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A Parameters for BART

The parameters for continuous outcomes BART that needs to be set are: α, β, µµ, σµ, ν,
and λ. These parameters are constructed as a mix of apriori fixed and data-driven. For α
and β, the default values of α = 0.95 and β = 2 provide a balanced penalizing effect for the
probability of a node splitting (Chipman et al., 2010). For µµ and σµ, they are set such that
E[y|x] ∼ N(mµµ,mσ

2
µ) assigns high probability to the interval (min(y),max(y)). This can

be achieved by defining v such that min(y) = mµµ − v
√
mσµ and max(y) = mµµ + v

√
mσµ.

For ease of posterior distribution calculation, y is transformed to become ỹ =
y−min(y)+max(y)

2

max(y)−min(y)
.

This results in ỹ ∈ (−0.5, 0.5) where min(y) = −0.5 and max(y) = 0.5. This has the effect
of allowing the hyperparamter µµ to be set as 0 and σµ to be determined as σµ = 0.5

v
√
m

where

v is to be chosen. For v = 2, N(mµµ,mσ
2
µ) assigns a prior probability of 0.95 to the interval

(min(y),max(y)) and is the default value. Finally for ν and λ, the default value for ν is 3
and λ is the value such that P (σ2 < s2; ν, λ) = 0.9 where s2 is the estimated variance of the
residuals from the multiple linear regression with y as the outcomes and x as the covariates.

For binary outcomes, the α and β parameters are the same but the µµ and σµ param-
eters are specified differently from continuous outcomes BART. To set the parameters for
µµ and σµ, we set µµ = 0 and σµ = 3

v
√
m

where v = 2 would result in an approximate 95%

probability that draws of f(x) =
∑m

j=1 g(x;Tj,Mj) will be within (−3.0, 3.0). No transfor-
mation of the latent variable z would be needed although it should be noted that this setup
shrinks f(x) toward 0 (See main paper Section 2.2).

B Posterior distributions for µji and σ2 in BART

B.1 p(µji|Tj, σ, rj)

Let rji = (rji1, . . . , rjini)
T be a subset from rj where ni is the number of rjihs allocated to

the terminal node with parameter µji and h indexes the subjects allocated to the terminal
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node with parameter µji. We note that rji|Tj, µji, σ ∼ N(µji, σ
2) and µji|Tj ∼ N(µµ, σ

2
µ).

Then the posterior distribution of µji is given by

p(µji|Tj, σ, rj) ∝ p(rji|Tj, µji, σ)p(µji|Tj)

∝ exp[−
∑

h(rjih − µji)2

2σ2
] exp[−(µji − µµ)2

2σ2
µ

]

∝ exp[−
(niσ

2
µ + σ2)µ2

ji − 2(σ2
µ

∑
h rjih + σ2µµ)µji

2σ2σ2
µ

]

∝ exp[−
(µji −

σ2
µ

∑
h rjih+σ

2µµ

niσ2
µ+σ

2 )2

2
σ2σ2

µ

niσ2
µ+σ

2

]

where
∑

h(rjih−µji)2 is the summation of the squared difference between the parameter µji
and the rjihs allocated to the terminal node with parameter µji.

B.2 p(σ2|(T1,M1), . . . , (Tm,Mm), y)

Let y = (y1, . . . , yn)T with σ2 ∼ IG(ν
2
, νλ

2
). We obtain the posterior draw of σ as follows

p(σ2|(T1,M1), . . . , (Tm,Mm), y) ∝ p(y|(T1,M1), . . . , (Tm,Mm), σ)p(σ2)

=

{∏
(σ2)−

1
2 exp

[
−(y − f(x))2

2σ2

]}
(σ2)−(

ν
2
+1) exp(− νλ

2σ2
)

= (σ2)−(
ν+n
2

+1) exp

[
−νλ+

∑
(y − f(x))2

2σ2

]
.

C Metropolis-Hastings ratio for the grow and prune

step

This section is modified from Appendix A of Kapelner and Bleich (Kapelner and Bleich
(2016)). Note that

α(Tj, T
∗
j ) = min

{
1,
q(T ∗j , Tj)

q(Tj, T ∗j )

P (rj|x, T ∗j ,Mj)

P (rj|x, Tj,Mj)

P (T ∗j )

P (Tj)

}
.

where
q(T ∗

j ,Tj)

q(Tj ,T ∗
j )

is the transition ratio,
P (rj |x,T ∗

j ,Mj)

P (rj |x,Tj ,Mj)
is the likelihood ratio, and

P (T ∗
j )

P (Tj)
is the tree

structure ratio of Kapelner and Bleich, Appendix A. We now present the explicit formula
for each ratio under the grow and prune proposal.
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C.1 Grow proposal

C.1.1 Transition ratio

q(T ∗j , Tj) indicates the probability of moving from Tj to T ∗j i.e. selecting and terminal node
and growing two children from Tj. Hence,

P (T ∗j |Tj) = P (grow)P (selecting terminal node to grow from)×
P (selecting covariate to split from)×
P (selecting value to split on)

= P (grow)
1

bj

1

p

1

η
.

In the above equation, P (grow) can be decided by the researcher although the default
provided is 0.25. bj is the number of available terminal nodes to split on in Tj, p is the
number of variables left in the partition of the chosen terminal node, and η is the number
of unique values left in the chosen variable after adjusting for the parents splits.

q(Tj, T
∗
j ) on the other hand indicates a pruning move which involves the probability of

selecting the correct internal node to prune on such that T ∗j becomes Tj. This is given as

P (Tj|T ∗j ) = P (prune)P (selecting the correct internal node to prune)

= P (prune)
1

w∗2

where w∗2 denotes the number of internal nodes which have only two children terminal nodes.

This gives a transition ratio of

q(T ∗j , Tj)

q(Tj, T ∗j )
=
P (T ∗j |Tj)
P (Tj|T ∗j )

=
P (prune)

P (grow)

bjpη

w∗2
.

If there are no variables with two or more unique values, this transition ratio will be set to
0.

C.1.2 Likelihood ratio

Since the rest of the tree structure will be the same between T ∗j and Tj except for the terminal
node where the two children are grown, we need only concentrate on this terminal node. Let
l be the selected node and lL and lR be the two children of the grow step. Then

P (rj|x, T ∗j ,Mj)

P (rj|x, Tj,Mj)
=
P (rl(L,1),j, . . . , rl(L,nL),j|σ2)P (rl(R,1),j, . . . , rl(R,nR),j|σ2)

P (r1,j, . . . , rnl,j|σ2)

=

√
σ2(σ2 + nlσ2

µ)

(σ2 + nLσ2
µ)(σ2 + nRσ2

µ)
exp

[
σ2
µ

2σ2

(
(
∑nL

k=1 rl(L,k),j)
2

σ2 + nLσ2
µ

+
(
∑nR

k=1 rl(R,k),j)
2

σ2 + nRσ2
µ

−
(
∑nl

k=1 rl(l,k),j)
2

σ2 + nlσ2
µ

)]
.
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C.1.3 Tree structure ratio

Because the Tj can be specified using three aspects, we let PSPLIT (θ) denote the probability
that a selected node θ will split and PRULE(θ) denote the probability that a certain variable
and value is selected. Then based on PSPLIT (θ) ∝ α

(1+dθ)β
and because Tj and T ∗j only differs

at the children nodes, we have

P (T ∗j )

P (Tj)
=

∏
θ∈H∗

terminals
(1− PSPLIT (θ))

∏
θ∈H∗

internals
PSPLIT (θ)

∏
θ∈H∗

internals
PRULE(θ)∏

θ∈Hterminals(1− PSPLIT (θ))
∏

θ∈Hinternals PSPLIT (θ)
∏

θ∈Hinternals PRULE(θ)

=
[1− PSPLIT (θL)][1− PSPLIT (θR)]PSPLIT (θ)PRULE(θ)

1− PSPLIT (θ)

=
(1− α

(1+dθL )
β )(1− α

(1+dθR )β
) α
(1+dθ)β

1
p
1
η

1− α
(1+dθ)β

= α
(1− α

(2+dθ)β
)2

[(1 + dθ)β − α]pη

because dθL = dθR = dθ + 1.

C.2 Prune proposal

Since prune is the direct opposite of the grow proposal, the explicit formula of α(Tj, T
∗
j ) will

just be the inverse of the grow proposal.
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