
ROMOP Readme
Benjamin S. Glicksberg

9/14/2018

Contents
ROMOP . 2
Sandbox Server . 2
Requirements . 3

Clinical Data . 3
Programming Language . 3

Installation . 3
Download . 3
Setup . 4

Credentials . 4
Checks . 4
On start . 4

Functions . 5
Utility . 5

getDemographics . 5
getEncounters . 5
getClinicalData . 6
findPatients . 6

Misc. 8
changeOutDirectory . 8
makeDataOntology . 8
summarizeDemographics . 9
showDataTypes . 9
exploreConcepts . 9

Examples . 10
Simple . 10
Advanced . 11

Output . 11
query.txt . 12
inclusion_criteria_mapped.txt . 12
inclusion_criteria_mapped_concepts.txt . 12
exclusion_criteria_mapped.txt . 12
exclusion_criteria_mapped_concepts.txt . 13
outcome.txt . 13
patient_list.txt . 13

Code Breakdown . 13
Data Retrieval . 13
Searching . 13

Helpful Hints . 15
License . 15
Contact . 16

1

Figure 1: Features of ROMOP

ROMOP

ROMOP is a flexible R package to interface with the Observational Health Data Sciences and Informatics
(OHDSI) OMOP Common Data Model. Briefly, OMOP is a standardized relational database schema for
Electronic Health Record (EHR) or Electronic Medical Record (EMR) data (i.e., patient data collected
during clinical visits to a health system). The main benefit of a standardized schema is that it allows for
interoperability between institutions, even if the underlying EHR vendors are disparate.

For a detailed description of the OMOP common data model, please visit this helpful wiki.

In its backend, OMOP relies on standardized data ontologies and metathesaureses, such as the Unified Medical
Language System (UMLS), and as such, the queries within ROMOP heavily rely on these vocabularies.
Athena is a great tool to better understand the concepts in these ontologies and identify ideal search terms of
interest.

Manuscript information:
Glicksberg BS, Oskotsky B, Giangreco Nˆ, Thangaraj PMˆ, Rudrapatna V, Datta D, Frazier R, Lee N,
Larsen R, Tatonetti NP, Butte1 AJ: ROMOP: a light-weight R package for interfacing with OMOP-formatted
Electronic Health Record data (in review)

Sandbox Server

The Centers for Medicare and Medicaid Services (CMS) have released a synthetic clinical dataset DE-SynPUF)
in the public domain with the aim of being reflective of the patient population but containing no protected
health information. The OHDSI group has underwent the task of converting these data into the OMOP CDM

2

https://www.ohdsi.org/
https://www.ohdsi.org/
https://www.ohdsi.org/data-standardization/
https://github.com/OHDSI/CommonDataModel/wiki
https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
http://athena.ohdsi.org/
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html
https://github.com/OHDSI/ETL-CMS

format. Users are certainly able to set up this configuration on their own system following the instructions
on the GitHub page. We obtained all data files from the OHDSI FTP server (accessed June 17th, 2018)
and created the CDM (DDL and indexes) according to their official instructions, but modified for MySQL.
For space considerations, we only uploaded one million rows of each of the data files. The sandbox server
is a Rshiny server running as an Elastic Compute Cloud (EC2) instance on Amazon Web Services (AWS)
querying a MySQL database server (AWS Aurora MySQL).

Requirements

Clinical Data

ROMOP requires EHR data to be in OMOP format and on a server accessible to by the user. In it’s
current form, ROMOP can connect to databases in MySQL using the RMySQL driver or many other formats,
including Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, Google BigQuery, and Microsoft
Parallel Data Warehouse, through utilization of the DatabaseConnector and SqlRender packages developed
by the OHDSI group (see below).

Users without access to EHR data might consider using synthetic public data following the instructions
provided by the OHDSI group here.

Programming Language

ROMOP is built in the R environment and developed on version 3.4.4 (2018-03-15).

ROMOP requires the following R packages:

• DBI (developed on version 1.0.0)
• data.table (developed on version 1.10.4-3).
• dplyr (developed on version 0.7.4).

Driver-specific:

• RMySQL (developed on version 0.10.14).
• DatabaseConnector (developed on version 2.2.0)
• DatabaseConnectorJars (developed on version 1.0.0)
• SqlRender (developed on version 1.5.2)

Installation

Download

ROMOP can be installed easily from github using the devtools package:

library(devtools)
install_github("BenGlicksberg/ROMOP")

Alternatively, the package can be downloaded directly from the github page and installed by the following
steps:

1. Unzip ROMOP-master.zip
2. R CMD INSTALL ROMOP-master

Please see the Setup section to properly configure the package to work.

3

https://github.com/OHDSI/ETL-CMS
ftp://ftp.ohdsi.org/synpuf
https://github.com/OHDSI/CommonDataModel/tree/master/PostgreSQL
https://github.com/OHDSI/ETL-CMS
https://cran.r-project.org/web/packages/DBI/index.html
https://cran.r-project.org/web/packages/data.table/data.table.pdf
https://dplyr.tidyverse.org/
https://cran.r-project.org/web/packages/RMySQL/index.html
https://cran.r-project.org/web/packages/DatabaseConnector/index.html
https://cran.r-project.org/web/packages/DatabaseConnectorJars/index.html
https://cran.r-project.org/web/packages/SqlRender/index.html
https://cran.r-project.org/web/packages/devtools/index.html
https://github.com/BenGlicksberg/ROMOP

Setup

Credentials

In accordance with best practices for storing sensitive information, credentials are not saved in plain text but
in the .Renviron file. A formatted .Renviron file is provided with the package with the following fields to fill
in:

driver = ""
host = ""
username = ""
password = ""
dbname = ""
port = "3306"

• driver (case insensitive): “mysql” for MySQL or (according to OHDSI DatabaseConnector package)
“postgresql” for PostgreSQL, “oracle” for Oracle, “sql server” for Microsoft SQL Server, “redshift” for
Amazon Redshift, “pdw” for Microsoft Parallel Data Warehouse, or “bigquery” for Google BigQuery.

• host (or server depending on database format)

• dbname: OMOP EHR database name (or schema depending on database format)

Note that this .Renviron file has to be in the same directory where R is launched. If already using an
.Renviron file, add this information to it.

Checks

With credentials correctly configured, the package can be loaded. ROMOP will now check for 3 conditions to
be met:

1. Check that the credentials exist and can be retrieved from .Renviron file:
requires driver, host, username, password, dbname, and port exist

2. Check that connection to OMOP EHR server and database can be made:
uses the above credentails

3. Check to ensure all required OMOP tables exist and contain (any) data:
the required tables are:

"concept","concept_ancestor","concept_relationship","condition_occurrence","death",
"device_exposure","drug_exposure","measurement","observation","person","procedure_occurrence","visit_occurrence"

• if any of the above tables are missing, a warning message will be produced and the package will not be
able to load properly.

• if any of the above tables exist, but do not contain any data, a warning message will be produced but
the package will still be able to function.

On start

Successfully pasing all checks will allow the user to begin using ROMOP.

1. Set an output directory to use with the changeOutDirectory function (note: the default output
directory will be declared on package load).

2. Create/load the Data ontology (required to decode data types) using the makeDataOntology. For the
first time running this package, the concept ontology will have to first be built, but if the store_ontology
option is selected, the ontology will be saved as an .rds file for subsequent loading.

4

https://github.com/OHDSI/DatabaseConnector

Functions

Utility

getDemographics

Description: Retrieves and formats patient demographic data from the person and death tables. Option to
restrict to patientlist of interest.

Usage: ptDemo <- getDemographics(patient_list=NULL,declare=TRUE)

Arguments:

patient_list comma-separated string of patient ids
a provdied patientlist will restrict search to ids. NULL will return demographic data for all available

patients

declare TRUE/FALSE
if TRUE, outputs status and updates to the screen

Value:

Returns a data.table with demographic data: person_id, birth_datetime, age, Gender, Race, Ethnicity,
death_date, Status (Alive/Deceased)

Details:

• patient_list should be in the following format: “patient_id_1, patient_id_2, . . . ”

getEncounters

Description: Retrieves and formats patient encounter data from the visit_occurrence table. Requires
patientlist input.

Usage: ptEncs <- getEncounters(patient_list,declare=TRUE)

Arguments:

patient_list comma-separated string of patient ids
searches for all encounter data for the patientlist inout.

declare TRUE/FALSE
if TRUE, outputs status and updates to the screen

Value:

Returns a data.table with encounter data: person_id, visit_occurrence_id, visit_start_datetime,
visit_end_datetime, visit_source_value, visit_concept, visit_source_concept, admitting_concept,
discharge_concept

Details:

• patient_list should be in the following format: “patient_id_1, patient_id_2, . . . ”

5

getClinicalData

Description: Retrieves all relevant clinical data for individuals in a patientlist. Wrapper for domain-specific
getData functions (which can also be used separately).

Usage: ptClinicalData <- getClinicalData(patient_list, declare=TRUE)

Arguments:

patient_list comma-separated string of patient ids
a provdied patientlist will restrict search to ids. NULL will return demographic data for all available

patients

declare TRUE/FALSE
if TRUE, outputs status and updates to the screen

Value:
Returns a list of data.tables stratified by domain type (e.g., ptClinicalData$Condition, ptClinical-

Data$Observation, etc. . .)

Details:

• patient_list should be in the following format: “patient_id_1, patient_id_2, . . . ”

• getClinicalData calls domain-specific getData functions for the following domains: Observation,
Condition, Procedure, Medication (Drug), Measurement, and Device. Each function can also be run
individually (e.g, getConditions; getMedications).

• In addition to datetimes, visit_occurrence_ids, _concept_ids and _source_concept_ids, other domain-
specific concepts and values are retrieved and mapped:
– Observation: observation_type_concept, value_as_number, value_as_string, value_as_concept,

unit_source_value

– Condition: condition_type_concept, condition_status

– Procedure: procedure_type_concept, quantity,

– Medication: drug_type_concept, stop_reason, refills, quantity, days_supply, sig, route_concept,
effective_drug_dose, dose_unit_concept, route_source_value, frequency, frequency_unit,
rx_quantity_unit_source_value

– Measurement: measurement_type_concept, value_as_number, value_as_concept, unit_concept
– Device: device_type_concept

findPatients

Description: Main function to identify patients based on clinical data inclusion (and exclusion, if desired)
criteria. Flexible to allow for multiple data types, vocabularies, and concepts.

Usage: patientlist <- findPatients(strategy_in=“mapped”, vocabulary_in, codes_in, function_in =
“or”, strategy_out = NULL, vocabulary_out = NULL, codes_out = NULL, function_out = NULL, de-
clare=FALSE, save=FALSE, out_name=NULL)

Arguments:

strategy_in mapped or direct
dictates the strategy for how inclusion criteria are treated (see Details).

6

vocabulary_in vocabularies for inclusion criteria
comma-separated string of relevant vocabularies for inclusion criteria (see Details).

codes_in specific concept codes for inclusion criteria
semi-colon separated string of code concepts for inclusion criteria, corresponding to the order for

vocabulary_in. Multiple codes can be used per vocabulary and should be comma-separated (see Details).

function_in and or or
dictates how multiple inclusion should be treated. and necessitates that all inclusion criteria are met

(i.e., intersection), while or allows for any critera to be met (i.e., union) (see Details).

strategy_out mapped or direct or NULL (default)
dictates the strategy for how exclusion are treated. NULL indicates no exclusion criteria.

vocabulary_out vocabularies for exclusion criteria or NULL (default)
comma-separated string of relevant vocabularies for exclusion criteria. NULL indicates no exclusion

criteria.

codes_out specific concept codes for exclusion criteria or NULL (default)
semi-colon separated string of code concepts for inclusion criteria, corresponding to the order for

vocabulary_out. Multiple codes can be used per vocabulary and should be comma-separated. NULL indicates
no exclusion criteria.

function_out and or or or NULL
dictates how multiple exclusion should be treated. and necessitates that all exclusion criteria are

met (i.e., intersection), while or allows for any critera to be met (i.e., union). NULL indicates no exclusion
criteria.

declare TRUE/FALSE
if TRUE, outputs status and updates to the screen.

save TRUE/FALSE
if TRUE, various query output saved to outDirectory (see Details).

out_name name assigned to search query or NULL
if save == TRUE, saves query using provided name. If the provided name already exists as a directory

(or is NULL), the directory defaults to datetime name (see Details).

Value:
Returns a list of patients that meet inclusion criteria (and not exclusion criteria if entered).

Details:

• direct strategy queries the concepts directly by _source_concept in clinical tables. mapped maps to com-
mon ontology (via concept_synonym) and identifies relevant descendants (via concept_ancestor)
to search for in _concept fields.

• the exploreConcepts function can be used to find ideal concepts to search for.

• vocabulary_ input for multiple inputs should use relevant vocabularies (see showDataTypes) as a
comma-separated string, e.g., “ATC, ICD10CM, SNOMED”.

• codes_ input correspond to the order as the vocabulary_ input and should be semi-comma separated
string in the same order as above. Multiple terms per vocabulary type should be comma-separated.
e.g., “A01A; K50, K51; 235599003” correspond to “A01A” for ATC, “K50” and “K51” for ICD10CM,
and “235599003” for SNOMED.

• function_ corresponds to how criteria should be treated. and necessitates patients meet all criteria
while or allows for patients to meet any of the criteria.

• Please note that if no standard common concepts are found per search domain, a warning message will
appear and the search will not be able to be performed (see Helpful Hints for more details.)

• if save == TRUE, the following information is saved in a directory per query:

7

– query: all arguments for the search.
– _criteria_mapped: all original criteria for inclusion (and exclusion if applicable) that are mapped

to dataOntology.
– criteria_mapped_concepts: all mapped concepts used for inclusion (and exclusion if applicable)

that are used to search in clinical data tables. Additionally, the pt_count column displays the
number of unique patients that have a record with the corresponding concept.

– outcome: results of the search (most relevant when exclusion criteria are applied).

– patient_list: list of patients that meet inclusion (and not exclusion, if applicable) criteria.

Misc.

changeOutDirectory

Description: Sets the current outDirectory which will store the Data Ontology and all function output.
Option to create directory if does not exist.

Usage: changeOutDirectory(outdir=“path/to/directory”, create=FALSE)

Arguments:
outdir directory path

create TRUE/FALSE
will create the directory if it does not exist

Value:
Nothing returned; simply sets (and creates if set to) output directory

Details:

• If directory does not exist and create=FALSE, a warning message will appear and the output directory
will not be changed.

makeDataOntology

Description: Creates general Data Ontology used by all data tables from the concept table. Option to
save/load.

Usage: dataOntology <- makeDataOntology(declare=TRUE,store_ontology=FALSE)

Arguments:
declare TRUE/FALSE

if TRUE, outputs status and updates to the screen

store_ontology TRUE/FALSE
if TRUE, will save/load the ontology instead of active querying

Value:
Returns a data.table with concept data.

Details:

• Generating the Data Ontology takes ~31.2 secs and is ~491.6 Mb.

• If declare == TRUE, the following information will be returned:

8

Retrieving concept data...
Concept data loaded; data found for:
unique domains.
unique vocabularies.
unique concept classes.

• If store_ontology == TRUE, attempts to load from memory (in the outDirectory) and saves if does
not exist (~53 Mb). Loading takes ~8 secs.

summarizeDemographics

Description: Summarizes patient demographic data from the getDemographics function.

Usage: summarizeDemographics(ptDemo)

Arguments:

ptDemo patient demographics table
ptDemo is the patient demographics object from the getDemographics function output

Value:

N/A; outputs message with descriptive summary statistics for the relevant patient demographic data.

showDataTypes

Description: Details relevant vocabularies per domain. Requires dataOntology to have been created (via
makeDataOntology).

Usage: showDataTypes()

Arguments:

N/A

Value:

Returns a table of vocabularies contained within clinical domains: Condition, Observation, Measurement,
Device, Procedure, Drug.

exploreConcepts

Description: For given vocabulary and concept, returns the mapped standard concept(s) as well as decendent
concept(s)

Usage: conceptsInfo <- exploreConcepts(vocabulary, codes)

Arguments:

vocabulary vocabulary
comma-separated string of relevant vocabularies for inclusion criteria (see Details).

codes concept codes
semi-colon separated string of code concepts for inclusion criteria, corresponding to the order for

vocabulary. Multiple codes can be used per vocabulary and should be comma-separated (see Details).

Value:

9

Returns a table of concepts contained under (i.e., below in the heirarchy) the query concept.

Details:

• vocabulary input for multiple inputs should use relevant vocabularies (see showDataTypes) as a
comma-separated string, e.g., “ATC, ICD10CM”.

• codes input correspond to the order as the vocabulary input and should be semi-comma separated
string in the same order as above. Multiple terms per vocabulary type should be comma-separated.
e.g., “A01A; K50, K51” correspond to “A01A” for ATC and “K50” and “K51” for ICD10CM.

Examples

Both simple and advanced findPatients queries will be outlined. See the Output section for description
of output if save == TRUE. For the process timing provided, all queries were run on an Amazon Elastic
Compute Cloud (EC2) instance.

Simple

1. Disease category (ICD10CM): find all “Type 2 Diabetes Mellitus” patients (E11)

Here we will set a single inclusion criterion. The inclusion vocbulary is set to ICD10CM and the inclusion
code is E11 corresponding to the vocabulary. Because the inclusion strategy is set as “mapped”, ROMOP
will map the ICD10CM code to a common ontology (SNOMED) term and find all descendants to search for
(see Code Breakdown for details on how this works).

query

patient_list = findPatients(strategy_in="mapped", vocabulary_in = "ICD10CM", codes_in = "E11")

time: 15.3 secs

2. Specific disease (ICD9CM): find all patients with “Diabetes with ketoacidosis, type I [juvenile type],
not stated as uncontrolled” only (250.11)

Here we will search for patients that have the specific ICD9CM code 250.11 only, i.e., not map to common
ontology (see Code Breakdown for the importance of this distiction).

query

patient_list = findPatients(strategy_in="direct", vocabulary_in = "ICD9CM", codes_in = "250.11")

time: 1.1 min

3. Multiple diseases (ICD10CM): find all patients with “Essential (primary) hypertension” (I10) and
“Angina pectoris with documented spasm” (I20.1)

Here we will search for patients that have the multiple ICD10CM codes. While we put a single inclusion
vocabulary, we will put two inclusion codes separated by a comma. Also we set the inclusion function to
“and” which requires both criteria to be met.

query

patient_list = findPatients(strategy_in="mapped", vocabulary_in = "ICD10CM", codes_in = "I10, I20.1", function_in = "and")

10

time: 23.8 secs

4. Drug class (ATC): find all patients prescribed with any “Serotonin receptor antagonists” (A03AE)

Here we will search for patients by drug ATC code. As the inclusion strategy is set to “mapped”, all drugs
that fall into this category will automatically be identified and searched for (see Code Breakdown for details
on how this works).

query

patient_list = findPatients(strategy_in="mapped", vocabulary_in = "ATC", codes_in = "A03AE")

time: 1.1 secs

5. Disease category (ICD10CM) but not Drug (MeSH): find all patients with “Other anxiety disorders”
(F31), but not prescribed with “Clonazepam” (D002998)

Here we will search for patients by ICD10CM code as before. We also identify all patients prescribed with
the MeSH term for “Clonazepam”, which will be removed from the original list.

query

patient_list = findPatients(strategy_in="mapped", vocabulary_in = "ICD10CM", codes_in = "F41", strategy_out="mapped", vocabulary_out = "MeSH", codes_out = "D002998", function_out = "and")

time: 16.5 secs

Advanced

1. Multiple disease categories (ICD10CM) and lab test (LOINC) but not multiple disease categories
(ICD10CM) nor drug class (RxNorm): find all patients with “Crohn’s disease” (F31) and “Malignant
neoplasm of prostate” (C61) with “CBC W Auto Differential panel - Blood” (57021-8), but not
“Gastroenteritis and colitis due to radiation” (K52.0) nor “Allergic and dietetic gastroenteritis and
colitis” (K52.2) nor prescribed with any “Aminosalicylate” (113374)

Here we will search for patients by ICD10CM code as before. We also identify all patients prescribed with
the MeSH term for “Clonazepam”, which will be removed from the original list.

query

vocabulary_in = "ICD10CM, LOINC"
codes_in = "K50;C61, 57021-8"
vocabulary_out = "ICD10CM, RxNorm"
codes_out = "K52.0; K52.2, 113374"

patient_list = findPatients(strategy_in="mapped", vocabulary_in = vocabulary_in, codes_in = codes_in, function_in = "and", strategy_out="mapped", vocabulary_out = vocabulary_out, codes_out = codes_out, function_out = "or")

time: 5.9 mins

Output

All output is saved in the output directory (use changeOutDirectory to set). Additionally, the data ontology
file will be loaded from here and saved if set to using the makeDataOntology](#makedataontology) function.

11

If save==TRUE is selected for findPatients queries, various information will be saved in a created query-
specific directory within the outDirectory:
+ query: all arguments for the search. + _criteria_mapped: all original criteria for inclusion (and exclusion
if applicable) that are mapped to dataOntology. + criteria_mapped_concepts: all mapped concepts used
for inclusion (and exclusion if applicable) that are used to search in clinical data tables. Additionally, the
pt_count column displays the number of unique patients that have a record with the corresponding concept.
+ outcome: results of the search (most relevant when exclusion criteria are applied).
+ patient_list: list of patients that meet inclusion (and not exclusion, if applicable) criteria.

We will detail the respective output files that are derived from Simple Examples #5:

query.txt

cat query.txt

inclusion strategy: mapped
inclusion vocabularies: ICD10CM
inclusion codes: F41
inclusion function: or
exclusion strategy: mapped
exclusion vocabularies: MeSH
exclusion codes: D002998
exclusion function: and

inclusion_criteria_mapped.txt

cat inclusion_criteria_mapped.txt

codes vocabularies concept_id concept_name domain_id vocabulary_id concept_class_id
F41 ICD10CM 1568230 Other anxiety disorders Condition ICD10CM 3-char nonbill code

inclusion_criteria_mapped_concepts.txt

head inclusion_criteria_mapped_concepts.txt

descendant_concept_id ancestor_concept_id concept_name domain_id vocabulary_id concept_class_id concept_code pt_count
381537 442077 Organic anxiety disorder Condition SNOMED Clinical Finding 17496003 NA
432600 442077 Stress reaction causing mixed disturbance of emotion and conduct Condition SNOMED Clinical Finding 192044009 NA
433178 442077 Anxiety disorder of childhood OR adolescence Condition SNOMED Clinical Finding 109006 NA
434613 442077 Generalized anxiety disorder Condition SNOMED Clinical Finding 21897009 NA
434628 442077 Separation anxiety Condition SNOMED Clinical Finding 126943008 NA
436074 442077 Panic disorder Condition SNOMED Clinical Finding 371631005 NA
436390 442077 Psychogenic rumination Condition SNOMED Clinical Finding 192014006 NA
436676 442077 Posttraumatic stress disorder Condition SNOMED Clinical Finding 47505003 NA
437537 442077 Shyness disorder of childhood Condition SNOMED Clinical Finding 83253003 NA

exclusion_criteria_mapped.txt

cat exclusion_criteria_mapped.txt

codes vocabularies concept_id concept_name domain_id vocabulary_id concept_class_id
D002998 MeSH 45612901 Clonazepam Drug MeSH Main Heading

12

exclusion_criteria_mapped_concepts.txt

head exclusion_criteria_mapped_concepts.txt

descendant_concept_id ancestor_concept_id concept_name domain_id vocabulary_id concept_class_id concept_code pt_count
798874 798874 Clonazepam Drug RxNorm Ingredient 2598 NA
798875 798874 Clonazepam 0.5 MG Oral Tablet Drug RxNorm Clinical Drug 197527 NA
798876 798874 Clonazepam 1 MG Oral Tablet Drug RxNorm Clinical Drug 197528 NA
798877 798874 Clonazepam 2 MG Oral Tablet Drug RxNorm Clinical Drug 197529 NA
798893 798874 Clonazepam 0.125 MG Oral Tablet [Klonopin] Drug RxNorm Branded Drug 211761 NA
798894 798874 Clonazepam 0.25 MG Oral Tablet [Klonopin] Drug RxNorm Branded Drug 211762 NA
798896 798874 Clonazepam 1 MG/ML Injectable Solution Drug RxNorm Clinical Drug 249943 NA
798897 798874 Clonazepam 0.5 MG Drug RxNorm Clinical Drug Comp 315699 NA
798899 798874 Clonazepam 2 MG Drug RxNorm Clinical Drug Comp 317336 NA

outcome.txt

cat outcome.txt

patients found from the inclusion criteria ONLY.
patients found from the exclusion criteria ONLY.
overlapping patients excluded from the original inclusion input based on the exclusion criteria.
patients found that meet the inclusion and exclusion criteria.

patient_list.txt

head patient_list.txt

patient_list
1
2
3

Code Breakdown

ROMOP first requires the creation a data dictionary (using makeDataOntology function) of the ontology
(from concept table) that is referenced and utilized to map to all concepts for all functions. Using this
ontology, all searches and extractions are optimized to only query tables in which the data could be found.

Data Retrieval

The majority of data in clinical tables are stored as concepts. When data is extracted, ROMOP first maps
the relevant concepts (e.g., device_type_concept_id) to the data dictionary and then returns the mapped
concepts to the user.

Searching

In the OMOP data structure, there is a distinction between how concepts are recorded and what can be
directly searched for. For instance, if the user is interested in the medication idelalisib, it is not possible
to directly identify records by searching for the general concept (e.g., RxNorm code 1544460) as the data
are recorded by the bottom-most (i.e., most specific) concepts of the hierarchy (e.g., idelalisib 150 MG
Delayed Release Oral Tablet). The hierarchical structure of these concepts in the OMOP CDM back-end,

13

Figure 2: Workflow of ROMOP functionality

14

however, facilitates more powerful searches. In most extracted EHR systems, the user has to define all
medications to search, for instance through a pre-populated list or by wildcard string matching (e.g., all
drug names LIKE “%statin%”). This strategy is ultimately not ideal as it is not extensible to other systems
(e.g., one system might prescribe a version or formulation of a drug that is in not in another) and requires
extensive manual quality-control (e.g., removing “nystatin” drugs from the string matching results). For the
findPatients function, if the “mapped” option is selected, searching for a broad code like ATC level 3 code
A05A (bile therapies), or even a specific term code like RxNorm code 1544460 for idelalisib, will automatically
identify and query for all bottom-level (e.g., idelalisib 150 MG Delayed Release Oral Tablet) codes contained
underneath that seed concept. This works by ROMOP first mapping the initial search criteria to a standard
concept (SNOMED or RxNorm) and finding all descendants underneath it. Another benefit to this “mapped”
option is that terms are not reliant on how the data were originally entered. For instance, if a health system
switches from ICD-9CM to ICD-10CM coding, there might be discrepancies in prevalence of codes over time.
Mapping to a common concept, however, often alleviates this issue as codes from both vocabularies are
typically linked to a common code in the standard vocabulary. Of course the user can search for the concepts
they entered only using the “direct” option (i.e., search for ICD-9CM code 230.0 only).

Helpful Hints

• We recommend using the mapped argument for the findPatients function because the concepts will
not depend on by which format the data was entered (i.e., the source_concept). This is important as
diffierent institutions may utilize different underlying terminologies, as well as switch primary data entry
vocabularies over time (i.e., the switch from ICD-9 to ICD-10). For example, if the user is interested in
“Trigeminal neuralgia”, using the ICD-10 code “G50.1” with the direct argument, all prior entries that
utilized the corresponding ICD-9 code (“350.1”) most likely will not be found as many data warehouses
do not “back-map” codes. Using the mapped argument will bypass this issue as the standard concept
will be used which should capture both options.

• Standard vocabularies: while the OMOP common data model utilizes many ontologies, SNOMED
and RxNorm are used primarily for common concepts in the clincal data tables. As such, while any
vocabulary can be used for findPatients, the mapped function will only be able to find data contained
within the following common concepts per domain:

domain_type concepts
1 Measurement LOINC,SNOMED,CPT4
2 Condition SNOMED
3 Drug RxNorm,CPT4,NDC
4 Observation SNOMED,CPT4,LOINC,HCPCS
5 Device SNOMED,HCPCS
6 Procedure SNOMED,CPT4,HCPCS

Consequently, if inclusion/exclusion criteria can be be mapped to the data ontology, but no syn-
onym/descendants are contained within the above common concepts, no search will be performed (as no
patients would be returned). This most directly affects searching for Drug concepts, in which we reccommend
not using standard common concepts (e.g., RxNorm, ATC) for search criteria.

• To ensure complete capture of data concepts of interest, we recommend identifying multiple vocabu-
lary/codes to use using the Athena resource. For instance, if interested in finding all individuals taking
a Benzodiazepine, consider using both the relevant ATC classes (e.g., N03AE) as well as the relevant
Substance (SNOMED) codes (e.g., 16047007). The exploreConcepts function can be used to identify
and prioiritize which codes are optimal to use.

License

MIT License

15

http://athena.ohdsi.org/search-terms/terms

Copyright (c) 2018 Benjamin S. Glicksberg

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Contact

For questions, comments, errors, bug reports, or issues, please contact: benjamin.glicksberg@ucsf.edu
For general correspondance, please contact: atul.butte@ucsf.edu

16

mailto:benjamin.glicksberg@ucsf.edu
mailto:atul.butte@ucsf.edu

	ROMOP
	Sandbox Server
	Requirements
	Clinical Data
	Programming Language

	Installation
	Download
	Setup
	Credentials
	Checks
	On start

	Functions
	Utility
	getDemographics
	getEncounters
	getClinicalData
	findPatients

	Misc.
	changeOutDirectory
	makeDataOntology
	summarizeDemographics
	showDataTypes
	exploreConcepts

	Examples
	Simple
	Advanced

	Output
	query.txt
	inclusion_criteria_mapped.txt
	inclusion_criteria_mapped_concepts.txt
	exclusion_criteria_mapped.txt
	exclusion_criteria_mapped_concepts.txt
	outcome.txt
	patient_list.txt

	Code Breakdown
	Data Retrieval
	Searching

	Helpful Hints
	License
	Contact

