Supplemental Information: Lytic transglycosylases RIpA and MItC assist in *Vibrio cholerae* daughter cell separation

Anna I. Weaver^{1,2}, Valeria Jiménez-Ruiz¹, Srikar R. Tallavajhala¹, Brett P. Ransegnola¹, Kimberly Q. Wong¹, and Tobias Dörr^{1,2,3a}

¹ Weill Institute for Cell and Molecular Biology, Cornell, University, Ithaca, NY 14853, USA
² Department of Microbiology, Cornell University, Ithaca NY 14853, USA
³ Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca NY 14853, USA

^a corresponding author: tdoerr@cornell.edu

Fig S1. \triangle 6 LTG exhibits a mild morphological defect and *mltG-, rlpA-* exhibit no plating defects.

A) Cultures of WT and $\triangle 6$ LTG were grown in LB at 37 °C for 5 hrs and imaged on agarose pads. Dimensions of >800 cells were compared within length and within width with a Student's t-test where *** indicates p< 0.0001. **B)** Overnight cultures of WT, *rlpA:*:stop, and *mltG:*:stop grown in LB at 37°C were spot-plated in serial 10-fold dilutions onto LB and incubated ~18 hrs at 30°C. All data are representative of at least two biological replicates.

A) RlpA was depleted in WT, $\Delta mltC$, $\Delta mltDAC$, $\Delta mltDA$, and $\Delta mltDC$ backgrounds by placing its native promoter under control of arabinose induction and growing in the absence or presence of arabinose. Cells were imaged on an agarose pad. **B)** WT, *rlpA:*:stop, and $\Delta mltC$ were grown to $\sim OD_{600}0.5$ in M9+0.2%Glu or LB at 37°C and imaged on agarose pads. **C)** Autolysin mutants were grown in 200 µL LB, monitoring OD_{600} . **D)** Overnight cultures of autolysin mutants grown in LB were stabbed into 0.3% agarose LB plates and incubated at 30°C for 16 hrs before measuring the diameter of growth. Diameters of mutant strains were compared to WT by a one-way ANOVA and Tukey's test where * indicates a p<0.05 and ** a p<0.01. Error bars represent SEM of 3 independent replicates. Scale bars = 5 µm.

A) Clustal-W alignment of RIpA homologs PA4000, Vc0948, and Ec b0063 protein sequences. Predicted catalytic residues based on an MItA alignment are highlighted in yellow. In the alignment, * = conserved, : = highly similar, and . = somewhat similar residues. **B)** Cells per chain where manually counted (n >100). Gold bar = median. **C)** WT, $\Delta rlpA \Delta mltC$, and $\Delta rlpA \Delta mltC \Delta mltE$ were grown at 37°C to ~OD₆₀₀ 0.6 and imaged on agarose pads. Scale bars = 5 µm.

Exponential phase cultures of *rlpA::stop* and $\Delta mltC$ were exposed to 5 mg mL⁻¹ lysozyme for 10 min. Scale bars = 25 µm. Overnight cultures of *rlpA::stop* and $\Delta mltC$ grown in LB were diluted in LB and spot-plated in 10-fold serial dilutions on **B**) LB containing SDS and on **C**) MacConkey agar and incubated at 18hrs at 30°C. All data are representative of at least two biological replicates.

Fig S5. Resolution of septal autolysin mutant chains is not due to spontaneous suppressors.

Septal autolysin and $\Delta rpoS$ mutants were grown in LB at 37°C for 24hrs, then back-diluted into LB at 37°C. Cultures were imaged on agarose pads. Scale bars = 5 µm.

FigS6. Factors secreted during stationary phase do not affect $\triangle 2$ LTG chaining defect. **A)** WT and $\triangle 2$ LTG were grown in the supernatant of an overnight WT LB culture at 37°C and imaged on agarose pads. Cells per chain where manually counted (n >100). Gold bar = median. **B)** $\triangle rpoS$ and $\triangle 2$ LTG $\triangle rpoS$ were grown in LB at 37°C and imaged on agarose pads and analyzed as in Fig S5A.

Fig S7. Functional AmiB-mCherry localizes in $\triangle 2$ LTG.

A) Expression of P_{tac} : *amiB-mCherry* was induced with 1 mM IPTG in a $\Delta amiB$ background, grown in LB at 37°C to $\sim OD_{600}$ 0.6, and imaged on agarose pads. Cells per chain where manually counted (n >100). Gold bar = median. Gold bars = median. **B)** Expression of P_{tac} : *amiB-mCherry* was induced with 1 mM IPTG in a $\Delta 2$ LTG background, grown in LB at 37°C to $\sim OD_{600}$ 0.6, and imaged on agarose pads.

Scale bars = 5 µm

Fig S8. MItE_{E. coli} is not toxic to WT or $\triangle 2$ LTG V. cholerae.

A) Overnight cultures of P_{tac} : *mltE_{E. coli}* in WT and $\Delta 2$ LTG backgrounds were spot-plated in serial 10-fold dilutions onto LB +/- 1 mM IPTG and incubated overnight at 30°C.

A) With the exception of AmiB-mCherry expressed from chromosomal P_{tac} , mCherry fusions were expressed from IPTG-inducible vector pHL100mob. Fusion protein expression was induced with 0.2% arabinose or 1 mM IPTG in a WT background grown in LB at 37°C and detected with Genetex polyclonal mCherry antibody. Loading control band detected with BioLegend monoclonal RpoA antibody. *=non-specific crossreaction with mCherry antibody, **=soluble mCherry, ***=RpoA. **B)** Expression of chromosomal P_{tac} : *rlpA-mCherry* or *mltC-mCherry* was induced with 1 mM IPTG in a $\Delta 2$ LTG background, grown in LB at 37°C to ~OD₆₀₀ 0.6, and imaged on agarose pads.

Fig S10. RlpA and MItC can localize without lipidation.

A) Outer membrane signal sequences and lipoboxes in LTG amino acid sequences were predicted by the DOLOP algorithm. **B)** WT carrying pHL100 *dsbAss-mCherry-LTG* Δ *ss* was grown in M9 + 0.2% glucose/ kan50 at 30 °C, induced with 1mM IPTG after 2hrs, and imaged on agarose pads at OD₆₀₀~0.15. Demographs of *mCherry* fusion localization generated with Oufti. **C)** Expression of P_{tac}: *dsbAss-rlpA*_[18-263] was induced in a WT background with 1 mM IPTG, grown in low salt LB for 4 hrs, and imaged on agarose pads. **D)** Expression of P_{tac}: *rlpA-mCherry* was induced in a Δ 2 LTG background, grown in low salt LB for 4 hrs, and imaged on agarose pads.

Table S1. V. cholerae strains

Strain	Description	Source or reference
N16961	Wild-type V. cholerae El Tor strain	Heidelberg, et. al., 2000
AW388	pHL100 mltC-mCherry, pBAD33 yfp-ftsZ	This study
AW390	Δ mltC, rlpA::stop (denoted as Δ 2 LTG)	This study
AW414	∆mltC	This study
AW431	rlpA::stop	This study
AW452	Δ mltA, Δ mltB, Δ mltC, Δ mltD, Δ mltF, Δ slt70 (denoted as Δ 6 LTG)	This study
AW460	pHL100 rlpA-mCherry	This study
AW465	pHL100 rlpA-mCherry, pBAD33 yfp-ftsZ	This study
AW482	∆amiB	This study
AW487	lacZ::GFP	This study
AW488	∆mltC, rlpA::stop, lacZ::GFP	This study
AW581	$\Delta rpoS <> kan$	This study
AW582	Δ mltC, rlpA::stop, Δ rpoS<>kan	This study
AW597	lacZ::P _{tac} yfp-ftsN, pHL100 rlpA-mCherry	This study
AW598	lacZ::P _{tac} yfp-ftsN, pHL100 mltC-mCherry	This study
AW607	∆mltC, rlpA::stop, lacZ::P _{tac} shyC	This study
AW615	∆mltC, rlpA::stop, lacZ::P _{tac} shyA	This study
AW634	mltG::stop	This study
AW636	∆mltC, rlpA::stop, lacZ::P _{tac} rlpA-mCherry	This study
AW639	∆mltC, rlpA::stop, lacZ::P _{tac} mltC-mCherry	This study
AW664	lacZ::P _{tac} amlB-mCherry	This study
AW665	∆mltC, rlpA::stop, lacZ::P _{tac} amiB-mCherry	This study
AW666	∆amiB, lacZ::P _{tac} amiB-mCherry	This study
AW679	∆mltC, rlpA::stop, lacZ::P _{tac} dsbA ^{ss} -mCherry	This study
AW683	lacZ::P _{tac} Ec mltE	This study
AW684	∆mltC, rlpA::stop, lacZ::P _{tac} Ec mltE	This study
AW708	Δ mltA, Δ mltB, Δ mltC, Δ mltD, Δ mltF, Δ slt70, P _{ara} rlpA	This study
AW717	∆mltC, rlpA::stop, lacZ::P _{tac} amiB nlpD envC	This study
AW719	∆mltC, rlpA::stop, ∆amiB	This study
AW722	∆amiB, lacZ::P _{tac} amiB nlpD envC	This study
AW733	pHL100mob dsbAss-mCherry	This study
AW734	pHL100mob dsbAss-mCherry-mltC	This study
AW735	pHL100mob dsbAss-mCherry-rlpA	This study
AW736	pHL100 mltC-mCherry	This study
AW756	∆mltC, rlpA::stop, lacZ::P _{tac} dsbA ^{ss} -mltC	This study
AW757	lacZ::P _{tac} dsbA ^{ss} -rlpA	This study
AW758	∆mltC, rlpA::stop, lacZ::P _{tac} dsbA ^{ss} -rlpA	This study
AW771	$\Delta m lt D \Delta m lt A$	This study
AW772	$\Delta m lt D \Delta m lt C$	This study
AW773	∆mltC ∆mltD	This study

Table S2. E. coli strains

Strain	Description	Source or reference
MG1655	E. coli K-12 strain	Blattner, et. al., 1997
AW650	∆rlpA, ∆mltC	This study
AW656	Δ rlpA, Δ mltC, Δ mltE<>FRT-cat-FRT	This study

Table S3. Plasmids

		Source or	Source or	
Plasmid	Description	reference	Relevant Primers	
		Gift from Waldor		
	pBAD33 yfp-ftsZ	lab		
		Gift from Waldor		
	pBAD33 yfp-ftsN	lab		
			TDP206/TDP208,	
pAW32	pHL100 mltC-mCherry	This study	TDP765/TDP766	
			TDP1164/TDP1167,	
pAW33	pHL100 rlpA-mCherry	This study	TDP765/TDP766	
		Ritchie, et. al.,		
pJLZ111	pCVD442 lacZ::gfp	2010		
pAW34	pTD101 yfp-ftsN	This study	AIW306/pHL revB	
pAW35	pTD101 shyC	This study	AIW329/AIW330	
pAW36	pTD101 shyA	This study	AIW327/AIW328	
pAM321	pDS132 ∆amiB	Möll, et. al., 2014		
_			TDP1199/TDP1200,	
pAW37	pCVD442 ∆mltA	This study	TDP1201/TDP1202	
			TDP1203/TDP1204,	
pAW38	pCVD442 ∆mltB	This study	TDP1205/TDP1206	
			DLP42/DLP43,	
pAW39	pCVD442 ∆mltC	This study	DLP137/DLP138	
			TDP1211/TDP1212,	
pAW40	pCVD442 ∆mltD	This study	TDP1213/TDP1214	
			TDP1258/TDP1257,	
pAW41	pCVD442 ∆mltF	This study	TDP1255/TDP1256	
			TDP1215/TDP1216,	
pAW42	pCVD442 ∆slt70	This study	TDP1217/TDP1218	
			DLP48/TDP210,	
pAW43	pCVD442 rlpA::stop	This study	TDP211/DLP51	
			TDP1251/TDP826,	
pAW44	pCVD442 mltG::stop	This study	TDP827/TDP1254	
pAW45	pAM299 rlpA	This study	DLP186/DLP187	
pAW46	pTD101 rlpA-mCherry	This study	AIW356/pHLrevB	
pAW47	pTD101 mltC-mCherry	This study	AIW264/pHLrevB	
			AIW265/AIW250,	
pAW48	pTD101 amiB-mCherry	This study	AIW251/AIW252	
pAW49	pTD101 dsbA ^{ss} -mCherry	This study	AIWGB4, AIW251/AIW346	
pAW50	pTD101 Ec mltE	This study	BR02/AIW380	
			AIW265/AIW257,	
pAW51	pTD101 amiB nlpD envC	This study	AIW255/256, AIW258/259	
pAW52	pHL100mob dsbA ^{ss} -mCherry	This study	AIWGB4, AIW251/AIW346	
pAW53	pHL100mob dsbAss-mCherry-mltC	This study	AIWGB4, AIW343/AIW344	
pAW54	pHL100mob dsbAss-mCherry-rlpA	This study	AIWGB4, AIW347/AIW348	
pAW55	pTD101 dsbAss-mltC	This study	AIW343/AIW389	
pAW56	pTD101 dsbAss-rlpA	This study	AIW347/AIW391	

Table S3. Plasmids (continued)

		Source or	
Plasmid Description		reference	Relevant Primers
		Murphy and	
pKM208	$P_{tac} \lambda$ Red, ampR, Rep ^{ts}	Campellone, 2003	
		Datsenko and	
pKD3	FRT-cat-FRT	Wanner, 2000	
		Datsenko and	
pKD4	FRT-kan-FRT	Wanner, 2000	
		Cherepanov and	
		Wackernagel,	
pCP20	FLP+, λ cl857+, λ P _R , Rep ^{ts} , ampR, cmR	1995	
		Ritchie, et. al.,	
pJZ111	lacZ::gfp	2010	