Supplementary information

Determinants of target prioritization and regulatory hierarchy for the bacterial small RNA SgrS

Maksym Bobrovskyy^{1,2}, Muhammad S. Azam¹, Jane K. Frandsen^{3,4,5}, Jichuan Zhang⁶, Anustup Poddar⁶, Xiangqian Ma¹, Tina M. Henkin³, Taekjip Ha^{6,7} and Carin K. Vanderpool^{1*}

 ¹Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, Illinois 61801
²Present address: Department of Microbiology, The University of Chicago, 920 E. 58th St., Chicago, Illinois 60637
³Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
⁴Biochemistry Program, The Ohio State University, Columbus, OH 43210
⁵Present address: Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, USA 16802
⁶Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA 21205
⁷Howard Hughes Medical Institute, Baltimore, Maryland, USA 21205

*Corresponding author Carin K. Vanderpool, Ph.D. (t) 217-333-7033 (f) 217-244-6697 <u>cvanderp@illinois.edu</u>

Plasmid	Vector	Genotype	Source or Reference	
pLCV1	pHDB3	P _{lac} -sgrS	Vanderpool <i>et al.</i> , 2004	
pHDB3	pBR322 derivative	vector control	Wadler <i>et al.</i> , 2009	
pZAMB1	pZA31R	P _{Ltet0-1} -sgrS	Bobrovskyy et al., 2016	
pZEMB8	pZE12S	P _{Llac0-1} -ptsG-gfpsf	Bobrovskyy et al., 2016	
pZEMB10	pZEMB8	P _{Llac0-1} -manX-gfpsf	This study	
pZEMB15	pZEMB8	P _{Llac0-1} -yigL-gfpsf	This study	
pZEMB25	pZEMB8	P _{Llac0-1} -purR-gfpsf	Bobrovskyy et al., 2016	
pZEMB26	pZEMB8	P _{Llac0-1} -asdl-gfpsf	This study	
pZEMB27	pZEMB8	P _{Llac0-1} -asdl-II-gfpsf	This study	
Strain	Background	Genotype	Source or Reference	
BW14894	BL21 (DE3)	∆lac X74, Δphn33-30	G. M. Yakovleva, et al., 1998	
CV104	DJ480	∆lac X74, mal∷lacl ^q , ∆sgrS∷kan	C. K. Vanderpool, S. Gottesman, 2004	
DJ480	MG1655	∆lac X74	D. Jin, NCI	
DJS2411		hfq Q8A	S. Gottesman, NCI	
DJS2420		hfq Y25D	S. Gottesman, NCI	
JH111	CS104	λattB::lacl ^q - PN25tet ^R -spec ^R	Wadler et al., 2007	
MB170	PM1203	pBAD- <i>asdI-'lacZ</i> , λattB:: <i>lacIq-</i> PN25 <i>tet^R-spec^R</i>	This study	
MB171	PM1203	pBAD-asdl-II-'lacZ, λattB::laclq- PN25tet ^R -spec ^R	This study	
MB183	PM1203	pBAD-asdII-'lacZ, λattB::laclq- PN25tet ^R -spec ^R	This study	
NM200	MG1655	Δlac X74, mini λ :: <i>cat</i>	N. Majdalani, NCI	
PM1205	PM1203	<i>lacl</i> ':: P _{BAD} -cat-sacB-lacZ, miniλtet ^R , ∆araBAD araC+, mal::lacl ^q	Mandin et al., 2009	
SA1408	NM2000	hfq::cat-sacB, mal::lacIq	This study	
SA1410	NM2000	hfq R16A	This study	
TK310	MG1655	$\Delta cyaA \Delta cpdA \Delta lacY$	T. Kuhlman, et al., 2007	
XM102	JH111	Δ sgrS, hfq::cat-sacB, mal::lacl ^q	This study	
XM105	XM102	pSIM6	This study	
XM106	JH111	hfq Q8A	This study	
XM107	JH111	hfq Y25D	This study	
XM108	JH111	hfq Q8A	This study	

Table S1. Strains and plasmids used in this study.

Oligo	Description	Sequence 5'-3'
MBP84F	T7 forward primer for <i>in vitro</i> transcription <i>ptsG</i> (+1)	TAATACGACTCACTATAGGATAAATAAAGGGCGCTTA GATGCCCTG
MBP213R	reverse primer for <i>in vitro</i> transcription <i>ptsG</i> (+240)	TGCGATACAACGGCGGGC
O-JH218	T7 forward primer for <i>in vitro</i> transcription <i>manX</i> (+1)	TAATACGACTCACTATAGGGGATGAAGCAAGGGGGT GCCCCATG
MBP214R	reverse primer for <i>in vitro</i> transcription <i>manX</i> (+240)	GCATTTTCACCTGGAACGAAATCGATCC
MBP56F	T7 forward primer for <i>in vitro</i> transcription <i>asd</i> (+1)	TAATACGACTCACTATAGGATGTGCCAAGAGGAGAC CGG
MBP215R	reverse primer for <i>in vitro</i> transcription <i>asdI-II</i> (+240)	AGATCAAAGGCATCCTGAAGTGTGC
MBP222R	reverse primer for <i>in vitro</i> transcription <i>asdl</i> (+110)	GAACGGAGCCGACCATACCG
MBP226F	T7 forward primer for <i>in vitro</i> transcription <i>asdll</i> (+51)	TAATACGACTCACTATAGGGTTGGTTTTATCGGCTGG CGCG
MBP226R	reverse primer for <i>in vitro</i> transcription <i>asdll</i> (+310)	TGGATAGATTTCGTTGGTATAATCGCCGCC
MBP225F	T7 forward primer for <i>in vitro</i> transcription <i>yigL</i> (-250 relative to <i>yigL</i> start codon)	TAATACGACTCACTATAGGCCAACGCTTCTCTTGCAG GC
MBP216R	reverse primer for <i>in vitro</i> transcription <i>yigL</i> (+50 relative to <i>yigL</i> start codon)	TCGGGAGAAAGTAACGTGCCATC
MBP65F	T7 forward primer for <i>in vitro</i> transcription <i>purR</i> (+1)	TAATACGACTCACTATAGGTACACTATTTGCGTACTG GCCATTGACC
MBP174R	reverse primer for <i>in vitro</i> transcription <i>purR</i> (+290)	TGTTTTGTTGATCACGTGTGACACAGTTGT
MBP16F2	forward primer for <i>yigL</i> cloning to make pZEMB15	CCCCGAATTCGAACGCGTGGTGGATAACCGCATG
MBP16R41	reverse primer for <i>yigL</i> cloning to make pZEMB15	CCCCGGTACCCGCAAACACAAAGTTGATGCCGCG
MBP2F	forward primer for <i>manX</i> cloning to make pZEMB10	CCCCGAATTCGCGAAACGCAGGGGTTTTTGGTTG
MBP2R34	reverse primer for <i>manX</i> cloning to make pZEMB10	CCCCGGTACCGATCCAGCCGACGTTTTCCTGCTC
MBP92F	forward primer for <i>asd</i> cloning to make pZEMB26 or pZEMB27	CCCCGAATTCATGTGCCAAGAGGAGACCGG
MBP92R1	reverse primer for <i>asdl</i> cloning to make pZEMB26	CCCCGGTACCCTGAGAAGTAGAAAAGAAGACAGGG CG
MBP92R2	reverse primer for <i>asdI-II</i> cloning to make pZEMB27	CCCCGGTACCCATACCGCGCCAGCCGATAAAAC
MBP151F	forward primer for cloning <i>asd</i> into PM1205	ACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTC CATATGTGCCAAGAGGAGACCGG
MBP151R	reverse primer for cloning asdl into PM1205	TAACGCCAGGTTTTCCCAGTCACGACGTTGTAAAAC GACCATAAGCGTTTTTTCCTGCAAAGATGTGTGCTG
MBP193F	Forward primer for cloning asdII into PM1205	ACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTC CATCTTTGCAGGAAAAAAACGCT

Table S2. Oligonucleotides used in this study.

MBP193R	Reverse primer for cloning	TAACGCCAGGTTTTCCCAGTCACGACGTTGTAAAAC
	asdI-II and asdII into PM1205	GACGGCGTCGAAGTCGCGCTC
SgrS	SgrS probes for smFISH	GTGCTGATAAAACTGACGCA
		CATGGTTAATCGTTGTGGGA
		ATCCCACTGCATCAGTCCTT
		GTCAACTTTCAGAATTGCGG
		TCAGTCACACATGATGCAGG
		GCGGGTGATTTTACACCAAT
lac7	/ac7 probes for smFISH	
		TATTACGCCAGCTGGCGAAA
		AGTATCGGCCTCAGGAAGAT
		AATGTGAGCGAGTAACAACC
		AGATGAAACGCCGAGTTAAC
		TTTCGACGTTCAGACGTAGT
		ACCATTTTCAATCCGCACCT
		TCTGCTCATCCATGACCTGA
		TGGTTCGGATAATGCGAACA
		AAACGGGGATACTGACGAAA
		TCGGCGTATCGCCAAAATCA
		ACGGAACTGGAAAAACTGCT
		TTTACCTTGTGGAGCGACAT
		TACGCCAATGTCGTTATCCA
		GTAATCGCCATTTGACCACT
		ATAATTCAATTCGCGCGTCC
1	sgrS qPCR forward primer	GCTTGAAGGACTGATGCAGTGGGATGACCGC
2	sgrS qPCR reverse primer	
3	ptsG-1 qPCR forward primer	
4	ptsG-2 qPCR forward primer	
6	<i>ptsG-2</i> qPCR reverse primer	
7	<i>ptsG-3</i> gPCR forward primer	TGGTTGCTGCATTTGGTGGT
8	<i>ptsG-3</i> gPCR reverse primer	GCCGGCCTGATCCACTTTAG
9	<i>yigL</i> qPCR forward primer	CTAACGTTTATCGCGACGACG
10	yigL qPCR reverse primer	CAGGCTCATACAGCGCATATT
11	<i>manXYZ</i> qPCR forward primer	CTCGACACCACTAAAGGCGTGCTG
12	manXYZ qPCR reverse primer	CGTTTCCACGAGCATTGGAATGTTAACG

13	rrsAqPCR forward primer	AGGCCTTCGGGTTGTAAAGT
14	rrsAqPCR reverse primer	ATTCCGATTAACGCTTGCAC
SA035	forward primer for amplification of <i>hfq</i> variants	AAGCGGCAGATAACCTGGCT
SA036	reverse primer for amplification of <i>hfq</i> variants	GTGTACCAGTACCGCCTGCT

Figure S1. Inducer concentration-dependent activity and regulation of the target-sf*gfp* **fusions.** A) Plots of *ptsG-sfgfp* translational fusion activity (RFU) over optical density of the culture (OD₆₀₀) at various IPTG inducer concentrations at A) basal (0 ng/ml aTc) or B-F) increasing SgrS expression levels (10-50 ng/ml aTc). Slopes of the linear regression plots for each IPTG concentration were calculated to obtain "basal activity" (0 ng/ml aTc) and "regulated activity" (10-50 ng/ml aTc) values. G) Basal activity (0 ng/ml aTc) or H-L) regulated activity (10-50 ng/ml aTc) of *ptsG*, *manX*, *purR*, *asdI*, *asdI-II* and *yigL* fused to *sfgfp* reporter at varying IPTG concentrations (0-1.5 mM IPTG).

2.0 1.5 1.0 **-** 126 - 118 110 **--** 119 **-** 127 111 SHAPE Reactivity **-** 125 **-** 128 117 0.2-0.0| 0 2 1 3 [SgrS] (µM)

I

Figure S2. SHAPE analysis of *asdl-II* **RNA.** A-G) SHAPE reactivity of the *asdl-II* RNA alone and in complex with increasing concentrations of SgrS (0.5, 1, 2, 5, 10, or 20X). The structure of the *asdl-II* RNA in the absence and presence of SgrS was probed with NMIA and the modified RNA was analyzed by primer extension inhibition. SHAPE reactivity is the difference between the frequency of primer extension products at each nucleotide in +NMIA vs. -NMIA samples. Colors indicate SHAPE reactivity as following: red, highly reactive (\geq 0.8); gold, reactive (0.4-0.79); green, moderately reactive (0.2-0.39); blue, minimally reactive (0.1-0.19); grey, unreactive (< 0.01). H) Relative SHAPE reactivity of the *asdl-II* RNA in the presence of wild-type vs mutant SgrS. Relative reactivity is the difference in the SHAPE reactivity in the presence of wild-type and mutant SgrS. Error bars denote SEM, n = 9. The *asdl-II* RNA nucleotides are numbered below the X-axis and the SgrS binding sites are indicated. I-J) SHAPE reactivity as a function of mutant SgrS concentration for binding site I (I) and site II (J). The same nucleotides as in Fig. 5D are shown. Error bars denote SEM, n = 6.

Figure S3. Quantification of SgrS and *asd* mRNA variants using STORM. Copy number of *lacZ* mRNA vs. SgrS sRNA in 30-250 individual cells for the different *asd-lacZ* variants, (A-B) *asdl-lacZ*, (C-D) *asdll-lacZ*, and (E-F) *asdl-ll-lacZ*, before (A,C,E) and after (B,D,F) 10 min 1% αMG induction.

Figure S4. Inducer concentration-dependent activity of target-sf*gfp* fusions in the Hfq mutant strains. Basal activity (0 ng/ml aTc) or regulated activity (50 ng/ml aTc) of *ptsG*, *manX*, *purR*, *asdI*, and *yigL* fusions plotted as a function of IPTG concentrations (0, 0.1, 0.25, 0.5 and 1 mM IPTG) for A, B) wild-type, C, D) Hfq^{Q8A}, E, F) Hfq^{Y25D} and G, H) Hfq^{R16A} strains. Regulated activity plotted as a function of basal activity for I) *ptsG*, J) *manX*, K) *purR*, L) *asdI*, and M) *yigL* fused to *sfgfp* reporter gene in wild-type, Hfq^{Q8A}, Hfq^{Y25D} and Hfq^{R16A} strains. The plots with slopes =1 indicate lack of SgrS regulation, <1 indicate repression and >1 indicate activation by SgrS.

Figure S5. Inducer concentration-dependent activity of target-sf*gfp* fusions in the *rne701* mutant strain. A) Basal activity (0 ng/ml aTc) or B-F) regulated activity (20-100 ng/ml aTc) of *ptsG*, *manX*, *purR*, *asdI*, *asdI-II* and *yigL* fusions plotted as a function of IPTG concentrations (0, 0.1, 0.25, 0.5, 1 and 1.5 mM IPTG). Regulated activity plotted as a function of basal activity for G) *ptsG*, H) *manX*, I) *purR*, J) *asdI*, K) *asdI-II* and L) *yigL* fused to *sfgfp* reporter gene in the *rne701* mutant strain. The plots with slopes =1 indicate lack of SgrS regulation, <1 indicate repression and >1 indicate activation by SgrS.