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Supporting Information Text12

The Supplementary Information is divided into the following sections. The details of the theory used to numerically solve13

the RISM integral equation, needed to calculate the potential of mean force between divalent ions and the phosphate groups14

are given in Section 1. Section 2 describes the development of the RNA force field, which treats divalent cations explicitly15

and the monovalent ions implicitly. We also describe the methods used to determine the values of the force field parameters.16

The simulation details and methods used to analyze the data are given in Section 3. Additional tests of the validity of the17

theory-based construction of the RNA model and simulations are contained in Section 4.18

1. Divalent ion–phosphate potential of mean force19

Reference Interaction Site Model (RISM). Accurate simulations using coarse-grained models of even modestly sized RNA20

molecules in explicit monovalent and divalent cations is computationally demanding (1). In order to simplify the problem,21

while still retaining high level of accuracy achieved previously (1), we treat the electrostatic effects due to monovalent ions22

implicitly. This leaves us with the task of calculating the effective interactions between the divalent cations and RNA. Our23

primary goal is to calculate the potential of mean force (PMF), W (r), between Mg2+/Ca2+ and phosphate (Eq. 5 in the main24

text), which can be used in simulations of divalent cation-induced folding of RNA. In order to calculate W (r), we resort to the25

well-known RISM theory, which was developed to calculate the equilibrium site-site distributions of polyatomic liquids and26

their associated thermodynamic properties (2–8). The theory has two versions: one is a 1-dimensional RISM (or 1D-RISM)27

and the other is a 3-dimensional RISM (3D-RISM). The former provides the radial distribution functions, gij (r), between28

every interaction site in the system. The latter couples the 1D radial information and the 3D structure of the biomolecule to29

yield the solvent structure around the biomolecule in the form of a 3D site distribution function, gi (r), for each solvent site.30

Because the theory and implementation are widely known, here we only give a very brief summary of the 1D-RISM that is31

most directly relevant to our work.32

We begin with the Ornstein–Zernike (OZ) equation:33

h (r12) = c (r12) + ρ

∫
dr3c (r13)h (r32) , [1]34

where rij is the distance between particles i and j, c is the direct correlation function, and h–the total correlation function–is35

related to the pair distribution function, hij (rij) ≡ gij (rij)− 1. In order to solve the OZ equation, it is necessary to use an36

appropriate closure relation connecting h and c, which we write as:37

g (r12) = exp [−βu (r12) + h (r12)− c (r12) + b (r12)] , [2]38

or in a short form g = exp [−βu+ h− c+ b]. In the above equation, u is the potential energy function, β = 1
kBT

(kB is the39

Boltzmann constant and T is the temperature), and b is an unknown “bridge function”. In the hypernetted-chain approximation40

(HNC), b is zero, giving:41

gHNC = exp [−βu+ h− c] . [3]42

The HNC closure gives good results for ionic and polar systems, but not for neutral systems. Moreover, it is difficult to find43

converged solutions (6, 9, 10). To resolve these problems, Kovalenko–Hirata (KH) introduced the following closure relation:44

(11)45

gKH =
{

exp [−βu+ h− c] if g ≤ 1
1− βu+ h− c if g > 1

. [4]46

The partial series expansion of order-n (PSE-n) offers a way to interpolate between Eqs. 3 and 4, which improves the results47

of the KH closure while circumventing the convergence issues associated with the HNC closure: (12)48

gPSE−n =

{
exp [−βu+ h− c] if g ≤ 1∑n

i=0
[−βu+h−c]i

i! if g > 1
.49

Hence, KH is the special case of PSE closure when n = 1. In the limit n→∞, HNC is obtained.50

In RISM (as implemented in the Amber force field), the standard Coulomb and Lennard–Jones interaction are used for the51

pair-wise non-bonded potential: (13)52

u12 (r) = q1q2
r

+ ε12

[(
Rmin,12

r

)12
− 2
(
Rmin,12

r

)6
]
. [5]53

Recently, a 12-6-4 LJ potential was proposed to account for the ion-induced dipole moment interaction, which proved to be54

important for divalent ions (14). With this scheme, the LJ interaction (the second term in Eq. 5) is modified as:55
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ULJ (r) = ε12

[(
Rmin,12

r

)12
− 2
(
Rmin,12

r

)6
− 2κR2

min,12

(
Rmin,12

r

)4
]

= A12

r12 −
B12

r6 −
C12

r4 , [6]

where the attractive term C12
r4 approximately accounts for the charge-induced dipole interaction. For highly charged systems,56

the potential in Eq. 6 yields accurate values of hydration free energies, ion-oxygen distances in the first hydration shell, and57

coordination numbers for divalent ions (and later, extending to trivalent and tetravalent ions) (15). A modified parameter set58

for Mg2+ was subsequently developed to balance the interaction between Mg2+ and water, Mg2+ and specific sites on nucleic59

acids (16). Here, we adopt these modifications in RISM and treat only the interaction involving Mg2+ (namely, Mg2+–water60

and Mg2+–P) using the 12-6-4 potential (Eq. 6), while the rest (water–water, water–P, P–P and Mg2+–Mg2+) are modeled61

using the standard 12-6 potential, ULJ (r) = A12
r12 − B12

r6 . (The small polarizability of Mg2+ allows us to neglect Mg2+–Mg2+
62

interactions.) A similar procedure is used to calculate Ca2+–P interactions.63

The RISM equations (Eqs. 1 and 2) are solved iteratively until converged results are obtained. We are interested only in the64

probability distribution between Mg2+ and phosphate, from which the PMF is computed using W (r) = −kBT ln g (r).65

Numerical solution of the RISM calculation. The PMFs between the divalent cations and phosphates were calculated using the66

1D-RISM implemented in Amber (13) by modifying the rism1d code to include the potential in Eq. 6. The theory requires67

bulk concentrations and topologies (bond lengths and bond angles) of every molecule and ion in the system as well as the68

pairwise interaction potentials between them. In our case, the system was comprised of Mg2+ (or Ca2+), phosphate and water.69

The concentration of XP2 (where X = Mg2+ or Ca2+) is 1 mM. We used a 1-dimensional grid with a grid spacing of 0.02570

Å and 131,072 grid points. Parameters for Mg2+ and Ca2+ were taken from the Amber force field that takes into account71

the charge-induced dipole interactions (17). We used the cSPC/E model for water, which introduces van der Waals terms72

for the hydrogen atoms of the SPC/E water model to prevent them to collapse in RISM (13). For phosphate, we used a73

single-site representation as in the coarse-grained model rather than an all-atom representation to overcome the convergence74

problems in RISM. To derive the phosphate parameters, we started with the Cl- parameters and tuned ε = 0.027 kcal/mol,75

and Rmin = 2.6 Å (Eq. 6) to obtain the location of the first peak in the gMg2+−P (r) at around 2.5 Å (see Fig. 7B in the76

main text), which is somewhat longer than Mg2+–O distance 2.06 Å in the first hydration shell. Note that the position of the77

coarse-grained P site is located at the center of geometry of the phosphate group. We found that gMg2+−P (r) is not sensitive78

to the parameters provided the first peak is around 2.5 Å. We iteratively solved the RISM equations using the PSE-3 closure to79

a residual tolerance of 10-12 at 25oC. We emphasize that no simulation was performed at this stage. The pair distribution80

function between divalent ion–phosphate gX2+−P (r) (X2+ is Mg2+ or Ca2+) is one of the direct outputs of the RISM program,81

from which we obtain W (r) = −kBT ln gX2+−P (r).82

2. Development of coarse-grained TIS model83

Coarse-grained RNA force field. Our goal is to produce an accurate coarse-grained model, which treats all the key interactions84

in a manner that can lead to quantitative predictions of thermodynamics and kinetics of RNA with arbitrary length. To85

this end, we build on the TIS model (18) in order to develop an RNA force field that treats divalent cations explicitly while86

describing the monovalent effects implicitly. Following our previous study (1, 19), each nucleotide is represented by three87

interaction sites, corresponding to phosphate (P), ribose (S) and base (B), where P and S represent the backbone; the B site88

depends on the nature of the nucleotide, and therefore carries the sequence information. The energy function has the following89

form:90

U = UBA + UEV + UST + UHB + UEL,91

where UBA is the bonded term, comprising of bond and angle restraints between connected beads. These constraints use92

harmonic potentials to keep the bonds and the angles close to the A-form helix. The parameters are the same as in our previous93

work (1, 19).94

Excluded volume interactions UEV . We model UEV using a modified LJ potential (1), which is evaluated using:95

UEV = √εiεj

[(
1.6

r + 1.6−Dij

)12

− 2
(

1.6
r + 1.6−Dij

)6

+ 1

]
96

if r ≤ Dij = Ri + Rj . If r > Dij then we set UEV = 0. To allow for favorable base stacking, we set DBB = 3.2 Å. It is not97

necessary to include excluded volume interactions between the divalent cation and P as it is taken into account in the effective98

potential displayed in Figs. 1 and 7A in the main text. The full set of parameters used in the simulations is given in Table S1.99
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Mass, Da Ri, Å εi, kcal/mol qi

P 62.974 1.89 0.200 (varied, see main text)
S 131.106 2.61 0.200 0
A 134.132 2.52 0.200 0
G 150.132 2.70 0.200 0
C 110.102 2.43 0.200 0
U 111.084 2.43 0.200 0

Mg2+ 24.305 2.00 0.895 +2
Ca2+ 40.078 2.80 1.000 +2

Table S1. Parameters for excluded volume and Debye–Huckel interactions.

Justification for the divalent ion excluded volume parameters. The radius of the divalent cations used in this work to compute the100

excluded volume interactions are large (2.00 Å for Mg2+ and 2.80 Å for Ca2+) compared to the values used in atomistic101

simulations. In general, the size of various interaction sites has to be larger in coarse-grained models. We justify the value102

in Table S1 by arguing that the divalent ion radius in this work represents the fully hydrated form of the ion. For Mg2+,103

the relevant size is the radius of the hexahydrated form Mg(H2O)2+
6 , which coincides with the distance between Mg2+ and104

the oxygen atom in the first hydration shell dMg2+−Ow ≈ 2.02− 2.10 Å. Therefore, in our model, we assume that Mg2+ ions105

do not dehydrate in order to interact with base or sugar moieties and other Mg2+ ions. Although the most frequent inner106

sphere coordination of Mg2+ occurs with the phosphate groups, it has been documented that Mg2+ also coordinates with107

nucleobases and less frequently with sugars (20). However, the neglect of such interactions, which likely do not contribute to108

charge neutralization of the phosphate groups, should not considerably affect the folding of RNA. From the perspective of109

folding thermodynamics, it is crucial to treat Mg2+–P interactions accurately, which we do rigorously using the RISM theory.110

We note that in our model, the divalent ion radius does not play any role in the divalent ion–phosphate interactions since these111

interactions are calculated based on the PMF (Eq. 5, main text). We do, therefore, allow the Mg2+ dehydration once they112

are near phosphate groups, as shown in Fig. 1 in the main text. The excellent predictions of the free energies for a variety113

of systems reported here show that it is crucial to account for the physics of divalent ion–phosphate interactions. This is114

accomplished using the RISM theory.115

To ascertain that the radius of the divalent ion used here is physically reasonable, we compute the distance between the116

Mg2+ and sugars/bases in the simulations and compare them to the values in the crystal structure. The idea is to see if Mg2+
117

approaches the RNA in the simulations at distances that are too small or large. For the crystal structures, we took all RNA118

structures in the PDB that have Mg2+ and the resolution is at least 2.5 Å. With this criterion, we obtained 147 structures. We119

coarse-grained the RNAs and generated the histogram of the distances between Mg2+–base and Mg2+–sugar. Fig. S1 compares120

the radial distribution function gMg2+−α computed in the simulations of BWYV and the histogram generated from PDB. In121

the histogram, signals in the region r < 4.0 Å arise due to interactions with partially dehydrated Mg2+ ions, and therefore122

are not present in gMg2+−α. The key point here is that the closest Mg2+ could approach either moieties in the simulations is123

around 4.0 Å, which is in good agreement with the histogram, and therefore justifies the choice of the divalent ion radius used124

in our coarse-grained simulations. In addition, the agreement between our simulations and experimental data for a wide variety125

of thermodynamic properties furthermore justifies our choice of the divalent ion radius.126
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Fig. S1. Comparison of the distances between Mg2+ and sugars (red) and bases (black). (A) Radial distribution function of Mg2+ and sugar (red) or base (black) calculated in
simulations of BWYV. (B) Histogram of the distances between Mg2+ and sugar (red) or base (black) in 147 RNA structures. There is only a small occurrence of interaction
between partially dehydrated Mg2+ with both sugar and base moieties in RNA at r < 4.0 Å.

Stacking interactions UST . Interactions between two consecutive bases, or secondary stacking, are modeled using UST = Uo
st

1+u1
127

where u1 is a linear combination of harmonic constraints, which biases the stacking topology to the A-form helix (19), and128

Uost = −h + kB (T − Tm) s where h and s are independently obtained for the 16 nucleotide dimers by reproducing their129

experimental stacking thermodynamics (19). In the simulations, we computed the stability of the stacked dimers using:130

∆G = −kBT ln p+ kBT ln (1− p) + ∆Go, [7]131

where p is the fraction of all sampled conformations for which UST < −kBT . The parameters h (but not s) in Uost, thus, are132

functions of a single free energy correction term, ∆Go. The value of ∆Go, assumed to be a constant for all dimers, is used to133

adjust the balance between stacking and hydrogen bonding, which is essential to accurately reproduce RNA thermodynamics134

(see below).135

Stacking between non-consecutive bases is detected from the input structure using the geometric criteria reported elsewhere136

(21). We evaluated tertiary stacking using UST = Us
1+u2

, where Us = −5.0 kcal/mol, and u2 is also a linear combination of137

harmonic constraints, similarly to u1, but instead is chosen to bias the stacking topology to the crystal structure. Since a138

base could stack with others on both sides, we keep track of both the number of stacking each side participates in during the139

simulations. Each side is allowed to stack with a maximum of two other bases, and tertiary stacking is given a higher priority140

over secondary stacking. In other words, once tertiary stacks are formed (the two bases are closer than 10.0 Å) and the side141

reaches the maximum stacking capacity then the secondary stacking is disallowed.142

Hydrogen bond potential UHB . We used UHB = NbU
o
hb exp (−u2) where u2 has the same form as tertiary stacking, biasing the143

structure towards an A-form RNA for canonical bonds (G-C, A-U and G-U) or the experimental structure for non-canonical144

bonds; Nb is the number of hydrogen bonds between the beads. For Watson–Crick base pairing, Nb is 2 for A-U and G-U, and145

3 for G-C. For non-canonical bonds, Nb is computed from the experimental structure of the RNA. Hydrogen bonds involving S146

and P beads are also considered. We use Uohb = −2.70 kcal/mol, which is fit in order to reproduce heat capacities of RNA147

hairpins and pseudoknots (Fig. S2). Our model also permits non-native base pairing formed between G and C, A and U, G and148

U separated by at least 4 nucleotides along the chain. Thus, the folded structures can be disrupted, allowing for non-native149

structures to be populated in the simulations. Each bead has a maximum number of hydrogen bonds it could potentially form,150

and one base is involved in only one canonical base-pair.151

Choice of ∆Go and Uohb. Following our previous studies, we calibrated the parameters to reproduce known experimental quantities.152

Here, we adjusted ∆Go in Eq. 7 (0.90 kcal/mol) and Uohb (-2.70 kcal/mol) to fit the heat capacity of human telomerase RNA153

hairpin (hTR HP) in 200 mM KCl and the Beet Western Yellow Virus pseudoknot (BWYV PK) in 500 mM KCl. In Fig. S2,154

the values of the melting temperatures for both the hTR HP and BWYV PK predicted theoretically are in good agreement155

with experiments.156
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Fig. S2. Heat capacity of hTR hairpin (A) and BWYV pseudoknot (B). Simulations were performed for hTR in 200 mM KCl and for BWYV in 500 mM KCl at pH=7.0 with no
divalent cations. Experimental data for hTR and BWYV are black dashed lines, taken from Ref. (22) and (23), respectively. Simulation data are shown as red lines.

Electrostatic interactions UEL. We developed a new way to treat the interaction of ions with a charged phosphate group. A157

typical buffer used in RNA folding experiments (Tris for example) contains known amount of monovalent ions. To this buffer,158

a solution containing divalent cations is added in order to induce RNA folding. Thus, in such experiments, the solution159

contains a mixture of divalent and monovalent ions. Treating both the ions on equal footing, which we previously carried160

out for a few RNA constructs including the Azoarcus ribozyme (1), is computationally demanding. As explained here and in161

the main text, we treated monovalent ions implicitly and Mg2+/Ca2+ explicitly. This procedure is justified because divalent162

cations are indispensable for the folding of most RNAs, with the exception of some small hairpins and pseudoknots. It is,163

therefore, important to include divalent ions explicitly to take into account the ion size and their specific interactions with the164

RNA. On the other hand, the majority of monovalent ions interacts with the RNAs via non-specific electrostatic interactions,165

screening the charge–charge repulsion between phosphate groups. There are few examples where specific interactions between166

monovalent ions and RNA play an essential role in RNA folding (24–26). Hence, it is reasonable to treat the monovalent ion as167

a continuum using classical Debye–Huckel theory. In most RNA folding experiments, the concentration of monovalent ions168

in the buffer solution typically is in far excess of the divalent cation, and therefore they screen the interactions between the169

divalent ions. Thus, we assume that the Debye–Huckel potential accurately describes the electrostatic interactions between170

divalent cations and P–P repulsions. With this approximation, UEL is the sum of pairwise interactions between all the divalent171

cations, repulsions between the P groups, and attractive interactions between the divalent cations and the P groups. The bare172

charge on P is replaced by an effective charge, Q (T,C1, C2), which is calculated using the counter ion condensation theory. The173

value of Q (T,C1, C2) depends on the temperature, T, as well as the concentrations of monovalent (C1) and divalent cations174

(C2). It only remains to determine the interaction between the divalent cations and P, which is given by Eq. 5 in the main text.175

The PMF, W (r), is calculated using the RISM theory in liquid state physics, described in the previous section.176

Validation of the ion condensation theory. The assumption of the Oosawa–Manning counter ion condensation theory is that177

ions at distances that are larger than the size of the RNA corresponding to the bulk (B), and the ones condensed (C) onto the178

polyanion are at equilibrium (27). The value of the renormalized charge on the phosphate group is calculated by equating the179

chemical potentials of the B and C ions. In the main text, we derived an approximate expression of charge neutralization180

to obtain the effective charge on the phosphates using this physical picture. In order to assess if our estimate of charge181

renormalization is reasonable, we rely on experimental techniques that probe both the monovalent and divalent ion atmosphere182

around nucleic acids such as ion counting (BE-AES) or anomalous small-angle X-ray scattering (ASAXS) (28–30). Fig. S3183

compares θNa+ and θMg2+ , θi = Γi
NP

(
1− b

lB

)
, computed using the theory at 20 mM NaCl and results from ion counting184

experiment for a 24bp duplex DNA. The experimental θ are calculated using the assumption that the total DNA charge185

neutralized is similar to the theory, hence the factor
(
1− b

lB

)
. This is necessary because we set b = 4.4 Å in our theory and186

simulations. We had to choose DNA because the data for RNA is currently not available. Because of the physics of ion187

condensation likely does not depend greatly on the differences between DNA and RNA, comparison with duplex DNA is188

sufficient to validate our theory. The calculated values are in good agreement with experiments, indicating that our theory189

describes ion competition in a buffer containing both monovalent and divalent cations accurately.190
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Fig. S3. Competition between Na+ and Mg2+ ions around a 24bp DNA duplex. The plot shows the number of condensed ions per phosphate group at a fixed 20 mM NaCl
solution as a function of Mg2+ concentration. Calculations were done by analytically solving Eqs. 3 and 4 (main text). The blue and red circles are experimental data from
Ref. (28) and θi = Ni

NP

(
1 − b

lB

)
, with b = 4.4 Å and NP = 46 is the total number of phosphate groups in the DNA.

3. Simulation details and data analyses191

Simulations. We performed simulations using the Langevin dynamics with the CG force field using an in-house code, which is192

available at https://github.com/tienhungf91/RNA_cg. Divalent cations were randomly added to a cubic box containing an RNA193

molecule, whose initial coordinates were taken from the structure of the folded state in the PDB. The box size varied from194

700-3,000 Å depending on the bulk concentration of divalent cations. We used large boxes to make sure that at least 200195

divalent cations were present in the simulations. Enlarging the box size does not introduce more particles into the system, but196

only dilutes the divalent cation concentration. The performance of our model, therefore, is insensitive to the box size, allowing197

us to probe the effect of the arbitrarily small concentration of divalent cations on RNA folding. This is another advantage198

of treating monovalent ions implicitly. We used periodic boundary conditions in the simulations to minimize the effect of199

finite box size. Numerical integration of the equations of motion was performed using the leap-frog algorithm with the time200

step h = 0.05τ where τ = a0
√

m0
e0

is the unit of time, a0 = 1 Å, m0 = 1 Da and e0 = 1 kcal/mol. We performed low-friction201

dynamics to increase the sampling efficiency of the conformations, in which the viscosity of water was reduced 100 times (31).202

Snapshots were recorded every 10,000 steps, from which only the last two-thirds were used to compute all the quantities of203

interest.204

Calculation of the heat capacity. We performed replica-exchange simulation (REMD) at several temperatures (32). Exchange205

was attempted every 5,000 steps between neighboring replicas. The system energy was recorded every 10,000 steps, and the206

heat capacity was computed using Cv = ∂U
∂T

with WHAM. The REMD was found to give converged results after ~ 5× 108
207

integration steps.208

Calculation of the folding free energy, ∆G (c). For a given monovalent concentration C1, the folding free energy of the RNA is209

calculated using: (19)210

G (T ) = G (T ∗) + ∂G

∂T
(T ∗) (T − T ∗) + T

∂2G

∂T 2 (T ∗)
(
T ∗ − T + T ln T

T ∗

)
,211

where T* is the reference temperature. At temperatures that are low compared to the melting temperature, only the folded212

state of the RNA is predominantly populated. Thus, the free energy of the folded state, Gf (T ), can be determined by using, for213

instance, T ∗ = 10oC as the reference temperature. Similarly, the free energy of the unfolded state, Gu (T ), is computed using214

T ∗ = 120oC. The free energy of the intermediate state, Gi (T ), is computed with T* in between the two melting temperatures.215

For BWYV PK, T ∗ = 70oC (see Fig. S2). We performed REMD simulations at several temperatures and used WHAM216

to compute G (T ). The free energy for each state is then calculated using the above equation with appropriate reference217

temperatures. The folding free energy is then evaluated using ∆Gf−u (T ) = Gf (T )−Gu (T ).218

Equilibrium between the bulk and condensed ions and ΓX2+ . Because the divalent ions are attracted strongly to the highly219

negatively charged RNA, the actual ion bulk concentration differs from the concentration computed by dividing the total220

number of ions by the volume of the simulation box. Failure to account for the equilibrium between these populations results221

in an incorrect calculation of ΓX2+ and ∆GX2+−RNA. One could enlarge the simulation box to alleviate this problem, but it222

is computational demanding. Instead, we calculated the ion concentration in the bulk C2 after the concentration profile of223
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ions, C2 (r), plateaus at large separation from the RNA (Fig. S4). The preferential interaction coefficient is then evaluated as224

ΓX2+ = C2
∫ (

C2(r)
C2
− 1
)
dr. In practice, we truncated the integration at the distance where C2 (r) = C2.225

Fig. S4. Concentration profile of Mg2+ around adenine riboswitch. The bulk concentration is computed at a large separation from the center-of-mass of the RNA and
subsequently used for ΓMg2+ determination.

X2+–RNA free energy. The plot of ΓX2+ vs. lnC2 curve (in Fig. 2 in the main text, for example) (X2+ is either Mg2+ or Ca2+)226

is fit using a fourth order polynomial, y = b (x− a)2 + c(x− a)3 + d(x− a)4 and the fit polynomial is integrated analytically,227

which allows us to evaluate the integral in Eq. 7 analytically and obtain ∆GX2+,RNA.228

Fraction of native contacts. The fraction of native contacts, Q (Xk), for an RNA conformation Xk is computed using: (33)229

Q (Xk) = 1
N

∑ 1
1 + exp

[
α
(
rij (Xk)− λroij

)] ,230

where the sum runs over N pairs of native contacts (i,j) separated by roij in the crystal structure, α = 5 Å-1 is a smoothing231

parameter and λ = 1.5 accounts for fluctuations when contacts formed. The list of N contacts are determined by native232

hydrogen bonds and stackings in the PDB structure, including secondary and tertiary interactions.233

4. Robustness of the model234

BWYV. In order to provide additional evidence of the robustness of the force field, we calculated the free energy difference,235

∆GF−U (c), between the folded and unfolded states, as a function of monovalent salt concentrations C1 for BWYV pseudoknot.236

Fig. S5 shows that the simulated values of ∆G (c) are in very good agreement with experiments.237
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Fig. S5. Free energy difference (∆G) between the folded and unfolded states of BWYV pseudoknot as a function of monovalent concentration (C1) evaluated at 25°C (red) and
37°C (black). Calculated values are plotted as solid lines. The folding enthalpy and entropy reported in Ref. (34) were used to compute the experimental free energies shown
with error bars. The calculated values of ∆G from simulations are in remarkable agreement with experiments, except for an underestimation at 37°C at low ion concentrations.

58-nt rRNA. As a further validation, we calculated the heat capacity (Cv) of the 58-nt fragment of rRNA (Fig. S6) and compared238

the results with the UV absorbance data (35). The melting temperature at 20 mM KCl, identified with the maximum in239

Cv, agrees reasonably with the experimental data. The value of the high temperature peak in Cv at 60 mM KCl and 1 mM240

MgCl2 is in good agreement with the experimental data. However, the shoulder at the lower temperature obtained in the241

simulations, if it exists at all, is much less pronounced in experiments. The results in Figs. S2, S5 and S6 show that our RNA242

force field is sufficiently accurate to reproduce many aspects of the thermodynamics for several RNAs over a wide range of ion243

concentrations. It is worth remarking that currently there is no other computational model that can calculate ion-dependent244

folding thermodynamic properties of RNA, such as free energy changes and heat capacities, let alone achieve the level of245

accuracy reported here.246

Fig. S6. Heat capacity of the 58-nt rRNA at two salt concentrations. Black–20 mM KCl (no Mg2+), red –60 mM KCl + 1 mM MgCl2. Dashed curves show UV absorbance
data from experiments (35), solid lines are from simulations. We should stress that UV absorbance data is not the same physical variable as Cv , which is computed using
the fluctuations in energy. Therefore, for the purposes of comparison, only the peak positions are relevant. The differences in the major melting temperature between the
simulations and experiments are ~ 9°C at 20 mM KCl (no Mg2+) and ~ 5°C at 60 mM KCl + 1 mM MgCl2. The comparison further demonstrates that the agreement between
simulations and experiments is excellent.
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Fig. S7. (A) ΓMg2+,S and (B) ∆GMg2+,S for the folded, intermediate and unfolded states of 58-nt rRNA. Simulations were performed by constraining the ensemble of RNA
conformations to specific states. See the main text for details.

Fig. S8. Shown here are the full data for Fig. 7 in the main text for the 58-nt rRNA.
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Fig. S9. Ion preferential interaction coefficients (A) and free energies of divalent ion–RNA interactions (B) of Mg2+ (red) and Ca2+ (blue) computed for BWYV at 54 mM KCl.
Calculations were also performed for Mg2+, in which the interactions are treated at the Debye–Huckel level (green).

Fig. S10. g(r) between divalent ion and water computed from RISM theory.
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