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Supporting Information Text11

A. Assumptions on the Objective Function U . Assumptions on U : Rd → R (local nonconvexity):12

1. U(x) is L-Lipschitz smooth and its Hessian exists ∀x ∈ Rd.13

That is: U ∈ C1(Rd), ∀x, z ∈ Rd, ‖∇U(x)−∇U(z)‖ ≤ L ‖x− z‖; ∀x ∈ Rd, ∇2U(x) exists.14

2. U(x) is m-strongly convex for ‖x‖ > R.15

That is: V (x) = U(x) − m

2 ‖x‖
2
2 is convex on Ω = Rd \ B(0, R)∗. We then follow the definition of convexity16

on nonconvex domains (1, 2) to require that ∀x ∈ Ω, any convex combination of x = λ1x1 + · · ·+ λkxk with17

x1, · · · ,xk ∈ Ω satisfies:18

V (x) ≤ λ1V (x1) + · · ·+ λkV (xk).19

We further denote the condition number of U on Ω as κ = L/m.20

3. For convenience, let ∇U(0) = 0 (i.e., zero is a local extremum).21

B. Proofs for Sampling.22

Theorem 1. For p∗ ∝ e−U , we assume that U satisfies the local nonconvexity Assumptions 1–3. Consider the
unadjusted Langevin algorithm (ULA) and the Metropolis adjusted Langevin algorithm (MALA) with initialization
p0 = N

(
0, 1

L
Id
)
and error tolerance ε ∈ (0, 1). Then ULA satisfies

τULA(ε, p0) ≤ O
(
e32LR2

κ2 d

ε2
ln
(
d

ε2

))
. [1]

For MALA,

τMALA(ε, p0) ≤ O
(
e40LR2

m
κ3/2d1/2

(
d lnκ+ ln

(1
ε

))3/2
)
. [2]

Remark 1. Assumptions 1–3 can be shown to imply that the nonconvex region will have small probability mass in23

high dimensions. The theorem quantifies the consequences of this small mass on ULA and MALA, showing essentially24

that their mixing time is not perturbed qualitatively by the nonconvexity. It is the coupling of this result with the25

exponential complexity of optimization, as shown in Theorem 2, that is our main result. The assumptions have been26

chosen to make this comparison as simple as possible. But it is noteworthy that we can weaken the assumptions and27

still obtain rapid mixing for ULA and MALA. In particular, note that we assumed that the Lipschitz parameter L is28

uniformly bounded by a constant over the entire Rd. This assumption is in fact not necessary in our proofs. Indeed,29

we can allow the Lipschitz parameter L̃ and strong convexity parameter m̃ outside of the region B(0, R) to scale with30

the dimension d (while U is still L-Lipschitz smooth inside B(0, R) and L does not scale with d). In that setup, the31

probability mass inside the nonconvex region B(0, R) no longer shrinks as a function of d.32

Moreover, in that setup we can repeat the constructive proof in Lemma 1 (via choosing a smaller smoothing radius33

δ = O(κR/d)) and demonstrate that ρU ≥ Le−16LR2
. It follows that the computational complexity for ULA becomes34

(in terms of dimension d and accuracy ε): O(d3/ε2), where the extra d2 factor is due to the fact that the step size h35

scales inversely with L̃2 = O(d2). A similar result holds for MALA.36

This more general setup highlights the value of our general approach to analyzing MCMC algorithms via the properties37

of weighted Sobolev spaces. It naturally allows us to combine convergence rates for sampling strongly log-concave38

posteriors and those for sampling smooth posteriors in a bounded region. Indeed, our upper bounds on convergence39

rates generalize existing results for strongly log-concave posteriors (3–10) and also strengthen recent work using the40

Wasserstein metric to the KL divergence (11–14).41

We begin by proving the basic log-Sobolev inequality that underlies our results. We then prove convergence of ULA42

and MALA respectively in Sec. B.2 and B.4.43

∗Here we let B(0, R) denote the closed ball of radiusR centered at 0.

2 of 31 Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion and Michael I. Jordan



B.1. Log-Sobolev Inequality.44

Proposition 1. For p∗ ∝ e−U where U satisfies Assumptions 1–3 in Appendix A,

ρU ≥
m

2 e
−16LR2

. [3]

Proof First note that for m/2-strongly convex Û ∈ C1(Rd) with ∇2Û(x) exists on the entire Rd, distribution e−Û(x)

satisfies the Bakry-Emery criterion (15) for strongly log concave density and have:

ρÛ ≥
m

2 . [4]

Next we invoke Lemma 1 that such Û exists and satisfies sup
(
Û(x)− U(x)

)
− inf

(
Û(x)− U(x)

)
≤ 16LR2.45

Then we use a result from Holley-Stroock (16) and obtain:

ρU ≥
m

2 e
−|sup(Û(x)−U(x))−inf(Û(x)−U(x))| ≥ m

2 e
−16LR2

. [5]

�46

Lemma 1. For U satisfying Assumptions 1–3, there exists Û ∈ C1(Rd) with a Hessian that exists everywhere on Rd,47

and Û that is m/2-strongly convex on Rd, such that sup
(
Û(x)− U(x)

)
− inf

(
Û(x)− U(x)

)
≤ 16LR2.48

Proof of Lemma 1 Similar to Assumptions 1–3, denote Ω = Rd \ B(0, R). Also denote Ũ(x) = U(x)− m

4 ‖x‖
2.49

We follow (2) to construct Û(x)− m

4
∥∥x2
∥∥ ∈ C1(Rd) with Hessian defined on Rd so that it is convex on Rd and differs50

from Ũ(x) less than 16LR2.51

First we define the function V as the convex extension (17) of Ũ from domain Ω to its convex hull Ωco:

V (x) = inf
{xi}⊂Ω,{

λi

∣∣∑
i
λi=1

}
,

s.t.,
∑

i
λixi=x

{
l∑
i=1

λiŨ(xi)

}
, ∀x ∈ Ωco = Rd. [6]

V (x) is convex on the entire domain Rd. Also, since Ũ(x) is convex in Ω, V (x) = Ũ(x) for x ∈ Ω. By Lemma 2, we52

also know that ∀x ∈ B(0, R), inf x̄=R Ũ(x̄) ≤ V (x) ≤ supx̄=R Ũ(x̄).53

Next we construct Ṽ (x) to be a smoothing of V on B
(

0, 4
3R
)
. Let φ ≥ 0 be a smooth function supported on the ball

B(0, δ) where δ = m

L

R

1600 <
R

6 such that
∫
φ(x)dx = 1. Define

Ṽ (x) =
∫
V (y)φ(x− y)dy =

∫
V (x− y)φ(y)dy. [7]

Then Ṽ is a smooth and convex function on Rd. The second expression in Eq. (7) implies that Ṽ (x) is m2 -strongly54

convex in Rd \ B (0, R+ δ) ⊃ B
(

0, 3
2R
)
\ B
(

0, 4
3R
)
. Also note that the definition of Ṽ implies that ∀ ‖x‖ < 4

3R,55

inf
‖x̄‖<

4
3R+δ

V (x̄) ≤ Ṽ (x) ≤ sup
‖x̄‖<

4
3R+δ

V (x̄).56

And by Lemma 2,

inf
x̄∈B

(
0,

4
3R+δ

)
\B(0,R)

Ũ(x̄) ≤ Ṽ (x) ≤ sup

x̄∈B

(
0,

4
3R+δ

)
\B(0,R)

Ũ(x̄), ∀ ‖x‖ < 4
3R. [8]
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Finally, we construct the auxiliary function Û(x):

Û(x)− m

4
∥∥x2∥∥ =


Ũ(x), ‖x‖ > 3

2R

α(x)Ũ(x) + (1− α(x))Ṽ (x), 4
3R < ‖x‖ < 3

2R

Ṽ (x), ‖x‖ < 4
3R

, [9]

where α(x) = 1
2 cos

(
36π
17
‖x‖2

R2 −
64π
17

)
+ 1

2 . Here we know that Ũ(x) is m2 -strongly convex and smooth in Rd\B (0, R);

Ṽ (x) is m2 -strongly convex and smooth in Rd \ B
(

0, 4
3R
)
. Hence for 4

3R < ‖x‖ < 3
2R,

∇2
(
Û(x)− m

4
∥∥x2∥∥)

= ∇2Ũ(x) +∇2 ((1− α(x))(Ṽ (x)− Ũ(x))
)

= α(x)∇2Ũ(x) + (1− α(x))∇2Ṽ (x)

−∇2α(x)
(
Ṽ (x)− Ũ(x)

)
− 2∇α(x)

(
∇Ṽ (x)−∇Ũ(x)

)T
� m

2 I−∇2α(x)
(
Ṽ (x)− Ũ(x)

)
− 2∇α(x)

(
∇Ṽ (x)−∇Ũ(x)

)T
.

Note that for 4
3R < ‖x‖ < 3

2R,57 ∥∥∇Ṽ (x)−∇Ũ(x)
∥∥ =

∫ ∥∥∇Ũ(x− y)−∇Ũ(x)
∥∥φ(y)dy ≤ Lδ.58

59

Ṽ (x)− Ũ(x) =
∫ (

Ũ(x− y)− Ũ(x)
)
φ(y)dy ≤ 3

2LRδ.60

Therefore, when 4
3R < ‖x‖ < 3

2R,

∇2
(
Û(x)− 1

4
∥∥x2∥∥) � m

2 I− 3πLδ
R

I− 54π2Lδ

R
I �
(
m

2 − 800Lδ
R

)
I.

Since δ = m

L

R

1600 , ∇
2
(
Û(x)− m

4
∥∥x2
∥∥) is positive semi-definite for 4

3R < ‖x‖ < 3
2R. Hence ∇

2
(
Û(x)− m

4
∥∥x2
∥∥)61

is positive semi-definite on the entire Rd, and Û(x)− m

4
∥∥x2
∥∥ is convex on Rd.62

From Eq. (8), we know that for ‖x‖ ≤ 3
2R,63

inf
x̄∈B

(
0,

3
2R+δ

)
\B(0,R)

Ũ(x̄) ≤ Û(x)− m

4
∥∥x2∥∥ ≤ sup

x̄∈B

(
0,

3
2R+δ

)
\B(0,R)

Ũ(x̄).64

Therefore,
sup
(
Û(x)− U(x)

)
− inf

(
Û(x)− U(x)

)
= sup

(
Û(x)− m

4
∥∥x2∥∥− Ũ(x)

)
− inf

(
Û(x)− m

4
∥∥x2∥∥− Ũ(x)

)

≤ 2

 sup

x̄∈B

(
0,

3
2R+δ

)
\B(0,R)

Ũ(x̄)− inf
x̄∈B

(
0,

3
2R+δ

)
\B(0,R)

Ũ(x̄)



≤ 2

 sup

x̄∈B

(
0,

3
2R+δ

) Ũ(x̄)− inf
x̄∈B

(
0,

3
2R+δ

) Ũ(x̄)

 .
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Since U is L-smooth, Ũ is
(
L+ m

2

)
-smooth and ∇Ũ(0) = 0. Hence65

∣∣Ũ(x)− Ũ(0)−
〈
x,∇Ū(0)

〉∣∣ ≤ (L2 + m

4

)
‖x‖22 .66

So for ∀ ‖x‖ ≤
(3

2R+ δ
)
,67

sup

x̄∈B

(
3
2R+δ

) Ũ(x̄)− inf
x̄∈B

(
3
2R+δ

) Ũ(x̄) ≤ 8LR2.68

Hence69

sup
(
Û(x)− U(x)

)
− inf

(
Û(x)− U(x)

)
≤ 16LR2.70

�71

Lemma 2. For function V defined in Eq. (6), ∀x ∈ B(0, R), inf‖x̄‖=R Ũ(x̄) ≤ V (x) ≤ sup‖x̄‖=R Ũ(x̄).72

Proof of Lemma 2 First, from the definition of V inside B(0, R):

V (x) = inf
{xi}⊂Ω,{

λi

∣∣∑
i
λi=1

}
s.t.,
∑

i
λixi=x

{
l∑
i=1

λiŨ(xi)

}

≤ inf
{xi}⊂∂Ω,{

λi

∣∣∑
i
λi=1

}
s.t.,
∑

i
λixi=x

{
l∑
i=1

λiŨ(xi)

}

≤ sup
‖x̄‖=R

Ũ(x̄), ∀x ∈ B(0, R),

where the first inequality follows from the fact that ∂Ω ⊂ Ω and that any x ∈ B(0, R) can be represented as a convex73

combination of elements of ∂Ω.74

Next we prove that ∀x ∈ B(0, R), V (x) ≥ inf‖x̄‖=R Ũ(x̄). Assume that at x ∈ B(0, R), V (x) is equal to a linear75

combination of {xi} ⊂ Ω = Rd \ B(0, R): V (x) =
∑

i
λiŨ(xi). We hereby prove that for any xj ∈ {xi}, such76

that ‖xj‖ > R, there exists a new convex combination {xi}
⋃
{x̄j} \ {xj} with ‖x̄j‖ = R, such that V (x) ≥77

λ̃jŨ(x̄j) +
∑

i 6=j λ̃iŨ(xi).78

∃λj < λ̄j < 1, such that x̄j defined below is a linear combination of x and xj satisfying ‖x̄j‖ = R:79

x̄j = 1− λ̄j
1− λj

x + λ̄j − λj
1− λj

xj .80

Then x̄j is a convex combination of {xi}:81

x̄j = λ̄jxj +
(

1− λ̄j
1− λj

)(∑
i6=j

λixi

)
,82

and since U is convex on Ω,83

Ũ(x̄j) ≤ λ̄jŨ(xj) +
(

1− λ̄j
1− λj

)(∑
i 6=j

λiŨ(xi)

)
.84

On the other hand, we can reexpress x as a convex combination of {xi}
⋃
{x̄j} \ {xj}:85

x = λj

λ̄j
x̄j +

(
1− λj

λ̄j

1− λ̄j
1− λj

)(∑
i6=j

λixi

)
= λ̃j x̄j +

∑
i 6=j

λ̃ixi,86
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and that

V (x) =
∑
i

λiŨ(xi) ≥
λj

λ̄j
Ũ(x̄j) +

(
1− λj

λ̄j

1− λ̄j
1− λj

)(∑
i 6=j

λiŨ(xi)

)
= λ̃jŨ(x̄j) +

∑
i 6=j

λ̃iŨ(xi).

Using an inductive argument, we obtain that ∀x ∈ B(0, R), V (x) is bigger than or equal to a certain convex combination87

of Ũ(x̄i), where {x̄i} ⊂ ∂Ω. Therefore, ∀x ∈ B(0, R), V (x) ≥ inf‖x̄‖=R Ũ(x̄). �88

For reader’s convenience, we state the Holley-Stroock lemma in the following.89

Lemma 3 (Holley-Stroock). For probability densities p ∝ e−U and p̂ ∝ e−Û , assume p̂ has log-Sobolev constant ρÛ .
Then if U is a bounded perturbation of Û , log-Sobolev constant ρU for p satisfy:

ρU ≥ ρÛe
−|sup(Û(x)−U(x))−inf(Û(x)−U(x))|. [10]

B.2. Proof of ULA Convergence Rate (Eq. (1) of Theorem 1).90

Proof of Eq. (1) of Theorem 1 We first quantify the convergence of a stochastic process to a stationary distribution
p∗ via the Kullback-Leibler divergence (KL-divergence), F (p):

F (p) =
∫
p(x) ln

(
p(x)
p∗(x)

)
dx,

where p(x) is absolutely continuous with respect to p∗(x); and F (p) = ∞ otherwise. Then we use the Pinsker
inequality to bound the total variation norm:

‖p− p∗‖TV ≤
√

2KL(p ‖ p∗) =
√

2F (p),

for two densities p and p∗.91

Here we take the process whose convergence is to be determined as a discretized Langevin dynamics:

X(k+1)h = Xkh −∇U(Xkh)h+
√

2(B(k+1)h −Bhk), [11]

which is equivalent to defining for kh < t ≤ (k + 1)h:

dXt = −∇U(Xkh)dt+
√

2dBt. [12]

For dynamics within kh < t ≤ (k+ 1)h, we have from the Girsanov theorem (18) that Xt admits a density function pt92

with respect to the Lebesgue measure. This density function can also be represented as pt(x) =
∫
pkh(y)p(x, t|y, kh)dy,93

where p(x, t|y, kh) is the solution to the following Kolmogorov forward equation in the weak sense (19):94

∂p(x, t|y, kh)
∂t

= ∇T
(
∇p(x, t|y, kh) +∇U(y)p(x, t|y, kh)

)
,95

where p(x, t|y, kh) and its derivatives are defined via Pt(f) =
∫
f(x)p(x, t|y, kh)dx as a functional over the space of

smooth bounded functions on Rd. It can be further established (7) that the time derivative of the KL-Divergence
along pt is

d

dt
F (pt) = −E

[〈
∇ ln

(
pt(Xt)
p∗(Xt)

)
,∇ ln pt(Xt) +∇U(Xkh)

〉]
,

where the expectation is taken with respect to the joint distribution of Xt and Xkh. Hence

d

dt
F (pt) = −E

[〈
∇ ln

(
pt(Xt)
p∗(Xt)

)
,∇ ln

(
pt(Xt)
p∗(Xt)

)
+ (∇U(Xkh)−∇U(Xt))

〉]
= −E

[∥∥∥∥∇ ln
(
pt(Xt)
p∗(Xt)

)∥∥∥∥2
]

+ E
[〈
∇ ln

(
pt(Xt)
p∗(Xt)

)
,∇U(Xt)−∇U(Xkh)

〉]
.
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For the second term, we use Young’s inequality:

E
[〈
∇ ln

(
pt(Xt)
p∗(Xt)

)
,∇U(Xt)−∇U(Xkh)

〉]
≤ 1

2E

[∥∥∥∥∇ ln
(
pt(Xt)
p∗(Xt)

)∥∥∥∥2
]

+ 1
2E
[
‖∇U(Xt)−∇U(Xkh)‖2

]
≤ 1

2E

[∥∥∥∥∇ ln
(
pt(Xt)
p∗(Xt)

)∥∥∥∥2
]

+ L2

2 E
[
‖Xt −Xkh‖2

]
.

Now we bound E
[
‖Xt −Xkh‖2

]
using Lipschitz smoothness of U (define τ = t− kh ∈ (0, h]):

E
[
‖Xt −Xkh‖2

]
≤ E

[∥∥−∇U(Xkh)τ +
√

2(B(k+1)h −Bhk)
∥∥2
]

≤ Ex∼pkh

[
‖∇U(x)‖2

]
τ2 + 2dτ

≤ Ex∼pkh

[
‖x‖2

]
L2τ2 + 2dτ.

Therefore, plugging in the bounds and using the log-Sobolev inequality proved in Proposition 1, we get for kh < t ≤
(k + 1)h:

d

dt
F (pt)

≤ −1
2E

[∥∥∥∥∇ ln
(
pt(Xt)
p∗(Xt)

)∥∥∥∥2
]

+ L4τ2

2 Ex∼pkh

[
‖x‖2

]
+ dL2τ

= −1
2Ex∼pt

[∥∥∥∥∇ ln
(
pt(x)
p∗(x)

)∥∥∥∥2
]

+ L4τ2

2 Ex∼pkh

[
‖x‖2

]
+ dL2τ

≤ −ρUF (pt) + L4τ2

2 Ex∼pkh

[
‖x‖2

]
+ dL2τ. [13]

From Lemma 5, we know that Ex∼p0

[
‖x‖22

]
= d

L
≤ 16d

ρU
ln 2L
m

+ 512
ρU

L2

m2LR
2. Combined with Lemma 4, we obtain

that when h ≤ 1
4
ρU
L2 , Ex∼pkh

[
‖x‖22

]
≤ 16d

ρU
ln 2L
m

+ 512
ρU

L2

m2LR
2 for any k ∈ N+. Therefore, for h ≤ 1

4
ρU
L2 ,

d

dt
F (pt) ≤ −ρU

(
F (pt)− 8h2 L

4

ρ2
U

d ln 2L
m
− 256h2ρU

L4

ρ2
U

L2

m2LR
2 − hL

2

ρU
d

)
.

Using Gronwall’s inequality,

F (p(k+1)h)− 8h2 L
4

ρ2
U

d ln 2L
m
− 256h2ρU

L4

ρ2
U

L2

m2LR
2 − hL

2

ρU
d

≤ e−ρUh

(
F (pkh)− 8h2 L

4

ρ2
U

d ln 2L
m
− 256h2 L

4

ρ2
U

L2

m2LR
2 − hL

2

ρU
d

)
.

Therefore,

F (pkh)− 8h2 L
4

ρ2
U

d ln 2L
m
− 256h2 L

4

ρ2
U

L2

m2LR
2 − hL

2

ρU
d

≤ e−ρUhk

(
F (p0)− 8h2 L

4

ρ2
U

d ln 2L
m
− 256h2 L

4

ρ2
U

L2

m2LR
2 − hL

2

ρU
d

)
+ 8h2 L

4

ρ2
U

d ln 2L
m

+ 256h2 L
4

ρ2
U

L2

m2LR
2 + h

L2

ρU
d

≤ e−ρUhkF (p0) + 8h2 L
4

ρ2
U

d ln 2L
m

+ 256h2 L
4

ρ2
U

L2

m2LR
2 + h

L2

ρU
d.
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To make F (pkh) < ε2, we take:

h = ρU
4L2 min

 ε2

d
,

√√√√ ε2

2d ln 2L
m

+ 64 L
2

m2LR
2

 = O
(
e−16LR2 m

L2 ·min
{
ε2

d
,
m

L

ε√
LR2

})
. [14]

Therefore, combining Eq. (14) with Lemma 5, we know that whenever

k ≥ O
(
e32LR2 L2

m2 ln
(
F (p0)
ε2

)
·max

{
d

ε2
,
L

m

√
LR2

ε

})
= O

(
e32LR2 L2

m2 ln
(
d

ε2

)
·max

{
d

ε2
,
L

m

√
LR2

ε

})
, [15]

F (pkh) < 1
2 ε

2. Using Pinsker inequality, we obtain

‖pkh − p∗‖TV ≤
√

2F (pkh) ≤ ε.

Focusing on the dimension dependency, we obtain that the computation complexity scales as96

k = O
(
e32LR2 L2

m2
d

ε2
ln
(
F (p0)
ε2

))
.97

�98

Lemma 4. For pt following Eq. (12), if Ex∼p0

[
‖x‖22

]
≤ 16d

ρU
ln 2L
m

+ 512
ρU

L2

m2LR
2, and h ≤ 1

4
ρU
L2 , then for all k ∈ N+,99

Ex∼pkh

[
‖x‖22

]
≤ 16d

ρU
ln 2L
m

+ 512
ρU

L2

m2LR
2.100

101

Lemma 5. For102

p0(x) =
(
L

2π

)d/2
exp
(
−L2 ||x||

2
)

103

and p∗ following Assumptions 1–3,

F (p0) = KL(p0 ‖ p∗) =
∫
p0(x) ln

(
p0(x)
p∗(x)

)
dx ≤ d

2 ln 2L
m

+ 32 L
2

m2LR
2; [16]

Ex∼p0

[
‖x‖22

]
= d

L
; [17]

and

Ex∼p∗
[
‖x‖22

]
≤ 4d
ρU

ln 2L
m

+ 128
ρU

L2

m2LR
2. [18]

104

B.3. Supporting Proofs for Eq. (1) of Theorem 1: Bounded Variance and F (p0).105

Proof of Lemma 4 Consider proof by induction. First assume that for some k ≥ 0, for all t = 0, h, · · · , kh,

Ex∼pt

[
‖x‖22

]
≤ 16d

ρU
ln 2L
m

+ 512
ρU

L2

m2LR
2. Then consider bounding Ex∼pt

[
‖x‖22

]
for kh < t ≤ (k + 1)h, where pt

follows Eq. (12):

dXt = −∇U(Xkh)dt+
√

2dBt. [19]

To bound Ext∼pt

[
‖xt‖22

]
, we choose an auxiliary random variable x∗ following the law of p∗ and couples optimally

with xt ∼ pt: (xt,x∗) ∼ γ ∈ Γopt (pt, p∗). Then using Young’s inequality, and the bound for Ex∗∼p∗
[
‖x∗‖22

]
Ext∼pt

[
‖xt‖22

]
= E(xt,x∗)∼γ

[
‖x∗ + (xt − x∗)‖22

]
≤ 2Ex∗∼p∗

[
‖x∗‖22

]
+ 2E(xt,x∗)∼γ

[
‖xt − x∗‖22

]
= 8d
ρU

ln 2L
m

+ 256
ρU

L2

m2LR
2 + 2W 2

2 (pt, p∗) . [20]

8



Using the generalized Talagrand inequality (20) for Lipschitz smooth p∗ with log-Sobolev constant ρU ,

W 2
2 (pt, p∗) ≤

2
ρU

KL(pt ‖ p∗). [21]

On the other hand, we know from Eq. (13) that for F (pt) = KL(pt ‖ p∗) (denote τ = t− kh),

d

dt
F (pt) ≤ −ρUF (pt) + L4τ2

2 Ex∼pkh

[
‖x‖2

]
+ dL2τ.

Plugging in the step size τ ≤ h ≤ 1
4
ρU
L2 and the inductive assumption that Ex∼pkh

[
‖x‖2

]
≤ 16d

ρU
ln 2L
m

+ 512
ρU

L2

m2LR
2,

we obtain:

d

dt
F (pt) ≤ −ρUF (pt) + ρU

4 d ln 2L
m

+ 8ρU
L2

m2LR
2 + ρU

4 d.

Without loss of generality, assume that L ≥ 2m. Then

d

dt
F (pt) ≤ −ρU

(
F (pt)−

d

2 ln 2L
m
− 8 L

2

m2LR
2
)
.

Using Gronwall’s inequality, we obtain:

F (p(k+1)h)− d

2 ln 2L
m
− 8 L

2

m2LR
2 ≤ e−ρUh

(
F (pkh)− d

2 ln 2L
m
− 8 L

2

m2LR
2
)

≤ e−ρUh(k+1)
(
F (p0)− d

2 ln 2L
m
− 8 L

2

m2LR
2
)

≤ e−ρUh(k+1)F (p0)
≤ F (p0).

Therefore, combining with Eq. (16) in Lemma 5,

F (p(k+1)h) ≤ F (p0) + d

2 ln 2L
m

+ 8 L
2

m2LR
2

≤ d ln 2L
m

+ 40 L
2

m2LR
2. [22]

Plugging Eq. (22) into Eq. (20) and Eq. (21), we finish the inductive proof:106

Ex∼p(k+1)h

[
‖x‖22

]
≤ 16d

ρU
ln 2L
m

+ 512
ρU

L2

m2LR
2.107

�108

Proof of Eq. (16) of Lemma 5 We want to bound F (p0) =
∫
p0(x) ln

(
p0(x)
p∗(x)

)
dx, where p∗(x) ∝ e−U(x) and109

p0 =
(
L

2π

)d/2
exp
(
−L2 ||x||

2
)
. First define Ū(x) = U(x)− U(0). Then110

p∗(x) = exp
(
−Ū(x)

)/∫
exp
(
−Ū(x)

)
dx.111

By Assumptions 1 and 3, Ū(x) ≤ L

2 ‖x‖
2, ∀x ∈ Rd. We also prove in the following that Ū(x) ≥ m

4 ‖x‖
2, ∀x ∈112

Rd \ B
(

0, 8L
m
R
)
; and Ū(x) ≥ −L2 ‖x‖

2, ∀x ∈ B
(

0, 8L
m
R
)
.113

The latter case follows directly from Assumptions 1 and 3. For the former case, ‖x‖ ≥ 8L
m
R. Then define y = R

‖x‖x.114

Since ‖y‖ = R,115

〈∇U(y),y〉 ≥ −LR2.116

9



Because any convex combination of x and y belongs to the set Rd \ B(0, R), where U is m-strongly convex,

U(x)− U(y) ≥ 〈∇U(y),x− y〉+ m

2 ‖x− y‖2

=
(
‖x‖
R
− 1
)
〈∇U(y),y〉+ m

2

(
‖x‖
R
− 1
)2

≥ −
(
‖x‖
R
− 1
)
LR2 + m

2

(
‖x‖
R
− 1
)2

≥ m

4 ‖x‖
2 + LR2,

since ‖x‖ ≥ 8L
m
R. Again, using Assumptions 1 and 3, U(y) ≥ −L2R

2, which leads to the result that U(x) ≥ m

4 ‖x‖
2.117

Therefore, U(x) ≥ m

4 ‖x‖
2 − 32 L

2

m2LR
2 and

− ln p∗(x) = Ū(x) + ln
∫

exp
(
−Ū(x)

)
dx

≤ L

2 ‖x‖
2 + ln

∫
exp
(
−m4 ‖x‖

2 + 32 L
2

m2LR
2
)

dx

= L

2 ‖x‖
2 + d

2 ln 4π
m

+ 32 L
2

m2LR
2.

Hence

−
∫
p0(x) ln p∗(x)dx ≤ 32 L

2

m2LR
2 + d

2 ln 4π
m

+ d

2 .

We can also calculate that ∫
p0(x) ln p0(x)dx = −d2 ln 2π

L
− d

2 .

Therefore,

F (p0) =
∫
p0(x) ln p0(x)dx−

∫
p0(x) ln p∗(x)dx

≤ 32 L
2

m2LR
2 + d

2 ln 2L
m
.

�118

Proof of Eq. (17) of Lemma 5 It is straightforward to calculate that Ep0

[
‖x‖22

]
= trace

( 1
L
I
)

= d

L
.119

It is worth noting that the choice of the initial condition p0 can be flexible. For example, if we choose x0 ∼ N
(

0, 1
m

I
)
,120

then F (p0) ≤ 32 L
2

m2LR
2 + d

2 ·
L

m
and Ep0

[
‖x‖22

]
= d

m
≤ 48R2 + 4d

m
(resulting in merely an extra log L

m
term in the121

computation complexity). �122

Proof of Eq. (18) of Lemma 5 To bound Ex∗∼p∗
[
‖x∗‖22

]
, we choose an auxiliary random variable x0 following the

law of p0 and couples optimally with x∗ ∼ p∗: (x∗,x0) ∼ γ ∈ Γopt (p∗, p0). Then using Young’s inequality,

Ex∗∼p∗
[
‖x∗‖22

]
= E(x∗,x0)∼γ

[
‖x0 + (x∗ − x0)‖22

]
≤ 2Ex0∼p0

[
‖x0‖22

]
+ 2E(x∗,x0)∼γ

[
‖x∗ − x0‖22

]
= 2d

L
+ 2W 2

2 (p∗, p0) .

Using the generalized Talagrand inequality (20) for Lipschitz smooth p∗ with log-Sobolev constant ρU ,123

W 2
2 (p∗, p0) ≤ 2

ρU
KL(p0 ‖ p∗).124

10



On the other hand, we know from Eq. (16) that125

KL(p0 ‖ p∗) ≤
d

2 ln 2L
m

+ 32 L
2

m2LR
2.126

Therefore,

Ex∗∼p∗
[
‖x∗‖22

]
≤ 2d

L
+ 2d
ρU

ln 2L
m

+ 128
ρU

L2

m2LR
2

≤ 4d
ρU

ln 2L
m

+ 128
ρU

L2

m2LR
2.

�127

B.4. Proof of MALA Convergence Rate (Eq. (2) of Theorem 1).128

Proof of Eq. (2) Our proof of Theorem 2 is based on the following two lemmas. The first one characterizes the129

convergence of MALA under a warm starting distribution. The second one shows that the initial distribution130

N
(
0, 1

2L Id
)
is O(ed)-warm. Let us first define the warm start.131

Definition 6 (Warm start). Given a scalar θ > 0, an initial distribution with density p0 is said to be θ-warm with
respect to the stationary distribution with density p∗ if

∀x ∈ Rd, p
0(x)
p∗(x) ≤ θ.

Lemma 7. Assume p∗(x) ∝ e−U(x) where U satisfies the local nonconvexity Assumptions 1–3. Then the MALA with
a θ-warm distribution with density p0 and error tolerance ε ∈ (0, 1), satisfies

τ(ε, p0) ≤ O
(
e32LR2

m
· ln
(2θ
ε

)
·max

{
r
(2θ
ε

)
κ3/2d1/2, κd

})
. [23]

Lemma 8. The initial distribution N
(
0, 1

L
Id
)
is e16LR2 (2κ)d/2-warm with respect to the target distribution p∗.132

Theorem 2 directly follows by combining Lemma 7 and Lemma 8. �133

Proof of Lemma 7 At a high level, the proof closely follows the proof of Theorem 1 in (8). We replace their Lemma134

1 with Lemma 12 to establish that for an appropriate choice of stepsize, the MALA updates have large overlap inside135

the high probability ball. Lemma 11 allows us to obtain a lower bound on the conductance. Finally applying the136

Lovasz lemma, we obtain convergence guarantees.137

In order to start the proof, we first introduce conductance related notions for a general Markov chain. Consider an
ergodic Markov chain defined by a transition operator T , and let Π denote its stationary distribution. We define the
ergodic flow from A to its complement Ac

φ(A) =
∫
A

Tu(Ac)p∗(u)du.

For each scalar s ∈ (0, 1/2), we define the s-conductance

Φs = inf
Π(A)∈(s,1−s)

φ(A)
min {Π(A)− s,Π(Ac)− s} .

The notation Tu is the shorthand for the distribution T (δu) obtained by applying the transition operator to a dirac138

distribution concentrated on u.139

For a Markov chain with θ-warm start initial distribution Π0, having s-conductance Φs, Lovász and Simonovits (21)
proved its convergence∥∥T k(Π0)−Π

∥∥
TV
≤ θs+ θ

(
1− Φ2

s

2

)k
≤ θs+ θe−kΦ2

s/2 for any s ∈ (0, 1
2). [24]

We will apply this result for s small by cutting off the probability mass outside a Euclidean ball. We define radius

r(s) = 2 +
√

2e8LR2
ln0.5 (d/s) + 7R/

√
d/m, [25]

11



and the Euclidean ball

Rs = B

(
0, r(s)

√
d

m

)
. [26]

We define the appropriate stepsize.

w̃(s, γ) = min
{ √

γ

8
√

2r(s)

√
m

L
√
dL

,
γ

96αγ
1
Ld

,
γ2/3

26(αγr2(s))1/3
1
L

(
m

Ld2

)1/3
}
, [27]

where αγ = 1 + 2
√

log(16/γ) + 2 log(16/γ). [28]

Applying Lemma 12 with h = w̃(s, γ), for x,y ∈ Rs and ‖x− y‖2 ≤ ∆ = γ
√
h/4, we obtain

‖Tx − Ty‖TV ≤ ‖Tx − Px‖TV + ‖Px − Py‖TV + ‖Py − Ty‖TV

≤
√

2γ
4 + γ

8 +
√

2γ
4

≤ γ. [29]

Applying Lemma 11 with K = Rs in combination with Lemma 9, Lemma 10 and Lemma 12, we obtain that for
stepsize h ∈ (0, w̃(s, γ)], the s-conductance is lower bounded.

Φs ≥
(1− γ) · (1− s)2 · γ

√
h · ρU

256 .

Now we can conclude by making appropriate choice of s and γ. Letting s = ε

2θ and γ = 1
2 , we obtain

Φs ≥ O(ρU ·
√
h).

Plugging this conductance expression into the result of Lovász and Simonovits Eq. (24), with Π0 the distribution with
density p0 and Π the stationary distribution with density p∗, we obtain that

∥∥T k(Π0)−Π
∥∥

TV
≤ θ ε2θ + θe−kΦ2

s/2 ≤ ε, for k ≥ O
(

1
ρ2
Uh
· ln
(2θ
ε

))
,

where

ρU ≥
m

2 e
−16LR2

, and h = O
(

min
{

1
L · r( 2θ

ε
)κ1/2d1/2

,
1
Ld

})
.

This concludes the proof of this lemma. �140

Lemma 9. For any s ∈ (0, 1
2 ), we have Π(Rs) ≥ 1− s.141

Lemma 10. If the density p∗ satisfies the log-Sobolev inequality with constant ρU , then it also satisfies the following
isoperimetric inequality with constant ρU : For any A and B open disjoint subsets of Rd, C = Rd \ (A ∪B), Π being
the probability measure for p∗, we have

Π(A) ≥ ρU · d(A,B)Π(A)Π(B), [30]

where d(A,B) = minx∈A,y∈B ‖x− y‖2, is the set distance with Euclidean metric on Rd.142

Lemma 11. Let K be a convex set such that ‖Tx − Ty‖TV ≤ γ whenever x,y ∈ K and ‖x− y‖2 ≤ ∆. Π satisfies the
partition type isoperimetric inequality Eq. (30) with constant ρ. Then for any measurable partition A1 and A2 of Rd,
we have ∫

A1

Tu(A2)p∗(u)du ≥ ρ

8 min
{

1, ∆ · (1− γ) ·Π2(K)
8

}
min {Π(A1 ∩ K),Π(A2 ∩ K)} . [31]
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Lemma 12. For any step size h ∈
(
0, 1

L

]
, the MALA proposal distribution satisfies the bound

sup
x,y∈Rd

x 6=y

∥∥∥PMALA(h)
x − PMALA(h)

y

∥∥∥
TV

‖x− y‖2
≤
√

2
h
. [32a]

Moreover, given scalars s ∈ (0, 1/2) and γ ∈ (0, 1), then the MALA proposal distribution for any stepsize h ∈
(
0, w̃(s, γ)

]
satisfies the bound

sup
x∈Rs

∥∥PMALA(h)
x − T MALA(h)

x
∥∥

TV
≤ γ

8 , [32b]

where the truncated ball Rs was defined in Eq. (26).143

Remark 2. It can be seen that the constraint on the step size h originates from Eq. (32b), where the difference144

between the proposal and transition distributions are bounded by the acceptance rate (see proof of Eq. (32b)). The145

resulting step size scaling with respect to the dimension d is h = w̃(s, γ) = O(d−1) under our current assumption. In a146

celebrated work (22), with extra assumptions on higher order smoothness and decomposability of the target distribution147

p∗, the log-acceptance rate was expanded to higher orders and a much better scaling of h = O(d−1/3) was obtained. It148

would be of great theoretical interest to understand whether such scaling can be achieved without the decomposability149

assumption on p∗.150

B.5. Supporting Proofs for Eq. (2) of Theorem 1.151

Proof of Lemma 8 The starting distribution N
(
0, 1

L
Id
)
has density

p0(x) =
(
L

2π

)d/2
e
−
L ‖x‖2

2 .

Taking the ratio with respect to the stationary distribution, we have

p0(x)
p∗(x) = p0(x)

1∫
e−U(x)dx

e−U(x)

≤ e16LR2
(2κ)d/2 · exp

(
−L ‖x‖2 /2 + U(x)

)
≤ e16LR2

(2κ)d/2 .

The first inequality is because, according to Lemma 1, we have

∫
e−U(x)dx ≤ e16LR2

·
∫
e
−
m ‖x‖2

4 dx = e16LR2
(
m

4π

)d/2
.

�152

Proof of Lemma 9 This lemma relies on the concentration of the stationary distribution p∗ around 0. The153

concentration follows from the log-Sobolev constant shown in Proposition 1. The following lemma is a classical way to154

obtain concentration from the log-Sobolev inequality is based on Herbst argument (e.g. see Section 2.3 in (23)).155

Lemma 13. If Π satisfies a log-Sobolev inequality with constant ρ then every 1-Lipschitz function f is integrable with
respect to Π and satisfies the concentration inequality

Px∼Π [f(x) > EΠ [f ] + t] ≤ e−ρt
2/2.

Applying this lemma with f being the projection to each coordinate and using union bound, we obtain that

Px∼Π

[
‖x− E[x]‖22 >

2td
ρU

]
≤ de−t.

13



We define B1 = B
(
E[x],

√
2 log( d

s
) d
ρU

)
. Taking t = log( d

s
), we obtain that

Π(B1) ≥ 1− s.

Using the results proved in Lemma 4, we can also turn this concentration around the mean to the concentration
around 0. According to Lemma 4, we have

Ex∼Π ‖x‖22 ≤ 48R2 + 4d
m
.

Using Jensen’s inequality, we obtain

‖Ex∼Π[x]‖2 ≤ Ex∼Π ‖x‖2 ≤
√

Ex∼Π ‖x‖22 ≤
√

48R2 + 4d
m
.

We define B2 = B
(

0,
√

48R2 + 4d
m

+
√

2 log( d
s
) d
ρU

)
. We deduce that

B1 ⊂ B2 ⊂ Rs.

As a result, we obtain Π(Rs) ≥ Π(B1) ≥ 1− s as claimed. �156

Proof of Lemma 10 Lemma 10 shows that log-Sobolev inequality implies isoperimetric inequality with constants
of the same order. It is pretty standard. Since we can’t find a complete proof in the literature, we provide it for
completeness. p∗ satisfies the following log-Sobolev inequality, for any smooth g : Rd → R.

2ρU
[∫

Rd

g ln gdΠ−
∫
Rd

gdΠ · ln
(∫

Rd

gdΠ
)]
≤
∫
Rd

‖∇g‖22
g

dΠ. [33]

where

dΠ(x) = p∗(x)dx.

Replacing g with g2 in Eq. (33), for g : Rd 7→ R, we obtain the equivalent form

2ρUEnt
(
g2) ≤ ∫

Rd

‖∇g‖22 dΠ,

where

Entp∗(g2) =
[∫

Rd

g2 ln g2dΠ−
∫
Rd

g2dΠ · ln
(∫

Rd

g2dΠ
)]

.

It is well known that the log-Sobolev inequality implies the following Poincaré inequality with the same constant (e.g.
(24)). For any smooth g : Rd → R, we have

ρUVarp∗(g) ≤
∫
Rd

‖∇g‖22 dΠ, [34]

where

Varp∗(g) =
∫
Rd

g2dΠ−
(∫

Rd

gdΠ
)2

.

This implication is based on the fact that the gradient operator is invariant to translation (i.e. for c ∈ R, ∇(f+c) = ∇f)
and

Ent
(
(f + c)2)→ 2Var(f), as c→∞.

Next, we show that the isoperimetric constant can by lower bounded by the Poincaré constant. We denote Ψ the
isoperimetric constant defined as

Ψ = sup
A⊂Rd, open

Π+(∂A)
min Π(A), 1−Π(A) , [35]
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where Π+(∂A) = limδ→0
Π(A+δ)−Π(A)

δ
. Taking a sequence of smooth {gk}k=1,...∞ with limit the indicator function of

A in equation Eq. (34), we obtain†

Ψ ≥ ρU .

Finally, it is easy to show that the infinitesimal version of the isoperimetric inequality in Eq. (35) is equivalent
to the partition version (see e.g. (26) Proposition 11.1 and (27)). Let A and B be open disjoint subsets of Rd,
C = Rd \ (A ∪B), then

Π(C) ≥ ρU · d(A,B)Π(A)Π(B). [36]

�157

In the following, we provide useful lemmas for proving Lemma 7.158

Proof of Lemma 11 The proof of this lemma follows directly from the proof of Lemma 2 in (8). The main difference159

in the setting is that the target distribution is no longer log-concave, however, the proof follows because the log-160

concavity was never used in the proof of this lemma. It is sufficient to replace the isoperimetric inequality with ours in161

Eq. (36). �162

Proof of Lemma 12 We prove the two claims in this Lemma separately. In order to simplify notation, we drop the163

superscript from our notations of distributions T MALA(h)
x and PMALA(h)

x . �164

Proof of Eq. (32a) We first apply the Pinsker inequality (28) to bound the total variation distance via KL-divergence.

‖Px − Py‖TV ≤
√

2KL(Px ‖ Py).

Since our proposals before applying Metropolis filters follow multivariate normal distributions, we obtain closed form
expressions for the KL divergence.

‖Px − Py‖TV ≤
√

2KL(Px ‖ Py)

=
‖Πx −Πy‖2√

2h

=
‖(x− h∇U(x))− (y− h∇U(y))‖2√

2h
.

Here we use the smoothness without using the convexity to bound the last term. We have

‖(x− h∇U(x))− (y− h∇U(y))‖2 =
∥∥∥∥∫ 1

0

[
Id − h∇2U(x + t(x− y))

]
(x− y)dt

∥∥∥∥
2

≤
∫ 1

0

∥∥[Id − h∇2U(x + t(x− y))
]

(x− y)
∥∥

2
dt

≤ sup
t∈[0,1]

|||Id − h∇2U(x + t(x− y))|||2 ‖x− y‖2

≤ 2 ‖x− y‖2 .

The last inequality follows from the fact that ∇2U(z) � LId for all z ∈ Rd. Note that we lose a 2 factor without using165

the convexity. �166

Proof of Eq. (32b) We denote px the density corresponding to the proposal distribution Px = N (x− h∇U(x), 2hId).
We have

‖Px − Tx‖TV = 1
2

(
Tx ({x}) +

∫
Rd

px(z)dz−
∫
Rd

min
{

1, p
∗(z) · pz(x)
p∗(x) · px(z)

}
px(z)dz

)
= 1

2

(
2− 2

∫
Rd

min
{

1, p
∗(z) · pz(x)
p∗(x) · px(z)

}
px(z)dz

)
≤ 1− Ez∼Px

[
min

{
1, p

∗(z) · pz(x)
p∗(x) · px(z)

}]
.

†Note that Buser’s inequality (25) (Theorem 1.2), which would give h ≥ (ρU/10)1/2 , does not directly apply here because of the possible negative curvature.
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Applying Markov inequality, we know that

Ez∼Px

[
min

{
1, p

∗(z) · pz(x)
p∗(x) · px(z)

}]
≥ αP

[
p∗(z) · pz(x)
p∗(x) · px(z) ≥ α

]
for all α ∈ (0, 1].

It is sufficient to derive a high probability lower bound for the ratio p∗(z) · pz(x)
p∗(x) · px(z) . Plugging the fact that p∗(x) ∝

exp(−U(x)) and px(z) ∝ exp
(
−‖x− h∇U(x)− z‖22 /(4h)

)
, we have

p∗(z) · pz(x)
p∗(x) · px(z) = exp

(
4h (U(x)− U(z)) + ‖z− x + h∇U(x)‖22 − ‖x− z + h∇U(z)‖22

4h

)
.

We then lower bound the term in the numerator of the exponent, without using the convexity of U .

4h (U(x)− U(z)) + ‖z− x + h∇U(x)‖22 − ‖x− z + h∇U(z)‖22
= 2h (U(x)− U(z)− (x− z)>∇U(x))︸ ︷︷ ︸

M1

+2h (U(x)− U(z)− (x− z)>∇U(z))︸ ︷︷ ︸
M2

+h2 (‖∇U(x)‖22 − ‖∇U(z)‖22
)︸ ︷︷ ︸

M3

.

Using the fact that U is smooth, we have

M1 ≥ −
L

2 ‖x− z‖22 and M2 ≥ −
L

2 ‖x− z‖22 .

Again using the smoothness, we have

M3 = ‖∇U(x)‖22 − ‖∇U(z)‖22 = 〈∇U(x) +∇U(z),∇U(x)−∇U(z)〉 ≥ −
(
2 ‖∇U(x)‖2 + L ‖x− z‖2

)
L ‖x− z‖2 .

Combining the bounds M1,M2,M3, we have established that

p∗(z) · pz(x)
p∗(x) · px(z) ≥ exp

(
−1

2L ‖x− z‖22 −
h

4
(
2L ‖x− z‖2 ‖∇U(x)‖2 + L2 ‖x− z‖22

))︸ ︷︷ ︸
T

.

In addition, using the fact that z is a proposal, we have

‖x− z‖2 =
∥∥h∇U(x) +

√
2hξ
∥∥

2
≤ h ‖f(x)‖2 +

√
2h ‖ξ‖2 .

Simplifying and using the fact that Lh ≤ 1, we obtain

T ≥ −2Lh2 ‖∇U(x)‖22 − 3Lh ‖ξ‖22 − Lh
√
h ‖∇U(x)‖2 ‖ξ‖2 .

Since x ∈ R, we can bound the gradient roughly

‖∇U(x)‖2 = ‖∇U(x)−∇U(x∗)‖2 ≤ L ‖x− x∗‖2 ≤ L
√

d

m
r(s) =: Ds.

‖ξ‖22 is bounded via standard χ2-variable tail bound. We have

P
[
‖ξ‖22 ≤ dαε

]
≥ 1− ε

16 ,

for αε = 1 + 2
√

log(16/ε) + 2 log(16/ε). The choice of w̃ guarantees that for h ≤ w̃, we have

Lh2D2
s ≤

ε

128 , Lhdαε ≤
ε

96 , and Lh
√
hDs

√
dαε ≤

ε

64 .

Combining all these bound, we obtain

P
[
T ≥ − ε

16

]
≥ 1− ε

16 .

Using the fact that e−ε/16 ≥ 1− ε/16, we have

Ez∼Px

[
1, p

∗(z) · pz(x)
p∗(x) · px(z)

]
≥ 1− ε

8 , for any ε ∈ (0, 1), and h ≤ w̃.

�167
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C. Proofs for Optimization. We denote ∇̃U(x) = {∇nU(x)|n ∈ N} as shorthand for all n-th order derivative at point
x. We consider iterative algorithm class A∞ operating on a function U : Rd → R whose iterates has following form:

xt = gt(ζ, ∇̃U(x0), . . . , ∇̃U(xt−1))

where gt is a mapping to Rd. ζ is a random variable sampled from uniform distribuion over [0, 1] (indepedent of168

U), and it contains infinitely many random bits. We note standard optimization algorithms (either deterministic or169

randomized) which utilize gradient information or any p-th order information all fall in to this class of algorithms A∞.170

Theorem 2 (Lower bound for optimization). For any R > 0, L ≥ 2m > 0, probability 0 < p ≤ 1, and ε ≤ LR2

64 (2π2 + π) ,171

there exists an objective function U satisfying the local nonconvexity Assumptions 1–3 with constants L, m, and R,172

such that any algorithm in A∞ requires at least

⌊(
R

4

√
L

2π2 + π
· 1√

ε
− 1

2

)d⌋
= Ω

(
p ·
(
LR2/ε

)d/2) iterations to173

guarantee P (minτ≤t |U(xτ )− U(x∗)| < ε) ≥ p.174

C.1. Proof of Theorem 2. We constructively prove Theorem 2 by defining such a U(x) in what follows. We first make use175

of the following lemma about packing numbers. Again we denote B(0, R) as the closed ball of radius R centered at 0.176

Lemma 14 (Packing number). For R > r > 0, denote η =
⌊(

R− r
2r

)d⌋
. Then there exists set Xη = {x1, · · ·xη},177

s.t.
⋃η

i=1 B(xi, r) ⊂ B(0, R), and B(xi, r)
⋂

B(xj , r) = ∅, ∀i 6= j.178

As shown in Fig. S1, this Lemma 14 guarantees the existence of the set {x1, · · ·xη} so that η balls of radius r centered179

at xη are contained inside the larger ball of radius R without intersecting with each other.180

We hereby construct U(x) that gives the lower bound. If ε ≥ LR2

36(2π2 + π) , then181

T ≥ 1 ≥ p ·

(R
4

√
L

2π2 + π
· 1√

ε
− 1

2

)d , ∀0 < p ≤ 1.182

Otherwise, take r =
√

(2π2 + π)ε/L in Lemma 14. Then we have the r-packing number inside B(0, R/2) to be183

η =

⌊(
R/2− r

2r

)d⌋
=

(R
4

√
L

2π2 + π
· 1√

ε
− 1

2

)d ≥ 1,184

such that there exists set Xη = {x1, · · ·xη} satisfying
⋃η

i=1 B(xi, r) ⊂ B(0, R) and ∀i 6= j,B(xi, r)
⋂

B(xj , r) = ∅.
Choose i∗ ∈ {1, · · · , η} uniformly at random. Let

U(x) =


Lr2

4π2 + 2π cos
(
π

r2

(
||x− xi∗ ||22 − r2))− Lr2

4π2 + 2π , ||x− xi∗ ||2 ≤ r
0, ||x− xi∗ ||2 > r, ||x||2 ≤ R/2
m (||x||2 −R/2)2 , ||x||2 > R/2.

[37]

Lemma 15 (Lipschitz smoothness and strong convexity). Let L ≥ 2m. Then U(x) is L-Lipschitz smooth and when185

||x||2 > 2R, U(x) is m-strongly convex.186

Now we prove that ∀ 0 < p ≤ 1, for any algorithm that inputs {U(x),∇U(x), · · · ,∇nU(x)},∀n ∈ N , ∀ ε <187

LR2

36(2π2 + π) , at least T ≥ p · η steps are required so that P
(
|U(xT )− U(x∗)| < ε

)
≥ p.188

Note that for any xt 6∈ B(xi∗ , r), |U(xt)−U(x∗)| ≥ Lr2

2π2 + π
= ε. Therefore, probability that U(xt) is ε close to U(x∗)

is smaller than the probability of xt ∈ B(xi∗ , r):

P (|U(xt)− U(x∗)| < ε) ≤ P (xt ∈ B(xi∗ , r)) [38]

≤ P

(
xt ∈ B(xi∗ , r)

∣∣∣∣ xt ∈
η⋃
j=1

B(xj , r)

)
.

17



𝐱2
𝐱3

𝐱1

𝐱𝜂

𝑟

𝑅

𝐱𝑖∗

Fig. S1. A depiction of U(x) inside B(0, R).
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We first assume that ∀t ≤ T,xt ∈
⋃η

j=1 B(xj , r), then prove that breaking this assumption cannot obtain a better rate189

of convergence.190

1. Assume that ∀t ≤ T,xt ∈
⋃η

j=1 B(xj , r). From the definition of U(x), Eq. (37), we know that ∀j ∈ {1, · · · , η}, j 6=191

i∗, ∀x ∈ B(xj , r), U(x) = 0, ∇U(x) = 0, · · · , ∇nU(x) = 0. Hence xt ∈ B(xj , r), j 6= i∗ only contains information192

that i∗ ∈ {1, · · · η} \ {j}. Since i is chosen uniformly at random from {1, · · · , η}, for T ≤ η193

P

xT 6∈ B(xi∗ , r)

∣∣∣∣∣ ∀t < T,xt ∈
η⋃

j=1
j 6=i∗

B(xj , r)

 ≥ η − T
η − (T − 1) .194

Therefore,

P

(
{x1, · · · ,xT }

⋂
B(xi∗ , r) = ∅

∣∣∣∣ ∀t ≤ T,xt ∈ η⋃
j=1

B(xj , r)

)

≥ η − 1
η

η − 2
η − 1 · · ·

η − T
η − (T − 1) = η − T

η
. [39]

This implies: the probability that first passage time into set B(xi∗ , r) is less than or equal to T is:

P

(
{x1, · · · ,xT }

⋂
B(xi∗ , r) 6= ∅

∣∣∣∣ ∀t ≤ T,xt ∈ η⋃
j=1

B(xj , r)

)

= 1− P

(
{x1, · · · ,xT }

⋂
B(xi∗ , r) = ∅

∣∣∣∣ ∀t ≤ T,xt ∈ η⋃
j=1

B(xj , r)

)

≤ 1− η − T
η

= T

η
. [40]

Therefore,

p ≤ P (|U(xT )− U(x∗)| < ε)

≤ P

(
xT ∈ B(xi∗ , r)

∣∣∣∣ xT ∈
η⋃
j=1

B(xj , r)

)

≤ P

(
{x1, · · · ,xT }

⋂
B(xi∗ , r) 6= ∅

∣∣∣ ∀t ≤ T,xt ∈ η⋃
j=1

B(xj , r)

)

≤ T

η
, [41]

195
T ≥ p · η.196

2. Suppose there exists an algorithm that output {x1, · · · ,xT }, where ∃ t ≤ T, xt 6∈
⋃η

j=1 B(xj , r) and finds197

xi∗ + rB with probability p within less than p · η steps. Then design a corresponding algorithm that out-198

puts {x1, · · · ,xT }\
{

x
∣∣x 6∈ ⋃η

j=1 B(xj , r)
}

so that ∀ t ≤ T, xt ∈
⋃η

j=1 B(xj , r), and B(xi∗ , r) is found with199

probability p within less than p · η steps. But this contradicts with 1.200

C.2. Supporting Proofs for Theorem 2.201

Proof of Lemma 14 (Packing number) Let P(r,B(0, R), ||·||2) be the r-packing number of B(0, R); and C(r,B(0, R), ||·202

||2) be the r-covering number of B(0, R). One can follow the properties of packing and covering numbers to proved203

that: P(r,B(0, R), || · ||2) ≥ C(r,B(0, R), || · ||2) ≥
⌊(

R

r

)d⌋
. Therefore, number of non-intersecting r-balls that can be204

contained in an B(0, R) is P(2r,B(0, R− r), || · ||2) ≥
⌊(

R− r
2r

)d⌋
. �205
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Proof of Lemma 15 (Lipschitz smoothness and strong convexity) We first prove that when ||x||2 ≤ R/2,206

U(x) is L-Lipschitz smooth. We then prove that when ||x||2 > R/2, U(x) is 2m-Lipschitz smooth. At last we prove207

that U(x) is m-strongly convex for ||x||2 > R. Since L ≥ 2m, this proves Lemma 15.208

• Define U1(x) = cos
(
π

r2

(
||x− xi||22 − r2)). Then U(x) = Lr2

4π2 + 2π (U1(x)− 1) when ||x− xi||2 ≤ r.209

Hessian of U1 is:

H[U1](x) = −4π2

r4 cos
(
π

r2

(
||x− xi||22 − r2)) (x− xi)(x− xi)T

− 2π
r2 sin

(
π

r2

(
||x− xi||22 − r2)) I.

We first note that
∣∣∣∣(x− xi)(x− xi)T

∣∣∣∣
2

= ||x− xi||22 ≤ r2. Hence,

||H[U1](x)||2 ≤
∣∣∣∣∣∣∣∣4π2

r4 cos
(
π

r2

(
||x− xi||22 − r2)) (x− xi)(x− xi)T

∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣2π
r2 sin

(
π

r2

(
||x− xi||22 − r2)) I∣∣∣∣∣∣

2

= 4π2 + 2π
r2 .

Therefore, when ||x− xi||2 ≤ r, U(x) = Lr2

4π2 + 2π (U1(x)− 1) is L-Lipschitz smooth.210

When ||x− xi||2 > r and ||x||2 ≤ R, U(x) = 0 is also L-Lipschitz smooth, which leads to the result that U(x) is211

L-Lipschitz smooth for ||x||2 ≤ R.212

• Define U2(x) = (||x||2 −R/2)2. Then U(x) = mU2(x) when ||x||2 > R/2.213

H[U2](x) = 2
(

1− R

2||x||2

)
I + R

||x||32
xxT.214

Similar to above, it can be proven that ||xxT||2 = ||x||22. Hence ||H[U2](x)||2 ≤ 2
∣∣∣∣1− R

2||x||2

∣∣∣∣ + R

||x||2
= 2.215

Therefore, mU2(x) is 2m-Lipschitz smooth for ||x||2 > R/2.216

• Define217

U3(x) =

{
U2(x), ‖x‖2 > R
1
2 ‖x‖

2
2 + 1

8R
2, ‖x‖2 ≤ R

.218

Then219

H
[
U3(x)− 1

2 ‖x‖
2
2

]
=


(

1− R

||x||2

)
I + R

||x||32
xxT, ‖x‖2 > R

0, ‖x‖2 ≤ R
.220

For any y ∈ Rd, yTxxTy = (yTx)2 ≥ 0. Therefore all eigenvalues of xxT are bigger than or equal to 0. Since221

I can be simultaneously diagonalized with xxT, H
[
U3(x)− 1

2 ‖x‖
2
2

]
�
(

1− R

||x||2

)
I � 0 when ||x||2 > R.222

When ||x||2 ≤ R, H
[
U3(x)− 1

2 ‖x‖
2
2

]
= 0. Also note that U3(x)− 1

2 ‖x‖
2
2 is continuously differentiable. Hence223

U3(x)− 1
2 ‖x‖

2
2 is convex.224

On the other hand, U(x) = mU3(x) when ||x||2 > R. Following Assumption 2, this implies that U(x)− m

2 ‖x‖
2
2225

is convex on Rd \ B(0, R). Therefore, U(x) is m-strongly convex on Rd \ B(0, R).226

�227
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C.3. Proof of Corollary 1.228

Corollary 1. There exists an objective function U that is m-strongly convex outside of a region of radius R and229

L-Lipschitz smooth, such that for x̂ ∼ q∗β, it is required that β = Ω̃ (d/ε) to have U(x̂) − U (x∗) < ε for a constant230

probability. Moreover, number of iterations required for the Langevin algorithms is K = eÕ(d·LR2/ε) to guarantee that231

U(xK)− U (x∗) < ε for a constant probability.232

To use Langevin algorithm to attain optimal value with probability p, we separate the optimization problem into233

two: one is to find a parameter β such that x̂ ∼ q∗β ∝ e−βU has probability p of being close to the optimum x∗ (i.e.,234

P (U(x̂)−U (x∗) < ε) ≥ p); another is to sample from a distribution qKβ after K-th iteration so that it is δ-close to q∗β ,235

for δ ≤ p/2 in TV distance. Then by the definition of TV distance, xK ∼ qKβ will have probability p/2 of being close236

to the optimum x∗.237

Proof of Corollary 1 We take U as the one defined in Eq. (37) and similarly take r =
√

(2π2 + π)ε/L. Then238

x∗ = arg minx∈Rd U(x) = xi∗ and minx∈Rd U(x) = − Lr2

2π2 + π
= −ε. For U(x̂) − U (x∗) < ε, it is required that239

‖x̂− x∗‖ ≤ r.240

If x̂ follows the law of q∗β , then denote the associated probability measure dΠ∗β = q∗βdx̂. We then estimate the
probability that x̂ ∈ B (x∗, r)

P (‖x̂− x∗‖ ≤ r) = Π∗β
(
B (x∗, r)

)
=

∫
B(x∗,r) e

−βU(x)dx∫
B(x∗,r) e

−βU(x)dx +
∫
B(0,R/2)\B(x∗,r) e

−βU(x)dx +
∫
R/2d\B(0,R/2) e

−βU(x)dx

=

∫
B(x∗,r) e

−βU(x)dx∫
B(x∗,r) e

−βU(x)dx +
∫
B(0,R/2)\B(x∗,r) 1 dx +

∫
R/2d\B(0,R/2) e

−βU(x)dx

=

∫
B(x∗,r) e

−βU(x)dx∫
B(x∗,r) (e−βU(x) − 1) dx +

∫
B(0,R/2) 1 dx +

∫
R/2d\B(0,R/2) e

−βU(x)dx

≤

∫
B(x∗,r) e

−βU(x)dx∫
B(0,R/2) 1 dx

≤
e−min‖x−x∗‖≤r βU(x) ∫

B(x∗,r) 1 dx∫
B(0,R/2) 1 dx

= eβε

∫
B(x∗,r) 1 dx∫
B(0,R/2) 1 dx

= eβε
(2r
R

)d
. [42]

To obtain that P (U(x̂)− U (x∗) < ε) = P (‖x̂− x∗‖ ≤ r) ≥ p, we need that241

eβε
(2r
R

)d
≥ p.242

Therefore,243

β ≥ 1
ε

ln p+ d

ε
ln
(
R

2r

)
= 1
ε

ln p+ 1
2
d

ε
ln
(

1
4(2π2 + π)

LR2

ε

)
.244

To use the Langevin algorithms to search for optimum, we are actually using xK , which follows the sampled distribution
qKβ at K-th step. And we are taking K large enough so that

∥∥qKβ − q∗β∥∥TV
≤ δ, for δ ≤ p/2. Then, for a large enough

21



K, we can have ∣∣P (∥∥xK − x∗
∥∥ ≤ r)− P (‖x̂− x∗‖ ≤ r)

∣∣
=
∣∣ΠK

β

(
B (x∗, r)

)
−Π∗β

(
B (x∗, r)

)∣∣
≤ sup

A

∣∣ΠK
β (A)−Π∗β(A)

∣∣
=
∥∥qKβ − q∗β∥∥TV

≤ δ, [43]

which guarantees that P
(∥∥xK − x∗

∥∥ ≤ r) ≥ p/2.245

We directly obtain from Theorem 1 that for the objective function βU with Lipschitz constant βL ≥ L

ε
ln p +246

d

2
L

ε
ln
(

1
4(2π2 + π)

LR2

ε

)
, we need to iterate eÕ(d·LR2/ε) steps to guarantee convergence.247

�248

D. Proofs for Gaussian Mixture Models. Consider the problem of inferring mean parameters µ = (µ1, · · · , µM ) ∈ Rd×M
in a Gaussian mixture model with M mixtures from N data y = (y1, · · · , yN ):

p (yn|µ) =
M∑
i=1

λi
Zi

exp
(
−1

2(yn − µi)TΣ−1
i (yn − µi)

)
+

(
1−

M∑
i=1

λi

)
p0(yn), [44]

where Zi are the normalization constants and
∑M

i=1 λi ≤ 1. For succinctness, we consider in this section the cases249

where covariances Σi are isotropic and uniform across all mixture components: Σi = Σ = σ2I. p0(yn) represents crude250

observations of the data (e.g., data may be distributed inside a region or may have sub-Gaussian tail behavior). The251

objective function is given by the log posterior distribution: U(µ) = − log p(µ)−
∑N

n=1 log p (yn|µ). Assume data are252

distributed in a bounded region (‖yn‖ ≤ R) and take p0(yn) = 1 {‖yn‖ ≤ R}/Z0 to describe this observation.253

We also take the prior to be

p(µ) ∝ exp
(
−m

(
‖µ‖F −

√
MR

)2
1
{
‖µ‖F ≥

√
MR

})
. [45]

D.1. Proofs for Smoothness.254

Fact 1. For the Gaussian mixture model defined in Eq. (44), define

α = 1
σ2 max

{
2 sup
µ∈{µ1,··· ,µM}

N∑
n=1

‖µ− yn‖2

σ2 exp
(
−||µ− yn||2

/
2σ2) , sup

µ∈{µ1,··· ,µM}

N∑
n=1

exp
(
−||µ− yn||2

/
2σ2)} .

[46]

If we take λi =
l

α
Zi

Z0 + l

α

∑M

j=1 Zj

, then the log-likelihood −
∑N

n=1 log p (yn|µ) is l-Lipschitz smooth.255

Proof of Fact 1 Define the mixture components: Wi,n = λi
Zi

exp
(
−1

2 ||yn − µi||
2/σ2

)
and Cn =

(
1−

∑M

i=1 λi
)
p0(yn).

Since all the data {yn} are distributed in B(0, R), p0(yn) = 1
Z0
1 {‖yn‖ ≤ R} = 1

Z0
. We can plug in the expression of

22



λi =
l

α
Zi

Z0 + l

α

∑M

j=1 Zj

and obtain for any n = 1, · · · , N :

Cn = C = 1
Z0

(
1−

M∑
i=1

λi

)

= 1
Z0

1−
l

α

∑M

i=1 Zi

Z0 + l

α

∑M

j=1 Zj


= 1

Z0 + l

α

∑M

j=1 Zj

. [47]

Then we can use C to simplify the expression of λi for i = 1, · · · ,M :256

λi = l

α
CZi.257

We also represent the objective function as:258

U(µ) = − log p(µ)−
N∑
n=1

log p (yn|µ) = − log p(µ)−
N∑
n=1

log

(
M∑
i=1

Wi,n + C

)
,259

and define260

γi,n = Wi,n∑M

k=1 Wk,n + C
.261

One can find that262

−∇µi log p (yn|µ) = Wj,n∑M

j=1 Wj,n + C

µi − yn
σ2 = γi,n

µi − yn
σ2 ,263

and

−∇2
µi,µj

log p (yn|µ) =


γi,n
σ2 I + (γ2

i,n − γi,n) (µi − yn)(µi − yn)T
σ4 , i = j

γi,nγj,n
(µi − yn)(µj − yn)T

σ4 , i 6= j

.

For any vector v,

−vT∇2
µ2 log p (yn|µ) v

=
M∑
i=1

γi,n
σ2 v

T
i vi −

M∑
i=1

γi,n

[
vTi

(
µi − yn
σ2

)]2

+
M∑
i=1

M∑
j=1

γi,nγj,n

[
vTi

(
µi − yn
σ2

)] [
vTj

(
µj − yn
σ2

)]
.

Since
∑M

i=1 γi,n =
∑M

i=1
Wi,n∑M

k=1 Wk,n + C
≤ 1,

∣∣∣∣∣
M∑
i=1

M∑
j=1

γi,nγj,n

[
vTi

(
µi − yn
σ2

)] [
vTj

(
µj − yn
σ2

)]∣∣∣∣∣
≤ 1

2

M∑
i=1

M∑
j=1

γi,nγj,n

([
vTi

(
µi − yn
σ2

)]2
+
[
vTj

(
µj − yn
σ2

)]2
)

≤ γi,n
[
vTi

(
µi − yn
σ2

)]2
.

23



Therefore,

diag
(
γi,n
σ2

(
1− 2‖µi − yn‖

2

σ2

)
I
)
� ∇2

µ2 log p (yn|µ) � diag
(
γi,n
σ2 I

)
.

Since {Wi,n} are positive,264

γi,n = Wi,n∑M

j=1 Wj,n + C
≤ Wi,n

C
= λi
CZi

exp
(
−||µi − yn||2

/
2σ2) .265

Since

α = 1
σ2 max

{
2 sup

µ

N∑
n=1

‖µ− yn‖2

σ2 exp
(
−||µ− yn||2

/
2σ2) , sup

µ

N∑
n=1

exp
(
−||µ− yn||2

/
2σ2)} . [48]

and

λi = l

α
CZi, [49]

log-likelihood −
∑N

n=1 log p (yn|µ) is l-Lipschitz smooth. It can be seen from Eq. (48) that if one uses a loose upper266

bound for α, we can simply take λi to be l

2
CZiσ

2

N
. �267

D.2. Proofs for the EM Algorithm. We prove in the following Lemma that there exists a dataset (y1, · · · , yN ) and variance268

σ2 with the previous setting that takes K ≥ min{O(d1/ε),O(dd)} steps for the EM algorithm to converge if one269

initializes the algorithm close to the given data points.270

Lemma 16. Let the objective function U(µ) = − log p(µ)−
∑N

n=1 log p (yn|µ) with prior p(µ) and likelihood p (yn|µ)271

defined in Eq. (45) and Eq. (44). Take the parameters λi so that the log-likelihood is Lipschitz smooth with Lipschitz272

constant L = 1/16, strong convexity constant m = 1/64 outside of region with radius R = 1/2, and number of273

mixtures M = log2 d. Then there exists a dataset (y1, · · · , yN ) and variance σ2 so that the EM algorithm will take274

K ≥ min{O(d1/ε),O(dd)} queries to converge to O(ε) close to the optimum if one randomly initializes the algorithm275

0.01 close to the given data points.276

Proof of Lemma 16 shares similar traits as that in (29, 30).277

Directly invoking Theorem 1, we know that the Langevin algorithms converge within K ≤ Õ
(
d3/ε

)
and K ≤278

Õ
(
d3 ln2 (1/ε)

)
steps, respectively.279

Proof of Lemma 16 Consider a dataset with N number of d-dimensional data points, yn ∈ Rd, n = 1, · · · , N ,280

described below. We suppose that it is modeled with M < N mixture components in the Gaussian mixture281

model Eq. (44).282

For the first N − 9M points, let ‖yn‖ ≤ 0.45, and ‖yk − yl‖ ≥ 0.11, where n, k, l ∈ {1, · · · , N − 9M} and k 6= l. From283

Lemma 14, we know that when N ≤ 2d, this setting is feasible. For the next 9M points, first select M different indices284

{i1, · · · , iM} from {1, · · · , N − 9M} uniformly at random. Then for n ∈ {N − 9M + 9(k − 1) + 1, · · · , N − 9M + 9k}285

(k ∈ {1, · · · ,M}), ‖yn − yik‖ ≤ σ/2.286

By this setting, ∀yn, ‖yn‖ ≤ 0.5. Furthermore, when n, n̂ ∈ {N − 9M + 9(k − 1) + 1, · · · , N − 9M + 9k} ∪ {ik},287

‖yn − yn̂‖ ≤ σ/2; otherwise, ‖yn − yn̂‖ ≥ 0.1 for n 6= n̂. We depict a cartoon of this dataset in Fig. S2.288

Since it can be observed that all the data are distributed in B(0, 0.5), we let p0(yn) = 1
Z0
1 {‖yn‖ ≤ 0.5} =

Γ(d/2 + 1)
(2π)d/2 1 {‖yn‖ ≤ 0.5}. Inclusion of p0 provides a better description of the data, since they are mostly dis-

tributed uniformly in B(0, 0.5), with some concentrated around the chosen M centers. Then according to Eq. (45), we
set the prior to be:

p(µ) ∝ exp

(
−
(
‖µ‖F −

√
M/2

)2
64 1

{
‖µ‖F ≥

√
M/2

})
,
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Fig. S2. A depiction of an example dataset.
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where ‖µ‖F =
√∑M

i=1 ‖µi‖
2
2. Note that in this setting, the positions of local minima are exactly the same as the289

Gaussian mixture model that does not include prior observation p0(y) and prior belief p(µ).290

We take λi = 1
64αCZi (using notations defined in Eq. (49) and Eq. (47)). Then the objective function defined via the

log posterior:

U(µ) = − log p(µ)−
N∑
n=1

log p (yn|µ)

= − log p(µ)−
N∑
n=1

log

(
M∑
i=1

λi
Zi

exp
(
−1

2 ||yn − µi||
2/σ2

)
+ C

)

=
(
‖µ‖F −

√
M/2

)2
64 1

{
‖µ‖F ≥

√
M/2

}
−

N∑
n=1

log

(
M∑
i=1

1
64α exp

(
−1

2 ||yn − µi||
2/σ2

)
+ 1

)
+ C̃ [50]

has Lipschitz smoothness L ≤ 1/32. In what follows, we take σ = σ = 0.01√
log2 N

.291

It can be seen that α in Eq. (46) is bounded as: α ≤ 50
σ2 . Then λi = 1

3200CZiσ
2. It can also be checked that the292

objective function U is also m ≥ 1/64 strongly convex for ‖µ‖F ≥
√
M .293

We then estimate number of fixed points for ‖µ‖F ≤
√
M/2 when running the EM algorithm. If we run the EM

algorithm starting with ‖µ(t)‖F ≤
√
M/2, we first compute the weights for each component using old value µ(t) (in E

step):

γ
(t)
i,n =

λi
Zi

exp
(
−1

2 ||yn − µ
(t)
i ||

2/σ2
)

∑M

j=1
λj
Zj

exp
(
−1

2 ||yn − µ
(t)
j ||2/σ2

)
+ C

=

σ2

3200 exp
(
−1

2 ||yn − µ
(t)
i ||

2/σ2
)

∑M

j=1
σ2

3200 exp
(
−1

2 ||yn − µ
(t)
j ||2/σ2

)
+ 1

. [51]

We then update µ (in M step):

µ
(t+1)
i =

N∑
n=1

γ
(t)
i,n∑N

n̂=1 γ
(t)
i,n̂

yn.

We prove in Lemma 17 that ∀yni , ni ∈ {1, · · · , N/2}, if ‖µ
(0)
i − yni‖ ≤ 0.01, then ‖µ(τ)

i − yni‖ ≤ 0.01, ∀τ > 0.294

Therefore, any M combinations of N − 9M data points is a fixed point for µ.295

Lemma 17. Suppose we run the EM algorithm with the dataset specified in the beginning of Sec. D.2 for T steps. If296

we initialized each component of µ with ‖µ(0)
i − yni‖ ≤ 0.01 for ni ∈ {1, · · · , N/2}, then ‖µ(τ)

i − yni‖ ≤ 0.01, ∀τ > 0.297

We note that the global minima µ∗ = (µ∗1, · · · , µ∗M ) will have ∀i ∈ {1, · · · ,M}, µ∗i ∈
⋃M

k=1 Ωk, where we denote298

Ωk = {N − 9M + 9(k − 1) + 1, · · · , N − 9M + 9k} ∪ {ik}. It can also be checked from Eq. (50) that the difference ε299

between the global minima and any local minimum µ̄ that has ∃i ∈ {1, · · · ,M}, s.t. µ̄i /∈
⋃M

k=1 Ωk scales with N300

as ε = O(σ2) = O
(

1
log2 N

)
. Therefore, if one randomly initialize from the dataset, to attain global minima with301

probability p, at least K = p ·
(

N
M

)/(
10M
M

)
≥ p ·

(
N

10M

)M
re-initializations are required. Let N � M .302

Then the number of re-initializations are of order K = O(p ·NM ).303

26



Note that we have taken M = log2 d. For ε > O(1/d), take N = O
(
21/ε). Then T = O

(
d1/ε). For ε ≤ O(1/d), take304

N = 2d. Then T = O(dd). So T = min
{
O
(
d1/ε) ,O(dd)

}
. �305

Remark 3. It can be similarly proven that the gradient descent algorithm with its stepsize tuned according to the306

Lipschitz smoothness has the same behavior if initialized randomly from the dataset.307

Proof of Lemma 17 We prove for each component µi using induction over t ∈ {0, · · · , τ}. First assume that308

‖µ(t)
i − yni‖ ≤ 0.01.309

Then we observe from Eq. (51) that ∀i, n,

γ
(t)
i,n =

(
M∑
j=1

exp
(1

2 ||yn − µi||
2/σ2 − 1

2 ||yn − µj ||
2/σ2

)

+ 3200
σ2 exp

(1
2 ||yn − µi||

2/σ2
))−1

.

Since
∑M

j=1 exp
(
−1

2 ||yn − µj ||
2/σ2

)
≤M ≤ 3200/σ2,

σ2

6400 exp
(
−1

2 ||yn − µi||
2/σ2

)
≤ γ(t)

i,n ≤
σ2

3200 exp
(
−1

2 ||yn − µi||
2/σ2

)
. [52]

Therefore, when ‖µ(t)
i − yn‖ ≤ 0.01, γ(t)

i,n ≥
σ2

6400N
−1/2; when ‖µ(t)

i − yn‖ ≤ 0.015, γ(t)
i,n ≥

σ2

6400N
−9/8; when310

‖µ(t)
i − yn‖ ≥ 0.1, γ(t)

i,n ≤
σ2

3200N
−50.311

• For ni ∈ {1, · · · , N − 9M} \ {i1, · · · , iM},

‖µ(t+1)
i − yni‖ ≤

γ
(t)
i,ni∑N

n̂=1 γ
(t)
i,n̂

‖yni − yni‖+
∑

ñ 6=ni
γ

(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

‖yñ − yni‖

=
∑

ñ 6=ni
γ

(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

‖yñ − yni‖.

Since ‖µ(t)
i − yni‖ ≤ 0.01 and ‖µ(t)

i − yn̂‖ ≥ 0.1, ∀n̂ 6= ni (and that N ≥ 2),

∑
ñ 6=ni

γ
(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

≤

∑
n̂ 6=ni

γ
(t)
i,n̂

γ
(t)
i,ni

≤
N · σ2

3200N
−50

σ2

6400N
−1/2

≤ 10−10. [53]

Hence

‖µ(t+1)
i − yni‖ ≤

∑
ñ 6=ni

γ
(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

‖yñ − yni‖

≤ 2 · 10−10 sup
n̂

‖yn̂‖ ≤ 10−10 ≤ 0.01.

• Denote Ωk = {N − 9M + 9(k − 1) + 1, · · · , N − 9M + 9k} ∪ {ik}. For ni ∈ Ωk, ∀k ∈ {1, · · · ,M},312

‖µ(t+1)
i − yni‖ ≤ ‖µ

(t+1)
i − yik‖+ ‖yni − yik‖ ≤ ‖µ

(t+1)
i − yik‖+ σ

2 .313

And

‖µ(t+1)
i − yik‖ ≤

∥∥∥∥∥∑
ñ∈Ωk

γ
(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

(yñ − yik )

∥∥∥∥∥+
∑
ñ/∈Ωk

γ
(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

‖yñ − yik‖.
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Define

yavgik
=
∑

ñ∈Ωk
γ

(t)
i,ñ∑

n̂∈Ωk
γ

(t)
i,n̂

yñ.

Then

‖µ(t+1)
i − yik‖ ≤

∑
ñ∈Ωk

γ
(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

∥∥yavgik
− yik

∥∥+
∑

ñ/∈Ωk
γ

(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

‖yñ − yik‖.

Since sup
ñ∈Ωk

‖yñ − yik‖ ≤ σ/2, ‖yavgik
− yik‖ ≤ σ/2. And for any ñ ∈ Ωk, we use induction assumption and314

sup
ñ∈Ωk

‖yñ − yik‖ ≤ σ/2 to obtain that315

‖µ(t)
i − yñ‖ ≤ ‖µ

(t)
i − yni‖+ ‖yni − yik‖+ ‖yik − yñ‖ ≤ 0.1 + σ

2 + σ

2 ≤ 0.015.316

Hence γ(t)
i,ñ ≥

σ2

4NN−9/8. Then similar to Eq. (53),∑
ñ/∈Ωk

γ
(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

≤

∑
ñ/∈Ωk

γ
(t)
i,ñ∑

n̂∈Ωk
γ

(t)
i,n̂

≤ 10−10.

Therefore,

‖µ(t+1)
i − yni‖ ≤

∑
ñ∈Ωk

γ
(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

∥∥yavgik
− yik

∥∥+
∑

ñ/∈Ωk
γ

(t)
i,ñ∑N

n̂=1 γ
(t)
i,n̂

‖yñ − yik‖+ σ

2

≤ ‖yavgik
− yik‖+ 10−10 · 1 + σ

2 ≤ σ + 10−10 ≤ 0.01.

It follows from induction that if ‖µ(0)
i − yik‖ ≤ 0.01, then ‖µ(τ)

i − yik‖ ≤ 0.01, ∀τ > 0. �317

E. Detailed Experimental Settings for Gaussian Mixture Models. We consider the same problem as that in Supple-
ment D of inferring mean parameters µ = (µ1, · · · , µM ) ∈ Rd×M in a Gaussian mixture model with M mixtures from
N data points y = (y1, · · · , yN ):

p (yn|µ) =
M∑
i=1

λi
Zi

exp
(
−1

2(yn − µi)TΣ−1
i (yn − µi)

)
+

(
1−

M∑
i=1

λi

)
p0(yn), [54]

where the covariances Σi are isotropic and uniform across all mixture components: Σi = Σ = σ2I. The constant mixture
p0(yn) = 1 {‖yn‖ ≤ R}/Z0 represents crude observations of the data, which are distributed in a bounded region:
‖yn‖ ≤ R. The objective function is given by the log posterior distribution: U(µ) = − log p(µ)−

∑N

n=1 log p (yn|µ),
where we take the prior to be

p(µ) ∝ exp
(
−m

(
‖µ‖F −

√
MR

)2
1
{
‖µ‖F ≥

√
MR

})
. [55]

Similar to the setting in Supplement D.2, we take λi
Zi

to be σ2/1000, where the variance σ = 1/
√
d, so that the318

mixtures are well separated from each other.319

We consider a synthetic dataset, {y1, · · · , yN}, with sparse entries: only blog2 dc of the entries in each data point yn320

are nonzero. Indices of the nonzero entries are uniformly distributed over the set {1, · · · , d}. All the nonzero entries321

follow a uniform distribution on [−1, 1]. Also assume that the number of mixtures M = blog2 dc. Hence the radius322

containing the data R = 2
√
Mblog2 dc = 2blog2 dc. We generate N = 2d data points following this rule.323

We let the dimension d range from 2 to 32 and recorded the number of gradient entries required for EM (with random324

initialization from the data) and ULA to converge. The results were averaged over 20 trials of experiments. When325
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Fig. S3. Experimental results: scaling of the number of gradient queries required for EM with random initialization uniformly in the ball of radius R and uniformly
from the data.
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dimension d ≥ 10, too many gradient queries are required for EM to converge, so that an accurate estimate of326

convergence time is not available.327

For EM, we measured its accuracy in terms of the objective function value U and require U(µK)− U(µ̂∗) < 10−6
328

to conclude that µK has converged close enough to µ∗. For ULA, we measured its accuracy in terms of both the329

expected objective function value E [U(µ)] (or equivalently the cross entropy between the sampled distribution and330

the posterior) and the expected mean parameters E [µ]. We required both
∣∣∣ 1
K

∑K

k=1 U(µk)− ̂Ep∗ [U(µ)]
∣∣∣ < 10−6

331

and
∥∥∥ 1
K

∑K

k=1 µk − Êp∗ [µ]
∥∥∥
F
< 10−3 (which are of comparable scales) to assess the convergence of the sampling332

algorithm.333

To estimate the reference value µ̂∗ ∈ Rd×M , we run EM 1000 times longer than the number of required steps found for334

the previous experiment with dimension d− 1. If estimates from 20 different initializations differed by less than 10−8,335

we accepted µ̂∗. Otherwise, we increased the number of steps by 10 times. We similarly estimated ̂Ep∗ [U(µ)] and336

Êp∗ [µ] by long runs of ULA (also 1000 times longer than the number of required steps found for dimension d− 1). If337

estimates from 20 different initializations differed by less than 10−8 for ̂Ep∗ [U(µ)] and 10−5 for Êp∗ [µ], we accepted338

the estimates. Otherwise, we increased the number of steps by 10 times.339

We also compared EM with random initialization uniformly in the ball of radius R against that with uniform340

initialization from the data points. We observed in Fig. S3 that initializing uniformly in the ball of radius R leads to341

poorer convergence, implying that there are more local minima of U than merely those nearby the data.342
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