timing and the relationship of subject noun 

and verb-specific semantic constraints as the verb is heard and recognised, we conducted a further 
analysis in which we partialled out the subject-noun & verb topic overlap RDM (TM-sv) from the 

verb topic RDM (TM-sv). As shown in Figure S3E, significant effects of the verb topic RDM were 

not found until nearly 150ms after verb onset, while the later model fit, especially after verb RP, 

remains largely the same, suggesting that the early model fit seen for the verb topic RDM was 

primarily driven by shared subject noun and verb constraints. 
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Note that, apart from the 4,217 verbs involved in TM-v, TM-sv also includes 15,629 subject 

nouns, therefore the final set of topics forTM-sv could be considerably biased to account for the 

subject nouns’ broad semantic constraints. This is why we kept the original results based on TM-v 
in the main text since the primary focus there was on the meaning composition between the verb 

and the DO noun. TM-sv is only trained and used to examine the subject noun’s potential effects 

during the early processing of the following verb. Importantly, the effects of model RDMs related to 

the subject noun ended well before verb RP (Figure S3 A&B), while the effects of the verb topic 

RDM after verb RP remain almost the same after partialling out the shared semantic constraints 

(compare Figure S3 D&E), suggesting that the meaning composition between the verb and the DO 

noun is not strongly affected by the subject noun.  

In the context of the above discussion and these additional analyses, we argue that early 
model fit to the verb topic RDM should be regarded as topic-based rather than word-based, in the 

sense that congruent or consistent topics remain activated throughout consecutive words, such as 

a subject noun and its following verb. It is these shared topics that support the continuing model fit 

with subject noun semantics as the verb begins to be heard, and that, in the same way, support 

the model fit seen for verb topic semantics over the same period and beyond. Clearly verb-specific 

information does rapidly become dominant and the topic distribution activated by the subject noun 

is restructured and replaced as the verb input accumulates, as we see reflected in the first 200 ms 

or so after verb input begins. We note, however, that this account remains speculative without 
further research specifically designed to test these claims for partial topic-based model fit with word-

level RDMs.  
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2. Distribution of verb topic entropy 

As demonstrated in Figure S4, the verbs used in this study constituted a continuous and broad 

distribution in terms of the strength of their semantic constraints as measured by the verb topic 

entropy. 
 

 
Figure S4 Distribution of the strength of verb semantic constraints as measured by verb topic 

entropy.  
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3. Additional connectivity control analyses 

Although the ROIs selected in our directed connectivity analyses are determined by their 

significant model fit for a certain model RDM, this is still a largely data-driven method since the 

connectivity strength is quantified as the partial correlation coefficient between data RDMs. 
Therefore, we conducted two control analyses to investigate whether the connectivity results 

reported in the main text and above could be due to intrinsic brain-wide interactions and not specific 

to speech comprehension.  

 

 
Figure S5 Results of directed connectivity analysis between (A) the left occipital pole (LOP) and 

right occipital pole (ROP) during the verb epoch, and (B) the LpMTG and LOP during the verb 

epoch.  

Figure S5 gives the results of a test of the functional specificity of the directed connectivity 
results seen for the relationship between LpMTG and two language-related areas (LIFG and 

LSMG/AG), as plotted in Figure 8 in the main text. To do this we compared potential links between 
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LpMTG and the left occipital pole (LOP), assumed to have no direct functional relation, and 

between LOP and ROP, assumed to be strongly functionally connected to support visual 

processes. Consistent with these assumptions, LOP and ROP shows strong and continuous mutual 

connections, while no consistent connectivity is found between LOP and LpMTG. In other words, 
as one would expect, the patterning of data RDMs in LOP bear no significant statistical relation to 

future neural patterns in LpMTG. 

 

 
Figure S6 Results of directed connectivity analysis between (A) L SMG/AG and LpMTG, and (B) 

LIFG and LMTG during an epoch aligned to sentence onset. Bar plots on the right side show the 

mean connectivity strength within successive 100ms time-bins from 100ms before sentence onset 

to 500ms after sentence onset.  

 

In the second control analysis (Figure S6) we tested the connectivity between relevant brain 

regions (as reported in Figure 8 of the main text) during an epoch aligned to sentence onset 

extending backwards 100ms. As shown in Figure S6, no effects are found before sentence onset, 

when there is no auditory input, both for the connectivity from L SMG/AG to LpMTG and from LIFG 

to LMTG. Although there are some early weak effects for the connectivity originating from the left 

MTG, consistent strong connectivity (i.e., the higher correlation plots in yellow) only emerges 
between 100-150ms after sentence onset when relevant speech input has started to accumulate.  
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To quantify this, we divided the epoch into six 100ms time-bins from 100ms before sentence 

onset to 500ms after onset, and averaged connectivity strength within each bin. It is clear from the 

bar graphs in Figure S6 that connectivity from LpMTG to LSMG/AG and LIFG is very weak in the 

pre-onset time-bin, starts to increase significantly in the first time-bin after sentence onset, but only 
reaches full strength after 100ms has been heard where the LIFG link is concerned, and 200-300ms 

for the SMG/AG connection. Note that the interval between trials is essentially a short silent period 

instead of a genuine resting state, so that we may well be picking up some residual effects from 

the last trial before the onset of the next trial. 
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4. Number of topics 
The number of topics is a critical parameter that is set before model training. If the number of topics 

is too small, the topics obtained could cover a mixture of different categories, which means that 

these topics are less informative and more difficult to interpret. In contrast, if there are too many 
topics, a category might be decomposed into multiple topics, which results in redundant topics with 

similar meaning. Here we adopted topic coherence (6, 7) to choose an optimal number of topics. 

Topic coherence is often used for the overall evaluation of topic modelling results, moreover, it has 

been found to be more correlated to human judgement of interpretability than other measures (e.g., 

perplexity, the likelihood of unseen documents calculated using a trained model) (6). The rationale 

is that a good model will generate coherent topics that are informative and interpretable. For 

example, if the top 5 words of a topic are “apple, banana, orange, peach, mango”, then this topic 

can be easily interpreted with a simple label “fruit”.  
 

In this study, we trained a series of topic models with different topic numbers (i.e., from 50 to 400 

with increments of 50) and determined the optimal number of topics according to topic coherence. 

We used point-wise mutual information (PMI) as a metric of topic coherence (7). We calculated 

PMI using an independent external corpus (i.e., 5.2 million Wikipedia documents). The advantage 

of using an independent external corpus to evaluate topics is that it avoids reinforcing the noise 

and rare word relationship in the training corpus. For each topic t, PMI is defined as follow. 

 

𝑃𝑀𝐼(𝑡) =
2

𝑀(𝑀 − 1)
+ + 𝑙𝑜𝑔

𝑝0𝑤2
(3), 𝑤5

(3)6
𝑝(𝑤2

(3))𝑝(𝑤5
(3))

278

598

:

29;

 

 

where 𝑊(3) = 0𝑤8
(3), 𝑤;

(3), ⋯𝑤:
(3)6 is the top M words in topic t (here we used the top 10 words, i.e., 

M = 10), 𝑝0𝑤2
(3), 𝑤5

(3)6 is the co-occurrence probability of 𝑤2
(3)	and	𝑤5

(3) in one document, 𝑝(𝑤5
(3)) is 

the occurrence probability of 𝑤5
(3) in one document. 

As shown in Figure S7, both the mean and median of PMI scores peak at 200 topics, suggesting 

200 as an optimal choice for the number of topics.  
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Figure S7 Evaluation of topic models with different numbers of topics by topic coherence calculated 

from an independent external corpus (5.2 million Wikipedia documents). Left panel: green solid line 

and shadow indicate mean and one standard error (SE) across topics; red solid line indicates 

median value; Right panel: boxplots showing the distribution of PMI scores over topics. PMI, 

pointwise mutual information. 
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5. Semantic dispersion across topics 
The topics obtained from topic modelling differ from each other with respect to the extent of 

semantic dispersion, which could potentially undermine the estimation of verb topic entropy. Ideally, 

we would expect verbs with less specific semantic constraints to show higher verb topic entropy 
(i.e., a more distributed pattern over topics), and vice versa. However, the underlying assumption 

is that all the topics are equivalent with respect to the extent of semantic dispersion. Here 

informativeness is used to measure the semantic dispersion in each topic. The informativeness of 

topic 𝑡 is defined as follow. 

 

𝐼(𝑡) =
2

𝑁3(𝑁3 − 1)
++𝑝(𝑤C|𝑡) ∙ 𝑝0𝑤F|𝑡6 ∙ 𝑐𝑜𝑠 I𝒏KL, 𝒏KMN

OP

F98

,
OP

C98

	(𝑖 < 𝑗) 

 

where 𝑝(𝑤C|𝑡) is the probability of word 𝑤C (from the training dataset vocabulary consisting of DO 

nouns) given topic 𝑡, 𝒏KL is the corresponding topic vector of  𝑤C. In consideration of computational 

efficiency, we only included the 𝑁3 words with probability larger than 0.001 given topic 𝑡.  

 

Thus high informativeness indicates the prominent words in this topic (i.e., words assigned with 

probability over 0.001) exhibit high semantic similarity, which corresponds to low semantic 

dispersion. Without semantic dispersion correction, the entropy of a verb with less specific 

constraints (e.g., want, see) could be underestimated if it only prefers a few less informative topics, 

which would result in a sparse distribution over topics and low verb topic entropy. We applied 
semantic dispersion correction by multiplying the informativeness of each topic with the original 

topic loading in verb/noun topic vectors (i.e., P(topic|verb), P(topic|DO noun)). As shown in Table 

S1, semantic dispersion correction mainly affects the verb topic entropy RDM, with very little effect 

on the other model RDMs.  

 

Table S1 Spearman’s r between model RDMs with or without semantic dispersion correction 

Model RDM Spearman’s r between model RDMs with 
or without semantic dispersion correction 

verb topic RDM 0.9633 

verb topic entropy RDM 0.8337 

noun topic RDM 0.9626 

verb-weighted noun topic RDM 0.9443 

verb constraint error RDM 0.9120 
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6. Illustrative topic modelling results  
Table S2 shows example topics resulting from topic modelling based on the co-occurrence between 

verb and DO noun, as reported in the main text. Topics were sorted in descending order of topic 

informativeness (see definition in SI section 5: the higher the informativeness, the more coherent 
the top words are in each topic), and the first 50 topics are listed in Table S2. Note that the first 

column (Topic ID) refers to the original index in the topic modelling results. We also calculated the 

mean probability of each topic by averaging the conditional probability of each topic (i.e., 

P(topic|verb)) across the 4,217 verbs in the training dataset. This indicates each topic’s overall 

involvement as determined by large-scale corpora data. We found that topic mean probability is 

significantly correlated with topic informativeness (Pearson’s r = 0.55, p = 2.27x10-17), suggesting 

that topics with higher informativeness are more often used to represent a verb’s semantic 

constraints and play a stronger role in modelling the semantics of our stimuli.   
 
Table S2 Top 5 words of the first 50 topics in descending order of topic informativeness 

Topic 
ID Top 5 words (DO nouns) Mean 

probability 
Informative-

ness 
59 animal 

(0.048) 
bird 

(0.036) 
horse 

(0.028) 
dog 

(0.026) 
cat  

(0.020) 0.014 0.623 

80 time 
(0.121) 

day 
(0.104) 

year 
(0.055) 

hour 
(0.055) 

night  
(0.041) 0.008 0.619 

29 shirt 
(0.023) 

uniform 
(0.021) 

dress 
(0.020) hat (0.019) clothes 

(0.019) 0.006 0.594 

110 head 
(0.069) 

hand 
(0.065) 

arm 
(0.038) leg (0.037) finger  

(0.034) 0.019 0.566 

22 car  
(0.073) 

ship 
(0.063) 

boat 
(0.053) 

vehicle 
(0.040) 

train  
(0.031) 0.011 0.562 

40 member 
(0.033) 

officer 
(0.019) 

minister 
(0.018) 

bishop 
(0.016) 

representa-
tive  

(0.016) 
0.007 0.536 

2 name 
(0.168) 

word 
(0.145) 

language 
(0.046) 

phrase 
(0.034) 

term  
(0.025) 0.008 0.524 

134 child 
(0.159) 

baby 
(0.053) 

people 
(0.034) 

patient 
(0.034) 

son  
(0.033) 0.015 0.522 

183 wine 
(0.041) 

beer 
(0.041) 

drink 
(0.035) 

water 
(0.034) 

tea  
(0.025) 0.007 0.512 

9 relationship 
(0.148) 

link 
(0.061) 

friendship 
(0.054) 

connection 
(0.043) 

relation 
(0.042) 0.003 0.511 

83 fire  
(0.162) 

flame 
(0.057) 

candle 
(0.047) 

light 
(0.043) 

lamp  
(0.026) 0.003 0.502 

164 question 
(0.427) 

call 
(0.030) 

query 
(0.029) 

enquiry 
(0.016) 

prayer  
(0.016) 0.002 0.489 

118 fish  
(0.032) 

egg 
(0.031) 

onion 
(0.020) 

potato 
(0.017) 

meat  
(0.013) 0.008 0.487 

128 people 
(0.047) 

man 
(0.032) 

person 
(0.025) 

woman 
(0.023) 

prisoner 
(0.020) 0.017 0.471 

19 tree 
(0.054) 

seed 
(0.049) 

plant 
(0.045) 

crop 
(0.043) 

flower  
(0.019) 0.008 0.469 

132 protein 
(0.038) 

gene 
(0.028) 

acid 
(0.020) 

molecule 
(0.018) 

cell  
(0.016) 0.009 0.468 
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3 muscle 
(0.046) 

heart 
(0.038) 

skin 
(0.031) 

body 
(0.031) 

mind  
(0.027) 0.011 0.468 

124 song 
(0.154) 

music 
(0.029) 

verse 
(0.028) 

tune 
(0.026) 

lyric  
(0.023) 0.005 0.466 

15 problem 
(0.211) 

issue 
(0.119) 

situation 
(0.038) 

matter 
(0.031) 

dispute 
(0.026) 0.004 0.460 

68 money 
(0.112) 

fund 
(0.048) 

amount 
(0.042) 

resource 
(0.037) 

sum  
(0.034) 0.008 0.460 

64 crime 
(0.055) 

offence 
(0.034) 

murder 
(0.030) act (0.025) suicide 

(0.021) 0.005 0.458 

103 disease 
(0.057) 

infection 
(0.029) 

virus 
(0.021) 

condition 
(0.020) 

problem 
(0.019) 0.004 0.454 

48 error 
(0.046) 

mistake 
(0.038) 

lack 
(0.025) 

sin  
(0.024) 

failure  
(0.021) 0.005 0.452 

112 right 
(0.225) 

freedom 
(0.051) 

interest 
(0.050) 

liberty 
(0.027) 

copyright 
(0.025) 0.003 0.451 

42 friend 
(0.027) 

woman 
(0.024) 

man 
(0.021) 

girl  
(0.019) 

wife  
(0.017) 0.014 0.446 

90 cost 
(0.155) 

risk 
(0.057) 

loss 
(0.044) 

expense 
(0.037) 

liability 
(0.030) 0.004 0.418 

26 fee  
(0.059) 

price 
(0.043) 

debt 
(0.030) 

tax  
(0.025) 

rate  
(0.023) 0.006 0.413 

147 interest 
(0.043) 

feeling 
(0.030) 

fear 
(0.028) 

desire 
(0.022) 

appetite 
(0.022) 0.008 0.413 

38 area 
(0.043) 

territory 
(0.041) 

city  
(0.034) 

land 
(0.031) 

country 
(0.030) 0.010 0.411 

144 contract 
(0.109) 

agreement 
(0.086) 

deal 
(0.070) 

treaty 
(0.048) 

term  
(0.014) 0.003 0.410 

54 boundary 
(0.161) 

border 
(0.062) 

line 
(0.046) 

limit 
(0.046) 

distinction 
(0.037) 0.002 0.409 

50 food 
(0.056) 

meal 
(0.029) 

meat 
(0.022) 

bread 
(0.019) 

cake  
(0.017) 0.009 0.405 

66 road 
(0.053) 

river 
(0.029) 

street 
(0.028) 

route 
(0.024) 

lake  
(0.016) 0.009 0.404 

47 water 
(0.077) 

air  
(0.038) 

gas 
(0.031) 

blood 
(0.030) 

oil  
(0.018) 0.012 0.404 

104 goal 
(0.094) 

point 
(0.055) 

win  
(0.036) 

victory 
(0.034) 

score  
(0.026) 0.004 0.404 

21 aircraft 
(0.065) 

plane 
(0.051) 

flag 
(0.048) 

helicopter 
(0.021) 

balloon 
(0.019) 0.004 0.402 

25 way 
(0.089) 

mile 
(0.051) 

distance 
(0.037) 

round 
(0.036) 

street  
(0.019) 0.014 0.392 

88 room 
(0.077) 

house 
(0.037) 

building 
(0.027) 

space 
(0.021) 

floor  
(0.019) 0.011 0.392 

32 concern 
(0.040) 

opinion 
(0.035) 

view 
(0.027) 

feeling 
(0.024) 

interest 
(0.020) 0.005 0.391 

6 hill  
(0.040) 

mountain 
(0.034) 

wall 
(0.030) 

slope 
(0.025) 

step  
(0.023) 0.007 0.386 

13 hole 
(0.119) 

grave 
(0.028) 

well 
(0.024) 

pit  
(0.022) 

trench 
(0.021) 0.004 0.386 

45 law  
(0.094) 

rule 
(0.055) 

order 
(0.031) 

regulation 
(0.026) 

decision 
(0.022) 0.007 0.385 

158 role  
(0.043) 

duty 
(0.041) 

dream 
(0.035) 

objective 
(0.031) 

aim  
(0.031) 0.003 0.380 



 
 

16 
 

182 building 
(0.050) 

house 
(0.037) 

church 
(0.022) 

bridge 
(0.021) 

tower  
(0.016) 0.006 0.377 

171 staff 
(0.032) 

worker 
(0.020) 

officer 
(0.018) 

employee 
(0.014) 

member 
(0.013) 0.006 0.375 

169 force 
(0.064) 

army 
(0.051) 

troop 
(0.034) 

ship 
(0.024) 

enemy 
(0.021) 0.009 0.372 

121 people 
(0.045) 

audience 
(0.041) 

reader 
(0.025) 

fan  
(0.019) 

crowd  
(0.016) 0.024 0.367 

176 meeting 
(0.055) 

event 
(0.042) 

conference 
(0.031) 

session 
(0.020) 

workshop 
(0.017) 0.004 0.365 

151 authority 
(0.021) 

company 
(0.020) 

doctor 
(0.012) 

police 
(0.012) 

employer 
(0.011) 0.008 0.363 

1 team 
(0.111) 

winner 
(0.045) 

player 
(0.044) 

candidate 
(0.029) 

side  
(0.028) 0.006 0.362 
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