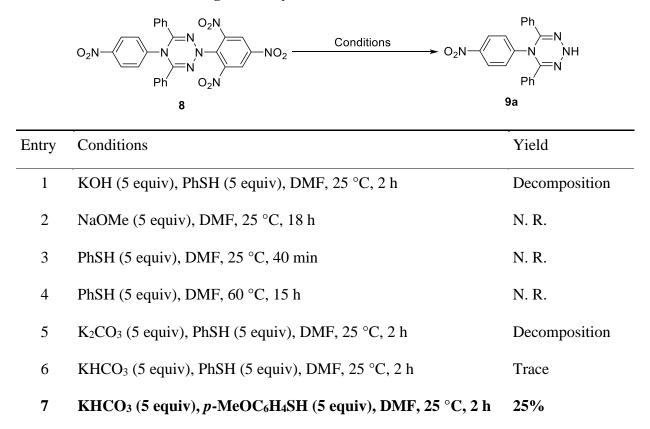
Supporting Information

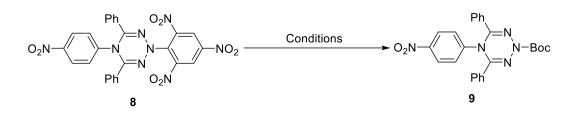
Synthesis, characterization, and cycloaddition reactivity of a monocyclic aromatic 1,2,3,5-tetrazine

Zhi-Chen Wu and Dale L. Boger*

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA


Table of Contents

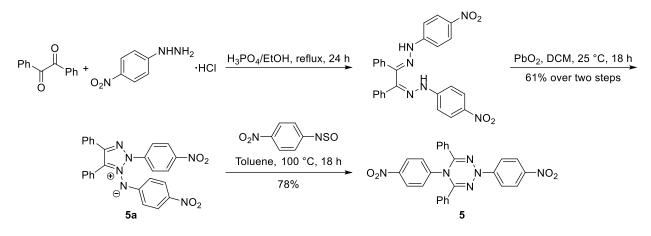
I. General Methods	Page S2
II. Condition screening for the synthesis of 9 and 10	Page S2–S4
III. Synthesis of 4,6-diphenyl-1,2,3,5-tetrazine (2)	Page S5–S9
IV. Cycloaddition reactions with 4,6-diphenyl-1,2,3,5-tetrazine (2)	Page S9–S20
V. Comparison of reactivity between 2 and 24	Page S20–S21
VI. LC-MS analysis of 2	Page S21
VII. Decomposition kinetics of 2	Page S22
VIII. Kinetic study of the reaction between 2 and 11k	Page S23
IX. ¹⁵ N labeling experiments	Page S24–S25
X. X-ray crystal data and structure refinement for 8, 10 and 2	Page S26–S28
XI. Differential scanning calorimetry characterization of ${\bf 8}$ and ${\bf 2}$	Page S29
XII. References	Page S30
XIII. Spectra	Page S30–S90


I. General Methods

General Methods. All reagents and solvents were used as supplied without further purification unless otherwise noted. All cycloaddition reactions were performed in anhydrous solvents unless otherwise noted. CHCl₃ was pre-treated with alumina for at least 24 h prior to use. Amidines were purchased as their hydrochloride salts and free-based by treatment with 2 M KOH (aq). Enamines and ynamines were prepared as reported in the literature.¹ Preparative TLC (PTLC) and column chromatography were conducted using Millipore SiO₂ 60 F₂₅₄ PTLC (0.5 mm) and Zeochem ZEOprep 60 ECO SiO₂ (40–63 μm), respectively. Analytical TLC was conducting using Millipore SiO₂ 60 F254 TLC (0.250 mm) plates. ¹H and ¹³C NMR spectra were obtained using a Bruker Avance III HD 600 MHz spectrometer equipped with either a 5 mm OCI or 5 mm CPDCH probe or a Bruker Avance III 500 MHz spectrometer equipped with a 5 mm BBFO probe. UV-Vis spectroscopy was performed on a Cary 3E spectrophotometer. Cyclic voltammetry was measured by using an IKA ElectraSyn 2.0 package. IR spectra were obtained using a Thermo Nicolet 380 FT-IR with a SmartOrbit Diamond ATR accessory. Mass spectrometry analysis was performed by direct sample injection on an Agilent G1969A ESI-TOF mass spectrometer. The single crystal Xray diffraction studies were carried out on a Bruker Kappa APEX-II CCD diffractometer equipped with Mo K α radiation ($\lambda = 0.71073$). Semiempirical computational studies (AM1, MNDO) were conducted with Gaussian09.^{S2} Melting points (mp) are uncorrected.

II. Condition screening for the synthesis of 9 and 10

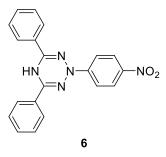
Table S1. Condition screening for the synthesis of 9.


Entry	Conditions	Yield
1	Et ₃ N (2.5 equiv), <i>p</i> -MeOC ₆ H ₄ SH (2.5 equiv), CH ₃ CN, 25 °C, 1.5 h; then Et ₃ N (5 equiv), Boc ₂ O (5 equiv), 25 °C, 10 h	N. R., then Decomposition
2	Et ₃ N (2.5 equiv), <i>p</i> -MeOC ₆ H ₄ SH (2.5 equiv), DMF, 25 °C, 1.5 h; then Et ₃ N (5 equiv), Boc ₂ O (5 equiv), 25 °C, 10 h	N. R., then Decomposition
3	NaH (10 equiv), p -MeOC ₆ H ₄ SH (2.5 equiv), DMF, 25 °C, 1.5 h; then Boc ₂ O (5 equiv), 40 min	N. R., then Decomposition
4	Et ₃ N (2.5 equiv), <i>p</i> -MeOC ₆ H ₄ SH (2.5 equiv), DMF, 25 °C, 1 h; then NaH (30 equiv), Boc ₂ O (30 equiv), 25 °C, 1 h	Trace
5	Et ₃ N (2.5 equiv), <i>p</i> -MeOC ₆ H ₄ SH (2.5 equiv), DMF, 25 °C, 1 h; then NaH (30 equiv), Boc ₂ O (30 equiv), -50 °C, 3 h	69-70%
6	Et ₃ N (2.5 equiv), <i>p</i> -MeOC ₆ H ₄ SH (2.5 equiv), DMF, 25 °C, 1 h; then NaH (10 equiv), Boc ₂ O (10 equiv), -50 °C, 4 h	58-60%

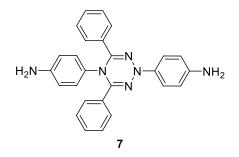
	$O_2 N - N - N$	=N N-Boc - =N	Conditio	ns 🔶	$ \begin{array}{c} Ph \\ \searrow = N \\ HN \\ \searrow = N \\ Ph \end{array} $	ос
	Ph [′] 9				10	
Entry	Nucleophile (5 equiv)	Base	Solvent	Temp	Time	Yield
1	<i>p</i> -MeOC ₆ H ₄ SH	K ₂ CO ₃	DMF	120 °C	1 h	Decomposition
2	<i>p</i> -MeOC ₆ H ₄ SH	Et ₃ N	DMF	80 °C	16 h	Decomposition
3	<i>p</i> -MeOC ₆ H ₄ SH	DBU	DMF	80 °C	6 h	N. R.
4	BnSH	DBU	DMF	50 °C	0.5 h	26-29%
5	BnSH	DBU	DMF	25 °C	6 h	21%
6	BnSH	DBU	DMSO	25 °C	6 h	20%
7	BnSH	DBU	CH ₃ CN	25 °C	9 h	21%
8	BnSH	DBU	Acetone	25 °C	9 h	12%
9	EtSH	DBU	DMF	25 °C	1 h	17%
10	EtSH	DBU	DMF	25 °C	6 h	26-28%
11	EtSH (20 equiv)	DBU	DMF	25 °C	3 h	23%
12	Ph ₃ CSH	DBU	DMF	25 °C	14 h	N. R.
13	NaHS	DBU	DMF	25 °C	48 h	N. R.
14	t-BuSH	DBU	DMF	25 °C	26 h	N. R.
15	KSCN	DBU	DMF	25 °C	26 h	N. R.
16	EtSH	Et ₃ N	DMF	25 °C	24 h	N. R.
17	EtSH	K ₂ CO ₃	DMF	25 °C	6 h	29%
18	HSCH ₂ COOH	K ₂ CO ₃	DMF	25 °C	24 h	N. R.
19	HSCH ₂ COOH	DBU	DMF	25 °C	22 h	17%

 Table S2. Condition screening for the synthesis of 10.

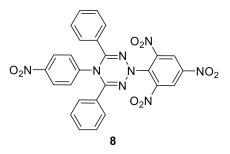
III. Synthesis of 4,6-diphenyl-1,2,3,5-tetrazine (2)


Multi-gram scale synthesis of 5

The synthesis of **5** was reported by Butler et al.^{S3} and herein we describe a scaled synthesis from commercially available material.

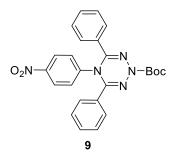

Benzil (8.40 g, 40 mmol, 1.0 equiv) and *p*-nitrophenylhydrazine hydrochloride (22.80 g, 120 mmol, 3.0 equiv) were added to a 1 L round-bottom flask, and H₃PO₄/EtOH (400 mL, V/V = 6:4) was added, giving a suspension. The mixture was warmed at reflux at 120 °C for 24 h. The orange mixture was cooled to room temperature, diluted with 500 mL H₂O, and filtered through a Büchner funnel. The orange solid collected was washed with H₂O (500 mL × 2), air dried, and placed in a 1 L round-bottom flask. CH₂Cl₂ (400 mL) and PbO₂ (14.40 g, 60 mmol, 1.5 equiv) were added. The mixture was stirred at 25 °C for 18 h. The mixture was filtered through Celite and concentrated. The residue was purified by column chromatography (SiO₂, CH₂Cl₂ then EtOAc) to provide **5a** (11.73 g, 61%) as a red solid.

p-Nitroaniline (6.91 g, 50 mmol, 2.0 equiv) and anhydrous toluene (25 mL) were added to an ovendried 250 mL round-bottom flask, and SOCl₂ (11.9 g, 7.26 mL, 100 mmol, 4.0 equiv) was added to the mixture under Ar. The mixture was warmed at 80 °C for 6 h. The mixture was cooled to room temperature and the solvent was removed to provide a yellow-green solid. The solid was placed in a 200 mL oven-dried bomb flask, followed by the addition of **5a** (11.47 g, 24 mmol, 1.0 equiv) and anhydrous toluene (150 mL). The flask was sealed, and the mixture was warmed at 100 °C for 16 h. The mixture was cooled and solvent was removed. The residue was purified by column chromatography (SiO₂, 50% CH₂Cl₂/hexanes) to provide **5** (8.95 g, 78%) as a yellow solid identical to material previously reported.^{S3} 2-(4-Nitrophenyl)-4,6-diphenyl-2,5-dihydro-1,2,3,5-tetrazine (6).


A solution of **5** (120 mg, 0.25 mmol, 1.0 equiv) in CH₃CN (2.5 mL) was treated with KOH (70 mg, 1.25 mmol, 5 equiv) and PhSH (140 mg, 130 μ L, 1.25 mmol, 5 equiv). The mixture was warmed at 80 °C for 42 h before it was cooled to room temperature and quenched with the addition of 10 mL of saturated aqueous NH₄Cl. The mixture was extracted with CH₂Cl₂ (50 mL × 2) and the organic phase was dried over Na₂SO₄. The solvent was removed and the residue was purified by column chromatography (SiO₂, 0–9% acetone/CH₂Cl₂) to provide **6** (44.0 mg, 49%) as a brown solid: mp 226–228 °C; ¹H NMR (600 MHz, DMSO-*d*₆, 298K) δ 10.27 (s, 1H), 8.20 (d, 2H, *J* = 9.1 Hz), 8.03 (d, 4H, *J* = 7.3 Hz), 7.64–7.57 (m, 8H); ¹³C NMR (151 MHz, DMSO-*d*₆, 298K) δ 150.8, 149.2, 139.4, 131.7, 129.3, 128.7, 127.3, 125.3, 112.9; IR (film) v_{max} 3667, 2984, 2890, 1591, 1479, 1393, 1321, 1249, 1061, 894 cm⁻¹; HRMS ESI-TOF *m*/*z* 357.1218 (M⁺, C₂₀H₁₅N₅O₂⁺ requires 357.1226).

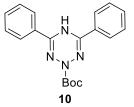
4,4'-(4,6-Diphenyl-1,2,3,5-tetrazine-2,5-diyl)dianiline (7).

A suspension of **5** (244 mg, 0.05 mmol, 1.0 equiv) and 10% Pd/C (12 mg) in EtOAc (1 mL) was stirred at 25 °C under a H₂ atmosphere for 16 h. The mixture was filtered, and the solvent was removed to provide **7** (18.8 mg, 90%) as an orange solid: mp 143–145 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.06–8.05 (m, 4H), 7.55 (d, 2H, *J* = 8.8 Hz), 7.43–7.38 (m, 6H), 6.93 (d, 2H, *J* = 8.8 Hz), 6.73 (d, 2H, *J* = 8.8 Hz), 6.44 (d, 2H, *J* = 8.8 Hz), 3.49 (br s, 4H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 143.1, 143.0, 142.3, 140.3, 135.6, 133.4, 129.9, 128.7, 127.3, 123.5, 117.7, 116.0, 115.7; IR (film) v_{max} 3434, 3357, 3204, 3038, 1618, 1506, 1317, 1285, 1245, 1052, 822, 728, 692 cm⁻¹; HRMS ESI-TOF *m*/*z* 418.1901 (M⁺, C₂₆H₂₂N₆⁺ requires 418.1906).

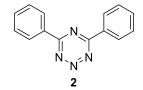

5-(4-Nitrophenyl)-4,6-diphenyl-2-(2,4,6-trinitrophenyl)-2,5-dihydro-1,2,3,5-tetrazine (8).

(ⁿBu₄N)₂Ce(NO₃)₆ was prepared as reported.^{S4}

(ⁿBu₄N)₂Ce(NO₃)₆ (44.5 g, 44.5 mmol, 2.2 equiv) and TfOH (6.68 g, 4.0 mL, 44.5 mmol, 2.2 equiv) were sequentially added to a solution of 5 (10.64 g, 22.2 mmol, 1.0 equiv) in CH₂Cl₂ (400 mL) in a 1 L round-bottom flask. The mixture was stirred at 25 °C for 5 h before Et₃N (4.45 g, 44.5 mmol) was added to quench the reaction. The solvent was removed, and the mixture was triturated with Et₂O (200 mL). EtOAc (200 mL) was added and the mixture was stirred at 25 °C for 15 min. The mixture was then filtered over a Büchner funnel and the solid was washed with EtOAc/Et₂O (V/V $= 1:3, 80 \text{ mL} \times 3$). The filtrate was combined, and the solvent was removed. The residue was purified by column chromatography (SiO₂, 50–70% CH₂Cl₂/hexanes) to provide 8 (5.54 g, 44%) as a red solid: mp 226–228 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.66 (s, 2H), 8.05 (d, 2H, J = 9.2 Hz), 7.83 (d, 4H, J = 7.5 Hz), 7.60 (t, 2H, J = 7.3 Hz), 7.54 (t, 4H, J = 7.6 Hz), 7.02 (d, 2H, J = 9.2 Hz; ¹³C NMR (151 MHz, CDCl₃, 298K) δ 147.7, 146.4, 144.0, 141.1, 140.5, 134.5, 132.9, 129.8, 129.7, 127.7, 125.6, 123.0, 119.8; IR (film) v_{max} 3088, 2930, 1636, 1542, 1604, 1479, 1330, 1285, 849, 733, 706 cm⁻¹; HRMS ESI-TOF *m/z* 569.1166 ([M + H]⁺, C₂₆H₁₆N₈O₈ + H⁺ requires 569.1169). Differential scanning calorimetry revealed that $\mathbf{8}$ is of high thermal potential (2755.72) J/g) with an onset temperature of 241.6 °C, which is potentially explosive and shock sensitive. Although the authors have not been able to elicit detonation through the application of shock and friction, safety precautions should be exercised and heating within 100 °C of the thermal decomposition temperature of 242 °C should be avoided especially when 8 is synthesized on large scale.


tert-Butyl 5-(4-Nitrophenyl)-4,6-diphenyl-1,2,3,5-tetrazine-2(5H)-carboxylate (9).

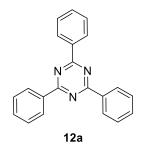
p-Methoxythiophenol (70.1 mg, 62 μ L, 0.5 mmol, 2.5 equiv) and Et₃N (50.5 mg, 70 μ L, 0.5 mmol, 2.5 equiv) were sequentially added to a solution of **8** (113 mg, 0.2 mmol, 1.0 equiv) in anhydrous DMF (4.0 mL) in a 25 mL round-bottom flask. The mixture was stirred at 25 °C under an Ar


atmosphere for 1 h. The mixture was then placed in a dropping funnel and added dropwise to a cooled mixture (-50 °C) of NaH (60% in mineral oil, pre-washed with hexanes, 240 mg, 6 mmol, 30 equiv) and Boc₂O (1.32 g, 6 mmol, 30 equiv) in anhydrous DMF (4.0 mL). The mixture was stirred at -50 °C for 3 h, warmed to 25 °C, and quenched by dropwise addition to a mixture of 40 mL of saturated aqueous NaHCO₃ and 40 mL of CH₂Cl₂. The mixture was extracted with CH₂Cl₂ (40 mL \times 3) and the organic phase was combined and washed with saturated aqueous NaCl (40 mL), then dried over Na₂SO₄. The solvent was removed and the residue was purified by column chromatography (SiO₂, 30–80% CH₂Cl₂/hexanes) to provide 9 (64.1 mg, 70%) as a yellow solid. When the reaction was conducted on larger scales, 10 equiv of NaH and Boc₂O was used and the reaction required 4 h to run to completion. A typical yield of 58-60% was observed. For 9: mp 204 °C (decomp.); ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.02 (d, 4H, J = 7.1 Hz), 7.98 (d, 2H, J = 9.4 Hz), 7.55 (t, 2H, J = 7.2 Hz), 7.51 (t, 4H, J = 7.3 Hz), 6.82 (d, 2H, J = 9.4 Hz), 1.64 (s, 9H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 151.6, 147.4, 143.7, 142.4, 131.7, 131.2, 129.5, 127.5, 125.4, 117.0, 84.6, 28.2; IR (film) v_{max} 3056, 2925, 1753, 1591, 1510, 1366, 1344, 1245, 1272, 1052, 836, 746, 701 cm⁻¹; HRMS ESI-TOF m/z 358.1297 ([M - Boc + H]⁺, C₂₀H₁₅N₅O₂ + H⁺ requires 358.1304).

tert-Butyl 4,6-Diphenyl-1,2,3,5-tetrazine-2(5H)-carboxylate (10).

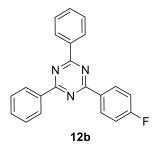
Compound **9** (1.17 g, 2.5 mmol, 1 equiv) and K₂CO₃ (1.73 g, 12.5 mmol, 5 equiv) were added to a 100 mL round-bottom flask. DMF (25 mL) and EtSH (772 mg, 0.94 mL, 12.5 mmol, 5 equiv) were added to the mixture under an Ar atmosphere. The mixture was stirred at 25 °C for 6 h before being poured into a mixture of 100 mL of saturated aqueous NH₄Cl and 100 mL of CH₂Cl₂. The organic layer was washed with H₂O (100 mL), and dried over Na₂SO₄. The solvent was evaporated and the residue was purified by column chromatography (SiO₂, 100% CH₂Cl₂, then 44% CH₂Cl₂/12% EtOAc/44% hexanes) to provide **10** (247 mg, 29%) as a yellow solid: mp 163–165 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 7.81 (d, 4H, *J* = 7.3 Hz), 7.52 (t, 2H, *J* = 7.3 Hz), 7.47 (t, 4H, *J* = 7.5 Hz), 6.74 (br s, 1H), 1.63 (s, 9H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 152.8, 146.7, 131.7, 129.8, 129.1, 125.9, 82.4, 28.4; IR (film) v_{max} 3213, 3061, 2966, 2926, 1685, 1658, 1456, 1411, 1312, 1146, 849, 769, 697 cm⁻¹; HRMS ESI-TOF *m*/*z* 337.1664 ([M + H]⁺, C₁₉H₂₀N₄O₂ + H⁺ requires 337.1665).

4,6-Diphenyl-1,2,3,5-tetrazine (2).

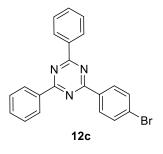

Compound **10** (247 mg, 0.74 mmol, 1 equiv) was added to a stirred mixture of MnO₂ (1.62 g, 18.2 mmol, 25 equiv) in anhydrous CH₂Cl₂ (7.3 mL). The mixture was stirred at 25 °C for 1 h and directly purified by column chromatography (SiO₂, CH₂Cl₂) within 15 min. The solvent was removed under a gentle stream of anhydrous N₂ to provide **2** (137 mg, 80%) as a yellow solid: mp 128 °C (decomp.); ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.77 (d, 4H, *J* = 7.2 Hz), 7.70 (t, 2H, *J* = 7.4 Hz), 7.62 (t, 4H, *J* = 7.7 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 163.2, 134.3, 132.0, 129.5, 129.4; IR (film) v_{max} 3065, 3047, 2957, 2921, 2845, 1600, 1483, 1443, 1411, 1326, 1290, 1178, 917, 746, 683 cm⁻¹; UV (CH₃CN) λ_{max} 275 (ϵ 2.52 × 10⁴ L·mol⁻¹·cm⁻¹), 396 (ϵ 4.90 × 10² L·mol⁻¹·cm⁻¹) nm; HRMS ESI-TOF *m*/*z* 235.0984 ([M + H]⁺, C₁₄H₁₀N₄ + H⁺ requires 235.0984). Differential scanning calorimetry revealed that **2** is of high thermal potential (744.17 J/g) with a low onset temperature of 138.1 °C, which is potentially explosive and shock sensitive. Although the authors have not been able to elicit detonation through the application of shock and friction, safety precautions should be exercised and extensive heating (>100 °C) should be avoided.

IV. Cycloaddition reactions with 4,6-diphenyl-1,2,3,5-tetrazine (2)

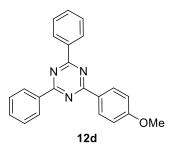
General procedure for the synthesis of 12a-n


A 40 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (0.5 mL) was treated with the corresponding amidine **11a-n** (0.03 mmol, 1.5 equiv). The mixture was stirred at 25 °C for 2 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by column chromatography (SiO₂, EtOAc/hexanes) or PTLC (EtOAc/hexanes) to provide **12a-n** as desired products.

2,4,6-Triphenyl-1,3,5-triazine (12a).

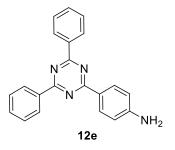

12a (5.97 mg, 98%, white solid): mp 222–224 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.79 (d, 6H, *J* = 7.4 Hz), 7.62 (t, 3H, *J* = 7.1 Hz), 7.59 (t, 6H, *J* = 7.3 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 171.8, 136.4, 132.7, 129.1, 128.8; IR (film) v_{max} 2957, 2921, 2845, 1730, 1515, 1442, 1362, 1254, 1061, 1025, 742, 692 cm⁻¹; HRMS ESI-TOF *m*/*z* 310.1348 ([M + H]⁺, C₂₁H₁₅N₃ + H⁺ requires 310.1344).

2-(4-Fluorophenyl)-4,6-diphenyl-1,3,5-triazine (12b).

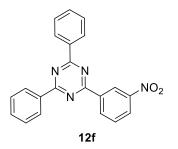

12b (6.45 mg, 99%, white solid): mp 208–210 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.80 (dd, 2H, *J* = 8.9, 5.6 Hz), 8.77 (dd, 4H, *J* = 8.3, 1.3 Hz), 7.62 (t, 2H, *J* = 7.2 Hz), 7.58 (t, 4H, *J* = 7.3 Hz), 7.25 (t, 2H, *J* = 8.6 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 171.8, 170.8, 166.0 (*J* = 251 Hz), 136.3, 132.7, 132.6 (*J* = 2.7 Hz), 131.4 (*J* = 8.9 Hz), 129.1, 128.8, 115.9 (*J* = 22 Hz); IR (film) v_{max} 3056, 2921, 2849, 1604, 1519, 1443, 1362, 1227, 1142, 836, 764, 688 cm⁻¹; HRMS ESI-TOF *m/z* 328.1248 ([M + H]⁺, C₂₁H₁₄FN₃ + H⁺ requires 328.1250).

2-(4-Bromophenyl)-4,6-diphenyl-1,3,5-triazine (12c).

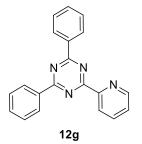
12c (7.33 mg, 94%, white solid): mp 190–191 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.78 (d, 4H, *J* = 7.0 Hz), 8.67 (d, 2H, *J* = 8.6 Hz), 7.73 (d, 2H, *J* = 8.6 Hz), 7.65 (t, 2H, *J* = 7.2 Hz), 7.61 (t, 4H, *J* = 7.3 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 171.9, 171.0, 136.2, 135.4, 132.8, 132.1, 130.6, 129.1, 128.8, 127.6; IR (film) v_{max} 3056, 2917, 2854, 1591, 1506, 1443, 1366, 1169, 1007, 836, 764, 688 cm⁻¹; HRMS ESI-TOF *m*/*z* 388.0449 ([M + H]⁺, C₂₁H₁₄BrN₃ + H⁺ requires 388.0452).


2-(4-Methoxyphenyl)-4,6-diphenyl-1,3,5-triazine (12d).

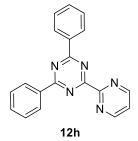
12d (6.68 mg, 98%, white solid): mp 161–163 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.77 (dd, 4H, J = 8.2, 1.4 Hz), 8.75 (d, 2H, J = 8.9 Hz), 7.61 (t, 2H, J = 7.2 Hz), 7.57 (t, 4H, J = 7.2 Hz),


7.07 (d, 2H, J = 8.9 Hz), 3.93 (s, 3H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 171.5, 171.3, 163.5, 136.6, 132.5, 131.0, 129.0, 128.9, 128.7, 114.1, 55.6; IR (film) v_{max} 3065, 2926, 2836, 1582, 1510, 1443, 1371, 1254, 1173, 769, 683 cm⁻¹; HRMS ESI-TOF *m*/*z* 340.1454 ([M + H]⁺, C₂₂H₁₇N₃O + H⁺ requires 340.1450).

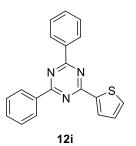
4-(4,6-Diphenyl-1,3,5-triazin-2-yl)aniline (12e).


12e (6.31 mg, 97%, yellow solid): mp 197–199 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.76 (d, 4H, *J* = 6.8 Hz), 8.62 (d, 2H, *J* = 8.6 Hz), 7.60 (t, 2H, *J* = 7.1 Hz), 7.56 (t, 4H, *J* = 7.1 Hz), 6.81 (d, 2H, *J* = 8.6 Hz), 4.11 (s, 2H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 171.5, 171.3, 150.9, 136.8, 132.3, 131.1, 129.0, 128.7, 126.3, 114.6; IR (film) v_{max} 3465, 3326, 3218, 2917, 2845, 1636, 1600, 1510, 1438, 1362, 1303, 1173, 764, 683 cm⁻¹; HRMS ESI-TOF *m/z* 325.1454 ([M + H]⁺, C₂₁H₁₆N₄ + H⁺ requires 325.1453).

2-(3-Nitrophenyl)-4,6-diphenyl-1,3,5-triazine (12f).

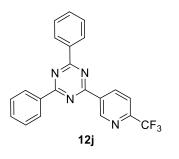

12f (6.62 mg, 94%, white solid): mp 194–196 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 9.56 (t, 1H, *J* = 1.9 Hz), 9.09 (dt, 1H, *J* = 7.7, 1.2 Hz), 8.77 (d, 4H, *J* = 7.1 Hz), 8.45 (ddd, 1H, *J* = 8.1, 2.2, 1.0 Hz), 7.76 (t, 1H, *J* = 7.9 Hz), 7.65 (t, 2H, *J* = 7.2 Hz), 7.60 (t, 4H, *J* = 7.4 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 172.2, 169.8, 148.9, 138.3, 135.8, 134.7, 133.1, 129.8, 129.2, 128.9, 126.9, 124.0; IR (film) v_{max} 3088, 3061, 1591, 1515, 1506, 1438, 1366, 1348, 733, 693 cm⁻¹; HRMS ESI-TOF *m*/*z* 355.1193 ([M + H]⁺, C₂₁H₁₄N₄O₂ + H⁺ requires 355.1195).

2,4-Diphenyl-6-(pyridin-2-yl)-1,3,5-triazine (12g).

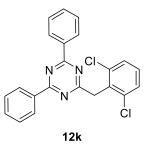

12g (5.39 mg, 87%, white solid): mp 210–212 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.97 (ddd, 1H, *J* = 4.7, 1.6, 0.8 Hz), 8.82–8.80 (m, 5H), 7.97 (td, 1H, *J* = 7.7, 1.7 Hz), 7.63 (t, 2H, *J* = 7.3 Hz), 7.58 (t, 4H, *J* = 7.3 Hz), 7.53 (ddd, 1H, *J* = 7.5, 4.7, 1.1 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 172.5, 171.2, 154.1, 150.6, 137.2, 136.0, 132.9, 129.4, 128.8, 126.3, 125.0; IR (film) v_{max} 3061, 2921, 2849, 1591, 1524, 1452, 1371, 751, 688 cm⁻¹; HRMS ESI-TOF *m*/*z* = 311.1301 ([M + H]⁺, C₂₀H₁₄N₄ + H⁺ requires 311.1297).

2,4-Diphenyl-6-(pyrimidin-2-yl)-1,3,5-triazine (12h).

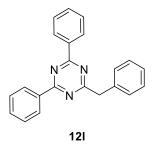
12h (6.02 mg, 97%, white solid): mp 200–203 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 9.12 (d, 2H, *J* = 4.8 Hz), 8.80 (d, 4H, *J* = 7.0 Hz), 7.63 (t, 2H, *J* = 7.3 Hz), 7.57 (t, 4H, *J* = 7.4 Hz), 7.54 (t, 1H, *J* = 4.8 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 173.0, 170.7, 162.6, 158.3, 135.6, 133.1, 129.5, 128.9, 122.2; IR (film) v_{max} 3061, 3038, 1582, 1564, 1524, 1492, 1366, 755, 688 cm⁻¹; HRMS ESI-TOF *m*/*z* 312.1250 ([M + H]⁺, C₁9H₁₃N₅ + H⁺ requires 312.1249).


2,4-Diphenyl-6-(thiophen-2-yl)-1,3,5-triazine (12i).

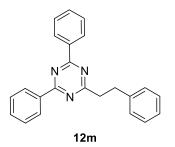
12i (5.91 mg, 94%, white solid): mp 182–184 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.73 (dd, 4H, *J* = 8.3, 1.3 Hz), 8.38 (dd, 1H, *J* = 3.7, 1.2 Hz), 7.65 (dd, 1H, *J* = 4.9, 1.2 Hz), 7.61 (t, 2H, *J* = 7.2 Hz), 7.57 (t, 4H, *J* = 7.3 Hz), 7.25 (dd, 1H, *J* = 4.9, 3.7 Hz); ¹³C NMR (151 MHz, CDCl₃,


298K) δ 171.7, 168.3, 142.3, 136.1, 132.7, 132.3, 131.6, 129.1, 128.8, 128.6; IR (film) v_{max} 3097, 3043, 1578, 1542, 1519, 1438, 1398, 1371, 764, 697 cm⁻¹; HRMS ESI-TOF *m*/*z* 316.0908 ([M + H]⁺, C₁₉H₁₃N₃S + H⁺ requires 316.0908).

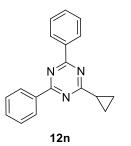
2,4-Diphenyl-6-(6-(trifluoromethyl)pyridin-3-yl)-1,3,5-triazine (12j).


12j (7.43 mg, 91%, white solid): mp 166–168 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 9.97 (d, 1H, *J* = 1.6 Hz), 9.10 (dd, 1H, *J* = 8.0, 1.6 Hz), 8.71 (d, 4H, *J* = 7.0 Hz), 7.86 (d, 1H, *J* = 8.1 Hz), 7.63 (t, 2H, *J* = 7.3 Hz), 7.57 (t, 4H, *J* = 7.5 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 172.2, 169.1, 151.0, 150.8, 137.7, 135.5, 134.6, 133.2, 129.2, 128.9, 121.6 (q, *J* = 273 Hz), 120.4 (q, *J* = 2.6 Hz); IR (film) v_{max} 3070, 1591, 1515, 1393, 1348, 1326, 1169, 1137, 1119, 1083, 760, 697, 683 cm⁻¹; HRMS ESI-TOF *m*/*z* 379.1170 ([M + H]⁺, C₂₁H₁₃F₃N₄ + H⁺ requires 379.1171).

2-(2,6-Dichlorobenzyl)-4,6-diphenyl-1,3,5-triazine (12k).


12k (7.65 mg, 98%, white solid): mp 151–152 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.56 (d, 4H, *J* = 7.1 Hz), 7.56 (t, 2H, *J* = 7.3 Hz), 7.50 (t, 4H, *J* = 7.5 Hz), 7.40 (d, 2H, *J* = 8.1 Hz), 7.23 (t, 1H, *J* = 8.1 Hz), 4.74 (s, 2H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 176.6, 171.5, 136.7, 136.1, 133.8, 132.6, 129.1, 128.73, 128.70, 128.1, 40.7; IR (film) v_{max} 3052, 2917, 2849, 1515, 1429, 1357, 926, 787, 742, 683 cm⁻¹; HRMS ESI-TOF *m*/*z* 392.0718 ([M + H]⁺, C₂₂H₁₅Cl₂N₃ + H⁺ requires 392.0721).

2-Benzyl-4,6-diphenyl-1,3,5-triazine (12l).


12l (5.72 mg, 89%, white solid): mp 93–94 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.64 (d, 4H, J = 7.2 Hz), 7.58 (t, 2H, J = 7.3 Hz), 7.54–7.51 (m, 6H), 7.34 (t, 2H, J = 7.7 Hz), 7.26 (t, 1H, J = 7.4 Hz), 4.33 (s, 2H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 178.4, 171.7, 137.4, 136.1, 132.6, 129.6, 129.1, 128.8, 128.6, 126.9, 46.0; IR (film) v_{max} 3065, 3029, 2917, 1587, 1519, 1447, 1362, 755, 710, 688 cm⁻¹; HRMS ESI-TOF *m*/*z* 324.1507 ([M + H]⁺, C₂₂H₁₇N₃ + H⁺ requires 324.1501).

2-Phenethyl-4,6-diphenyl-1,3,5-triazine (12m).

12m (6.60 mg, 98%, white solid): mp 77–79 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.66 (d, 4H, *J* = 7.1 Hz), 7.60 (t, 2H, *J* = 7.2 Hz), 7.55 (t, 4H, *J* = 7.4 Hz), 7.34 (d, 2H, *J* = 6.9 Hz), 7.31 (t, 2H, *J* = 7.6 Hz), 7.21 (t, 1H, *J* = 7.1 Hz), 3.38–3.35 (m, 2H), 3.34–3.31 (m, 2H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 179.1, 171.4, 141.4, 136.2, 132.6, 129.1, 128.8, 128.7, 128.6, 126.2, 40.8, 33.5; IR (film) v_{max} 3061, 3025, 2921, 1587, 1519, 1447, 1366, 1178, 751, 692 cm⁻¹; HRMS ESI-TOF *m/z* 338.1663 ([M + H]⁺, C₂₃H₁₉N₃ + H⁺ requires 338.1657).

2-Cyclopropyl-4,6-diphenyl-1,3,5-triazine (12n).

12n (5.36 mg, 98%, white solid): mp 81–83 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.63 (d, 4H, J = 7.1 Hz), 7.58 (t, 2H, J = 7.2 Hz), 7.53 (t, 4H, J = 7.4 Hz), 2.35–2.31 (m, 1H), 1.44–1.41 (m, 2H), 1.22–1.19 (m, 2H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 181.1, 170.8, 136.3, 132.4, 129.0,

128.7, 18.5, 11.9; IR (film) v_{max} 3056, 2993, 2917, 1587, 1524, 1443, 1366, 935, 764, 706 cm⁻¹. HRMS ESI-TOF *m/z* 274.1350 ([M + H]⁺, C₁₈H₁₅N₃ + H⁺ requires 274.1344).

Reaction of 2 with 111 in protic solvent

A solution of amidine **111** (4.0 mg, 0.03 mmol, 1.5 equiv) in CH₃CN/H₂O (V/V = 7:3, 0.5 mL) was added to **2** (4.68 mg, 0.02 mmol, 1 equiv), resulting in a suspension. The mixture was stirred at 25 °C for 2 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (17% EtOAc/hexanes) to provide **12l** (5.75 mg, 89%) as a white solid.

A solution of amidine **111** (4.0 mg, 0.03 mmol, 1.5 equiv) in CH₃CN/H₂O (V/V = 3:7, 0.5 mL) was added to **2** (4.68 mg, 0.02 mmol, 1 equiv), resulting in a suspension. The mixture was stirred at 25 °C for 2 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (17% EtOAc/hexanes) to provide **12l** (6.09 mg, 94%) as a white solid.

Synthesis of 12l from 13a

Condition A

A 40 mM solution of 2 (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH_3CN (0.5 mL) was treated with **13a** (4.59 mg, 0.03 mmol, 1.5 equiv) and the mixture was stirred at 25 °C for 48 h. The solvent was removed under a gentle stream of N₂ and the mixture was purified by PTLC (17% EtOAc/hexanes) to provide **12l** (3.02 mg, 47%) as a white solid.

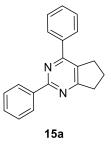
Condition B

A 400 mM solution of 2 (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CHCl₃ (50 μ L) was treated with **13a** (15.1 mg, 0.10 mmol, 5 equiv) and the mixture was stirred at 25 °C for 48 h. The solvent was removed under a gentle stream of N₂ and the mixture was purified by PTLC (17% EtOAc/hexanes) to provide **12l** (4.27 mg, 68%) as a white solid.

Synthesis of 12l from 13b

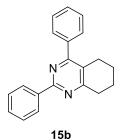
Condition A

A 40 mM solution of 2 (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (0.5 mL) was treated with **13b** (4.44 mg, 0.03 mmol, 1.5 equiv) and the mixture was warmed at 80 °C for 48 h in a sealed tube. The solvent was removed under a gentle stream of N_2 and the mixture was purified by PTLC (17% EtOAc/hexanes) to provide **12l** (2.23 mg, 35%) as a white solid.

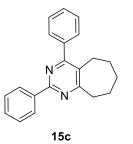

Condition B

A 400 mM solution of 2 (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CHCl₃ (50 μ L) was treated with **13b** (14.9 mg, 0.10 mmol, 5 equiv) and the mixture was stirred at 25 °C for 48 h. The solvent was removed under a gentle stream of N₂ and the mixture was purified by PTLC (17% EtOAc/hexanes) to provide **12l** (2.72 mg, 43%) as a white solid.

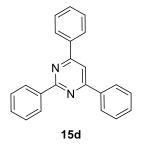
General procedure for the synthesis of 15a-d


A 40 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (0.5 mL) was treated with crushed 4Å molecular sieves (20 mg) and the corresponding enamine **14a-d** (0.024 mmol, 1.2 equiv). The mixture was stirred at 25 °C for 3 h, and then warmed at 60 °C for 24 h. The mixture was cooled and filtered through Celite. The solvent was removed under a gentle stream of N₂ and the mixture was purified by column chromatography (SiO₂, EtOAc/hexanes) to provide **15a-d** as desired products.

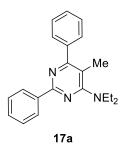
2,4-Diphenyl-6,7-dihydro-5*H*-cyclopenta[*d*]pyrimidine (15a).


15a (4.53 mg, 83%, white solid): mp 72–73 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.55 (dd, 2H, *J* = 8.1, 1.5 Hz), 8.07 (d, 2H, *J* = 7.0 Hz), 7.55–7.46 (m, 6H), 3.25 (t, 2H, *J* = 7.3 Hz), 3.14 (t, 2H, *J* = 7.7 Hz), 2.22–2.17 (m, 2H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 176.7, 163.3, 159.5, 138.4, 138.3, 130.3, 130.0, 129.1, 128.9, 128.7, 128.6, 128.3, 34.6, 31.1, 23.1; IR (film) v_{max} 3061, 2953, 2921, 2854, 1555, 1384, 1258, 1092, 1065, 1029, 804, 746, 697 cm⁻¹; HRMS ESI-TOF *m/z* 273.1396 ([M + H]⁺, C₁₉H₁₆N₂ + H⁺ requires 273.1392).

2,4-Diphenyl-5,6,7,8-tetrahydroquinazoline (15b).

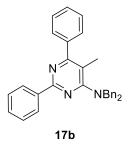

15b (2.47 mg, 43%, white solid): mp 103–105 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.47 (dd, 2H, *J* = 8.2, 1.6 Hz), 7.66 (dd, 2H, *J* = 7.4, 2.0 Hz), 7.51–7.42 (m, 6H), 3.04 (t, 2H, *J* = 6.6 Hz), 2.80 (t, 2H, *J* = 6.2 Hz), 1.99–1.95 (m, 2H), 1.81–1.77 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.7, 165.1, 161.4, 138.7, 138.2, 130.0, 129.04, 128.97, 128.4, 128.2, 128.1, 125.4, 32.8, 27.0, 22.9, 22.5; IR (film) v_{max} 3052, 2930, 2858, 1542, 1497, 1420, 1398, 1258, 1164, 1029, 751, 692 cm⁻¹; HRMS ESI-TOF *m*/*z* 287.1552 ([M + H]⁺, C₂₀H₁₈N₂ + H⁺ requires 287.1548).

2,4-Diphenyl-6,7,8,9-tetrahydro-5*H*-cyclohepta[*d*]pyrimidine (15c).

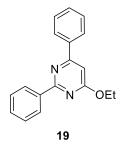

15c (3.59 mg, 60%, white solid): mp 119–121 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.49 (dd, 2H, *J* = 8.0, 1.6 Hz), 7.59 (dd, 2H, *J* = 8.1, 1.4 Hz), 7.53–7.41 (m, 6H), 3.18–3.16 (m, 2H), 2.89–2.87 (m, 2H), 1.96–1.92 (m, 2H), 1.83 (tt, 2H, *J* = 11.0, 4.6 Hz), 1.73-1.69 (m, 2H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 172.9, 164.5, 161.2, 139.4, 138.2, 130.6, 130.1, 129.4, 128.9, 128.5, 1284, 128.2, 39.5, 32.4, 29.3, 27.9, 26.3; IR (film) v_{max} 3056, 2921, 2854, 1542, 1496, 1447, 1393, 1174, 764, 695 cm⁻¹; HRMS ESI-TOF *m/z* 301.1711 ([M + H]⁺, C₂₁H₂₀N₂ + H⁺ requires 301.1705).

2,4,6-Triphenylpyrimidine (15d).

15d (2.79 mg, 45%, white solid): mp 151–153 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.74 (dd, 2H, *J* = 8.1, 1.5 Hz), 8.30 (dd, 4H, *J* = 8.0, 1.6 Hz), 8.03 (s, 1H), 7.59–7.53 (m, 9H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 164.9, 164.7, 138.3, 137.7, 130.9, 130.8, 129.1, 128.62, 128.60, 127.4, 110.5; IR (film) ν_{max} 3056, 2926, 1591, 1573, 1523, 1492, 1362, 742, 683 cm⁻¹; HRMS ESI-TOF *m/z* 309.1391 ([M + H]⁺, C₂₂H₁₆N₂ + H⁺ requires 309.1392).

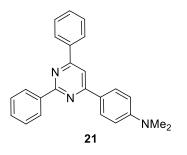

N,N-Diethyl-5-methyl-2,6-diphenylpyrimidin-4-amine (17a).

A 40 mM solution of 2 (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (0.5 mL) was treated with ynamine **16a** (3.33 mg, 0.03 mmol, 1.5 equiv). The mixture was stirred at 25 °C for 1 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by column

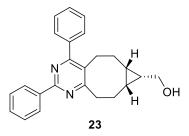

chromatography (SiO₂, 10% EtOAc/hexanes) to provide **17a** (5.72 mg, 90%) as a white solid: mp 111–113 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.50 (dd, 2H, *J* = 8.1, 1.6 Hz), 7.70 (dd, 2H, *J* = 8.1, 1.3 Hz), 7.48–7.42 (m, 6H), 3.57 (q, 4H, *J* = 7.0 Hz), 2.23 (s, 3H), 1.30 (t, 6H, *J* = 7.0 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 166.4, 165.9, 159.9, 140.3, 138.9, 129.9, 129.8, 128.8, 128.3, 128.2, 128.1, 112.4, 44.2, 18.0, 13.6; IR (film) v_{max} 3060, 2966, 2926, 2867, 1546, 1492, 1402, 1353, 1128, 1011, 764, 701 cm⁻¹; HRMS ESI-TOF *m*/*z* 318.1973 ([M + H]⁺, C₂₁H₂₃N₃ + H⁺ requires 318.1970).

N,N-Dibenzyl-5-methyl-2,6-diphenylpyrimidin-4-amine (17b).

A 40 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (0.5 mL) was treated with ynamine **16b** (7.05 mg, 0.03 mmol, 1.5 equiv). The mixture was stirred at 25 °C for 24 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by column chromatography (SiO₂, 17% EtOAc/hexanes) to provide **17b** (8.09 mg, 92%) as a white solid: mp 126–128 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.44 (m, 2H), 7.68 (dd, 2H, *J* = 8.1, 1.4 Hz), 7.48–7.45 (m, 3H), 7.44–7.41 (m, 3H), 7.33–7.32 (m, 8H), 7.28–7.24 (m, 2H), 4.78 (s, 4H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 166.74, 166.72, 160.2, 140.0, 138.6, 138.5, 130.0, 129.9, 129.0, 128.7, 128.29, 128.26, 128.2, 127.9, 127.2, 112.5, 53.1, 18.0; IR (film) v_{max} 3065, 3020, 2912, 1537, 1497, 1452, 1398, 1357, 1263, 1169, 1007, 737, 701 cm⁻¹; HRMS ESI-TOF *m*/z 442.2285 ([M + H]⁺, C₃₁H₂₇N₃ + H⁺ requires 442.2283).


4-Ethoxy-2,6-diphenylpyrimidine (19).

A 40 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CHCl₃ (0.5 mL) was treated with ketene acetal **18** (11.6 mg, 0.1 mmol, 5 equiv). The mixture was heated at 60 °C for 24 h in a sealed tube. The solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (SiO₂, 25% EtOAc/hexanes) to provide **19** (3.30 mg, 60%) as a white solid: mp 61–62 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.59 (dd, 2H, *J* = 7.9, 1.9 Hz), 8.18 (dd, 2H, *J* = 7.9, 1.6 Hz), 7.53–7.49 (m, 6H), 7.01 (s, 1H), 4.62 (q, 2H, *J* = 7.1 Hz), 1.49 (t, 3H, *J* = 7.1 Hz); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 170.6, 164.9, 164.1, 138.1, 137.5, 130.7, 130.6, 128.9, 128.49, 128.48,


127.3, 101.4, 62.5, 14.7; IR (film) v_{max} 3061, 2975, 2926, 1591, 1568, 1541, 1411, 1375, 1339, 1209, 1025, 760, 697 cm⁻¹; HRMS ESI-TOF *m/z* 277.1341 ([M + H]⁺, C₁₈H₁₆N₂O + H⁺ requires 277.1341).

4-(2,6-Diphenylpyrimidin-4-yl)-*N*,*N*-dimethylaniline (21).

Compound **2** (4.68 mg, 0.02 mmol) was treated with **20** (100 µL) and the mixture was warmed at 80 °C for 72 h. The mixture was cooled to room temperature and purified by PTLC (SiO₂, 25% EtOAc/hexanes) to provide **21** (2.01 mg, 28%) as a yellow solid: mp 162–164 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.73 (dd, 2H, *J* = 8.2, 1.4 Hz), 8.28 (dd, 2H, *J* = 8.2, 1.4 Hz), 8.25 (d, 2H, *J* = 9.0 Hz), 7.92 (s, 1H), 7.57–7.49 (m, 6H), 6.86 (d, 2H, *J* = 7.4 Hz), 3.08 (s, 6H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 164.6, 164.3, 164.2, 138.7, 138.2, 130.6, 130.5, 129.0, 128.59, 128.55, 128.5, 127.3, 112.2, 108.8, 40.5; IR (film) v_{max} 3056, 2953, 2912, 2849, 2804, 1613, 1587, 1564, 1519, 1492, 1357, 1200, 1169, 818, 755, 692 cm⁻¹; HRMS ESI-TOF *m/z* 352.1817 ([M + H]⁺, C₂₄H₂₁N₃ + H⁺ requires 352.1814).

((6aS,7S,7aR)-2,4-Diphenyl-6,6a,7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-*d*]pyrimidin-7-yl)methanol (23).

A 400 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CHCl₃ (50 µL) was treated with **22** (12.00 mg, 0.08 mmol, 4 equiv). The mixture was stirred at 25 °C for 48 h. The solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (SiO₂, EtOAc) to provide **23** (6.93 mg, 97%) as a white solid: mp 93–95 °C; ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.48 (dd, 2H, *J* = 7.9, 1.7 Hz), 7.56 (dd, 2H, 7.9, 1.5 Hz), 7.51–7.43 (m, 6H), 3.80 (dd, 1H, 11.4, 7.4 Hz), 3.73 (dd, 1H, 11.3, 7.4 Hz), 3.34–3.29 (m, 1H), 3.18–3.14 (m, 1H), 3.01–2.96 (m, 1H), 2.80–2.76 (m, 1H), 1.69–1.52 (m, 2H), 1.26 (s, 1H), 1.20–1.12 (m, 2H), 1.08–0.99 (m, 1H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 171.7, 165.8, 139.6, 138.1, 130.2, 129.7, 129.0, 128.9, 128.5, 128.4, 128.3, 59.7, 36.8, 27.1, 24.7, 23.3, 22.6, 21.7, 19.7; IR (film) v_{max} 3375, 3056, 2921, 2872, 1542, 1393, 1263, 1025, 769, 733, 697 cm⁻¹; HRMS ESI-TOF *m*/*z* 357.1968 ([M + H]⁺, C₂₄H₂₄N₂O + H⁺ requires 357.1967).

V. Comparison of reactivity between 2 and 24

(a) Reaction with amidine **111**

A 40 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (0.5 mL) was treated with amidine **111** (5.10 mg, 0.03 mmol, 1.5 equiv). The mixture was stirred at 25 °C for 2 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by column chromatography (SiO₂, 17% EtOAc/hexanes) to provide **121** (5.72 mg, 89%) as a white solid.

A 40 mM solution of **24** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous $CHCl_3/CH_3CN$ (V/V = 1:1, 0.5 mL) was treated with amidine **111** (4.0 mg, 0.03 mmol, 1.5 equiv). No conversion was observed after 2 h.

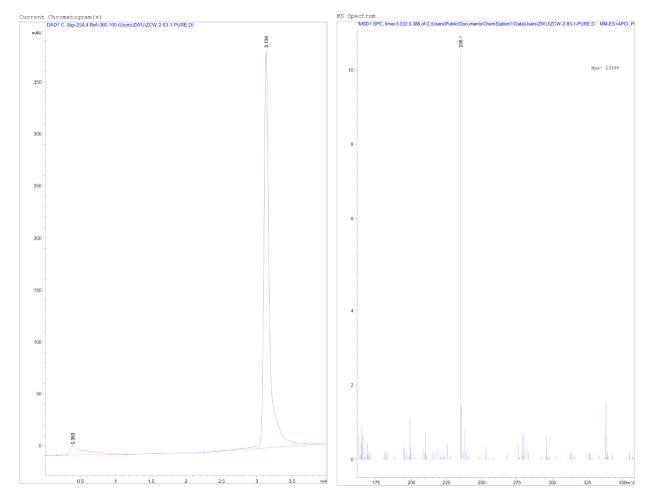
A 40 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) and **24** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous $CHCl_3/CH_3CN$ (V/V = 1:1, 0.5 mL) was treated with amidine **111** (2.68 mg, 0.03 mmol, 1.0 equiv). The mixture was stirred at 25 °C for 2 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (SiO₂, 17% EtOAc/hexanes) to provide **121** (5.94 mg, 92%) as a white solid.

(b) Reaction with cyclooctyne 22

A 5 mM solution of 24 (2.34 mg, 0.01 mmol, 1 equiv) in anhydrous CH₃CN (2 mL) was treated with cyclooctyne 22 (6.00 mg, 0.04 mmol, 4 equiv). The mixture was stirred at 25 °C for 10 min, and the solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (SiO₂, EtOAc) to provide 25 (3.32 mg, 93%) as a white solid.

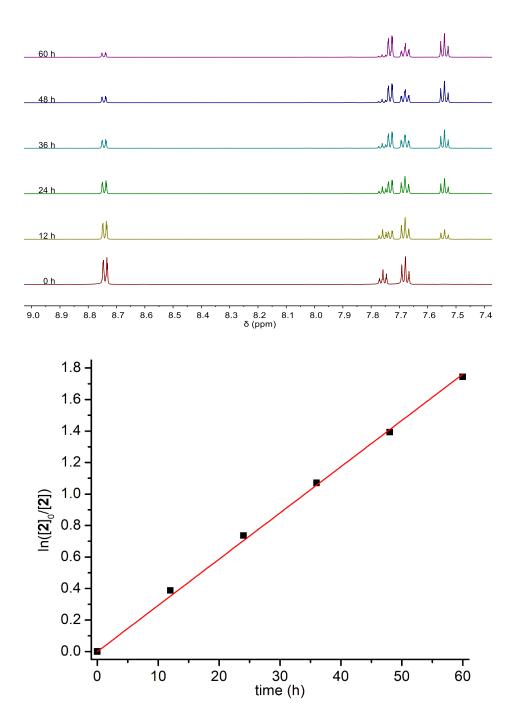
A 5 mM solution of 2 (2.34 mg, 0.01 mmol, 1 equiv) in anhydrous CH₃CN (2 mL) was treated with cyclooctyne 22 (6.00 mg, 0.04 mmol, 4 equiv). No conversion was observed after 48 h.

A 5 mM solution of 2 (4.68 mg, 0.02 mmol, 1 equiv) and 24 (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (4 mL) was treated with cyclooctyne 22 (3.00 mg, 0.02 mmol, 1 equiv). The mixture was stirred at 25 °C for 30 min, and the solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (SiO₂, EtOAc) to provide 25 (6.96 mg, 98%) as a white solid.


(c) Reaction with ynamine 16a

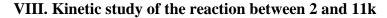
A 40 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (0.5 mL) was treated with ynamine **16a** (3.33 mg, 0.03 mmol, 1.5 equiv). The mixture was stirred at 25 °C for 1 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by column chromatography (SiO₂, 10% EtOAc/hexanes) to provide **17a** (5.72 mg, 90%) as a white solid.

A 40 mM solution of **24** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CHCl₃/CH₃CN (V/V = 1:1, 0.5 mL) was treated with ynamine **16a** (3.33 mg, 0.03 mmol, 1.5 equiv). The mixture was stirred at 25 °C for 1 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (SiO₂, 50% EtOAc/hexanes) to provide **26** (6.05 mg, 95%) as a white solid.


A 20 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) and **24** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CHCl₃/CH₃CN (V/V = 1:1, 1 mL) was treated with ynamine **16a** (2.22 mg, 0.02 mmol, 1.0 equiv). The mixture was stirred at 25 °C for 1 h, and the solvent was removed under a gentle

stream of N₂. The mixture was analyzed by ¹H NMR using mesitylene as an internal standard, resulting a 15% NMR yield of **17a** and a 53% NMR yield of **26**.

VI. LC-MS analysis of 2


Figure S1. LC trace (left) and MS spectra (right) of 2.

VII. Decomposition kinetics of 2

Figure S2. Kinetic study of decomposition of 2 (top: NMR spectra; bottom: linear fitting).

Experiment performed at 80 °C in CD₃CN. ¹H NMR spectra is recorded at 12 h intervals for 60 h. First order kinetics with $k = (0.0293 \pm 0.0003)$ h⁻¹ (8.15 × 10⁻⁶ s⁻¹) was fitted with R² = 0.9995.

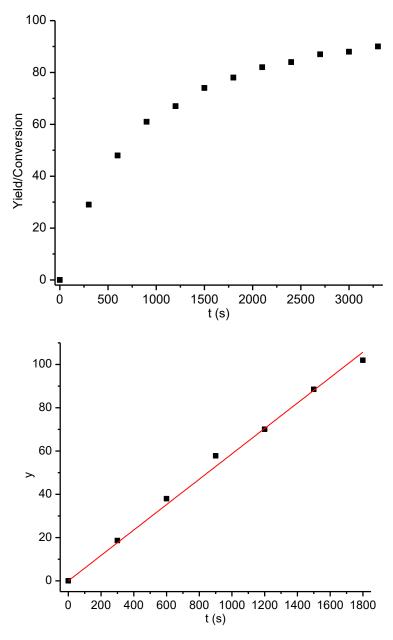


Figure S3. Kinetic study of reaction between 2 and 11k (top: reaction progress over time; bottom: linear fitting).

The kinetic study of the reaction between 2 (10 mM) and **11k** (20 mM) was conducted in CD₃CN at 25 °C. ¹H NMR spectra was recorded at 5 min intervals for 55 min. The second order rate constant was fitted by the following equation with the result of $k = (5.87 \pm 0.10)*10^{-2} \text{ M}^{-1} \cdot \text{s}^{-1} (\text{R}^2 = 0.9981).$

$$y = \frac{1}{[\mathbf{2}]_0 - [\mathbf{11k}]_0} ln \frac{[\mathbf{11k}]_0([\mathbf{2}]_0 - [\mathbf{12k}])}{[\mathbf{2}]_0([\mathbf{11k}]_0 - [\mathbf{12k}])} = kt$$

IX. ¹⁵N labeling experiments

Amidine ¹⁵N₂-**111** was prepared as reported.^{S5} A 40 mM solution of **2** (4.68 mg, 0.02 mmol, 1 equiv) in anhydrous CH₃CN (0.5 mL) was treated with ¹⁵N₂-**111** (4.1 mg, 0.03 mmol, 1.5 equiv). The mixture was stirred at 25 °C for 2 h, and the solvent was removed under a gentle stream of N₂. The residue was purified by PTLC (17% EtOAc/hexanes) to provide ¹⁵N-**121** (6.06 mg, 94%) as a white solid: ¹H NMR (600 MHz, CDCl₃, 298K) δ 8.68–8.64 (m, 4H), 7.61–7.57 (m, 2H), 7.56–7.52 (m, 6H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.29–7.26 (m, 1H), 4.34 (d, *J* = 2.5 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃, 298K) δ 177.8 (d, *J* = 1.7 Hz), 171.1 (m), 136.8, 135.54, 135.53 (d, *J* = 8.4 Hz), 132.0, 129.0, 128.5, 128.1, 128.0, 126.3, 45.4 (d, *J* = 9.2 Hz); HRMS ESI-TOF *m*/*z* 325.1475 ([M + H]⁺, C₂₂H₁₇N₂[¹⁵N] + H⁺ requires 325.1466).

Determination of ¹⁵N content by HRMS: The reaction was conducted twice. From each reaction, four samples in parallel were subjected to HRMS analysis, where the ratio of signal intensity (peak area) of $C_{22}H_{17}N_3$ (M + H⁺, 324), $C_{22}H_{17}N_2[^{15}N]$ (M + H⁺, 325), and $C_{22}H_{17}N[^{15}N_2]$ was used to determine the ¹⁵N content in the reaction product with the existence of natural occurring isotopes taken into account. Synthetic $C_{22}H_{17}N_3$ was also subjected to HRMS analysis as a control. The results are listed in Table S3. A 1.07–1.08 ratio of ¹⁵N incorporation was determined by HRMS.

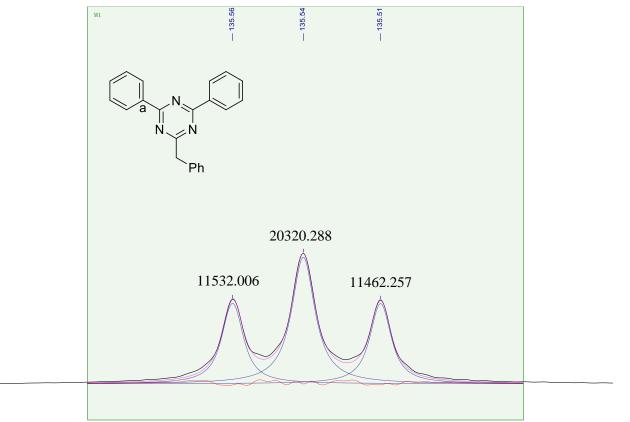

Con	npound	Sample	m/z = 324	m/z = 325	m/z = 326
		1	0.7%	91.2%	8.1%
		2	0.6%	90.3%	9.1%
	Experiment 1	3	0.6%	91.7%	7.7%
		4	0.6%	91.1%	8.3%
¹⁵ N- 12l		Average	0.6%	91.1%	8.3%
	Experiment 2	1	0.9%	92.1%	6.9%
		2	0.7%	93.0%	6.3%
		3	0.9%	91.7%	7.5%
		4	0.6%	92.1%	7.3%
		Average	0.8%	92.2%	7.0%
			100.2%	0.2%	-0.4%
		2	100.9%	-0.5%	-0.3%
121	121	3	99.7%	0.8%	-0.4%
		4	100.0%	0.5%	-0.5%
		Average	100.2%	0.2%	-0.4%

Table S3.	HRMS analy	sis of ¹⁵ N labe	eling experiment.
-----------	------------	-----------------------------	-------------------

The potential impact of the ¹⁵NH₃ released in the cycloaddition was also investigated, where no ¹⁵N incorporation was observed when triazine **12l** or the reaction between **2** and **11l** was treated with excess ¹⁵NH₃. This observation indicates that the incorporation of ¹⁵N only results from the reaction between tetrazine **2** and amidine ¹⁵N₂-**11l**.

Determination of ¹⁵N content by ¹³C NMR:

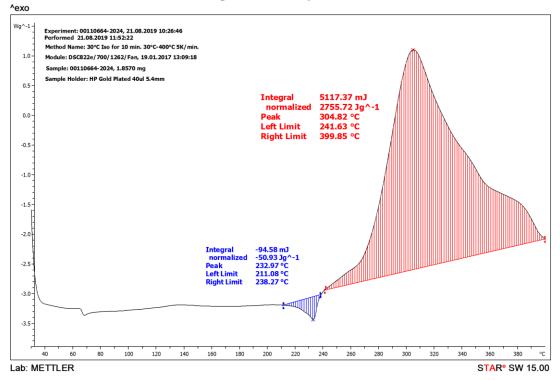
¹³C NMR of the labeling reaction product was recorded and the signal of ¹³C(a) (δ 135.5 ppm) was analyzed (Figure S4). A singlet (center) was observed when no ²*J* (¹³C-¹⁵N) is present, representing a ¹³C close to a ¹⁴N. A doublet (sides) was also observed where ²*J* (¹³C-¹⁵N, 8.4 Hz) is present, representing a ¹³C close to a ¹⁵N. The ratio between the intensity of the singlet and doublet was determined and provided the presence of ¹⁴N (47%) and ¹⁵N (53%). A 1.06 ratio of ¹⁵N incorporation was determined by NMR.

35. 65 135. 64 135. 63 135. 62 135. 61 135. 60 135. 59 135. 58 135. 57 135. 56 135. 55 135. 54 135. 52 135. 51 135. 50 135. 49 135. 48 135. 47 135. 46 135. 45 135. 44 135. 43 f1 (ppm)

Figure S4. Determination of ¹⁵N incorporation by ¹³C NMR.

X. X-ray crystal data and structure refinement for 8, 10 and 2

X-ray information for 8


Crystal data and structure refinement for 8.			
Empirical formula	C53 H33 Cl3 N16 O16		
Molecular formula	2(C26 H16 N8 O8), C1 H1 Cl3		
Formula weight	1256.30		
Temperature	100.0 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 13.2215(4) Å	<i>α</i> = 90°.	
	b = 31.0295(7) Å	$\beta = 115.2070(10)^{\circ}.$	
	c = 14.5700(4) Å	$\gamma = 90^{\circ}.$	
Volume	5408.2(3) Å ³		
Z	4		
Density (calculated)	1.543 Mg/m ³		
Absorption coefficient	0.259 mm ⁻¹		
F(000)	2568		
Crystal size	0.15 x 0.125 x 0.125 mm	3	
Crystal color, habit	orange block		
Theta range for data collection	1.312 to 25.349°.		
Index ranges	-15<=h<=15, -37<=k<=3	6, -17<=l<=16	
Reflections collected	59891		
Independent reflections	9895 [R(int) = 0.0447]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equ	ivalents	
Max. and min. transmission	0.4903 and 0.4553		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	9895 / 6 / 806		
Goodness-of-fit on F ²	1.020		
Final R indices [I>2sigma(I)]	R1 = 0.0496, wR2 = 0.11	73	
R indices (all data)	R1 = 0.0700, wR2 = 0.12	285	
Largest diff. peak and hole	1.110 and -0.999 e.Å ⁻³		

X-ray information for 10

Crystal data and structure refinement for 1	0.			
Empirical formula	C19 H20 N4 O2			
Formula weight	336.39			
Temperature	100.0 K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/n			
Unit cell dimensions	a = 13.3231(7) Å	α= 90°.		
	b = 9.9116(6) Å	$\beta = 104.338(3)^{\circ}.$		
	c = 14.2356(7) Å	$\gamma = 90^{\circ}$.		
Volume	1821.30(17) Å ³			
Ζ	4			
Density (calculated)	1.227 Mg/m ³			
Absorption coefficient	0.082 mm ⁻¹			
F(000)	712			
Crystal size	0.25 x 0.17 x 0.1 mm ³			
Crystal color, habit	yellow block			
Theta range for data collection	2.954 to 28.301°.			
Index ranges	-17<=h<=17, -11<=k<=1	3, -18<=l<=18		
Reflections collected	14723			
Independent reflections	4497 [R(int) = 0.0437]			
Completeness to theta = 25.242°	99.8 %			
Absorption correction	Semi-empirical from equ	ivalents		
Max. and min. transmission	0.7457 and 0.6822			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	4497 / 0 / 229			
Goodness-of-fit on F ²	1.013			
Final R indices [I>2sigma(I)]	R1 = 0.0474, wR2 = 0.09	984		
R indices (all data)	R1 = 0.0793, wR2 = 0.11	16		
Extinction coefficient	n/a			
Largest diff. peak and hole	0.334 and -0.341 e.Å ⁻³			

X-ray information for 2

Crystal data and structure refinement for 2			
Empirical formula	C14 H10 N4		
Molecular formula	C14 H10 N4		
Formula weight	234.26		
Temperature	100.0 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 3.8362(5) Å	$\alpha = 90^{\circ}$.	
	b = 13.7755(18) Å	β= 90°.	
	c = 20.821(2) Å	$\gamma = 90^{\circ}$.	
Volume	1100.3(2) Å ³		
Z	4		
Density (calculated)	1.414 Mg/m ³		
Absorption coefficient	0.089 mm ⁻¹		
F(000)	488		
Crystal size	$0.25 \text{ x } 0.04 \text{ x } 0.04 \text{ mm}^3$		
Crystal color, habit	yellow needle		
Theta range for data collection	1.773 to 25.661°.		
Index ranges	-4<=h<=4, -16<=k<=16,	-25<=l<=15	
Reflections collected	7200		
Independent reflections	2090 [R(int) = 0.0520]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equ	ivalents	
Max. and min. transmission	0.7454 and 0.6903		
Refinement method	Full-matrix least-squares	on F^2	
Data / restraints / parameters	2090 / 0 / 163		
Goodness-of-fit on F^2	1.002		
Final R indices [I>2sigma(I)]	R1 = 0.0475, wR2 = 0.0842		
R indices (all data)	R1 = 0.0825, wR2 = 0.0949		
Largest diff. peak and hole	0.181 and -0.193 e.Å ⁻³		

XI. Differential Scanning Calorimetry Characterization of 8 and 2

Figure S5. DSC measurement of compound 8.

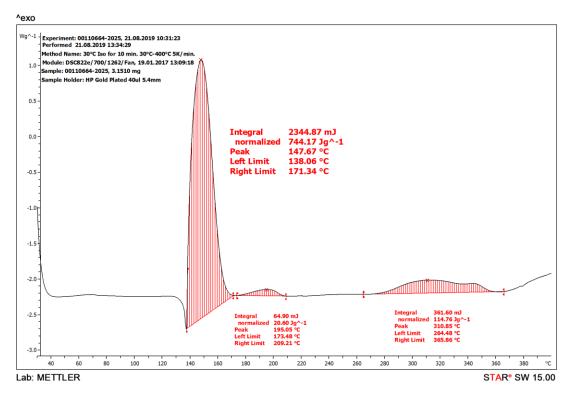
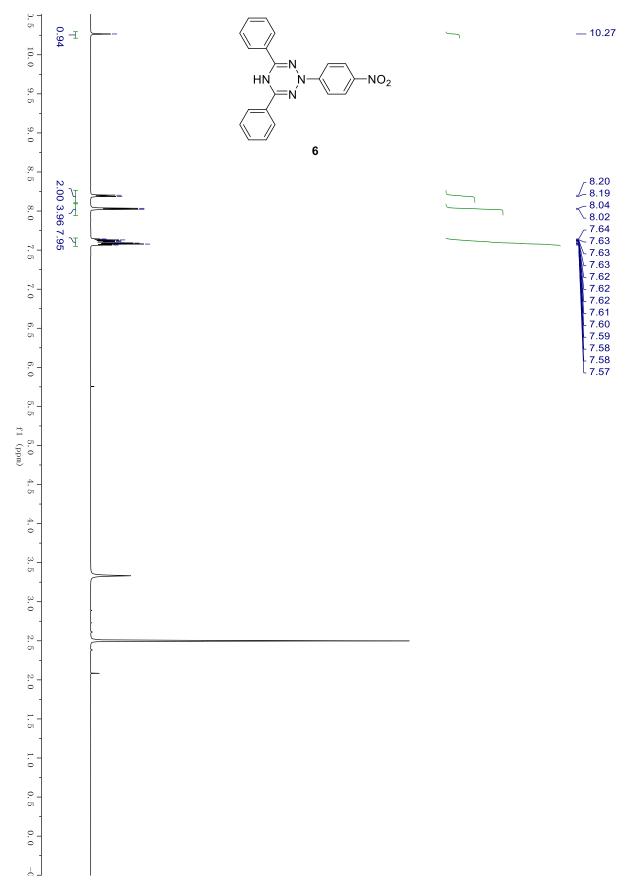
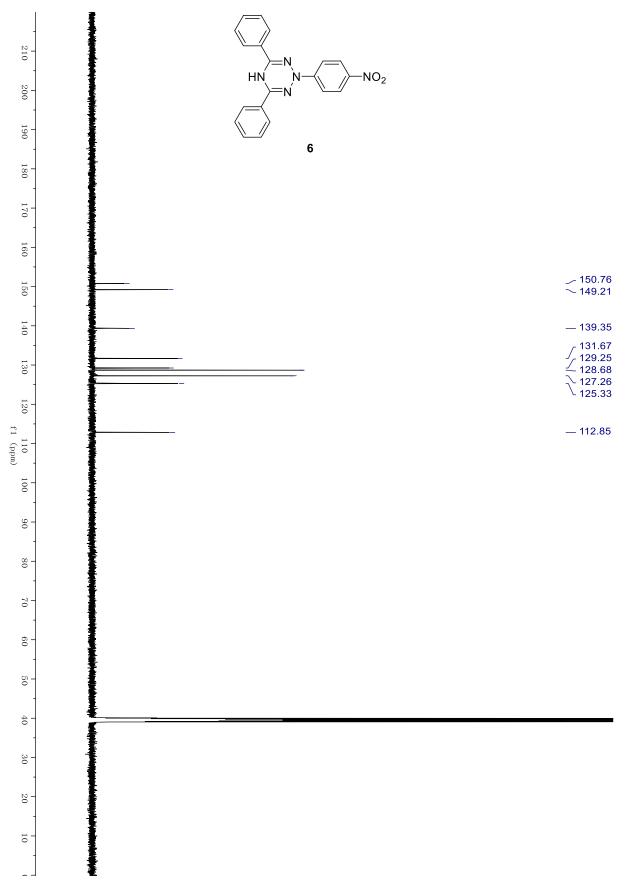
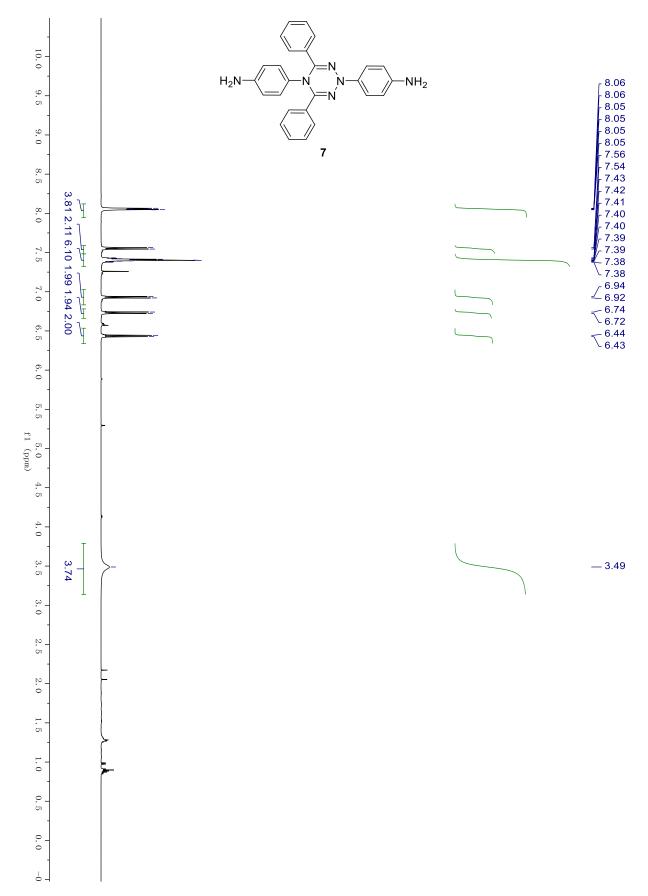


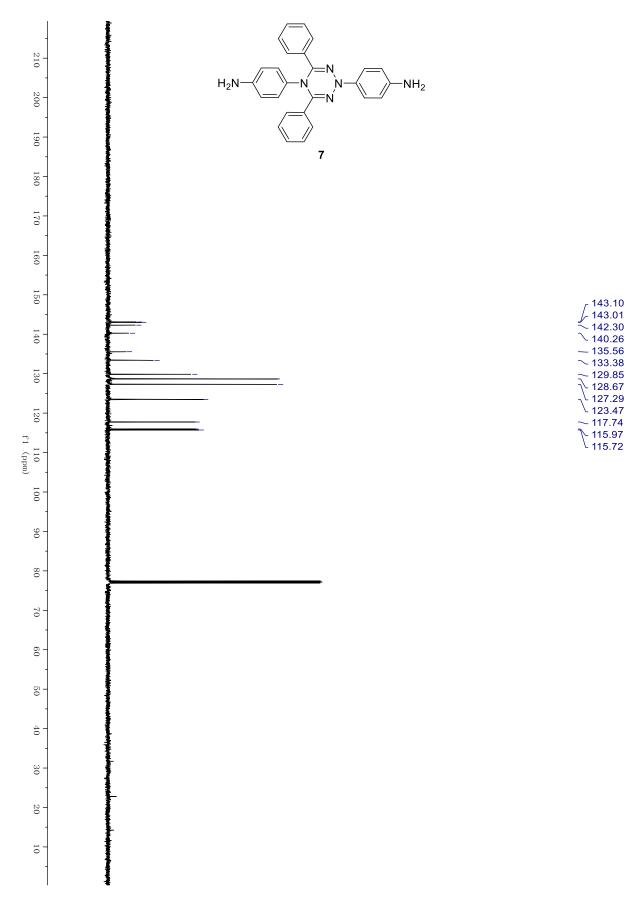
Figure S6. DSC measurement of compound 2.

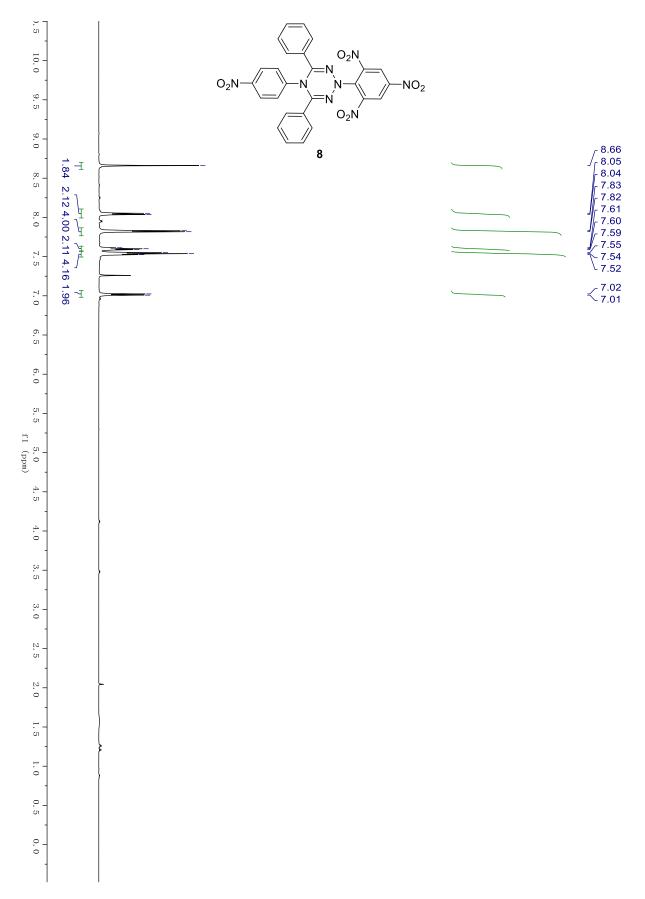
XII. References


S1. (a) Zhao, X.; Liu, D.; Xie, F.; Zhang, W. *Tetrahedron* 2009, 65, 512. (b) Taylor, E. C.; Dumas, D. J. J. Org. Chem. 1981, 46, 1394. (c) White, W. A.; Weingarten, H. J. Org. Chem. 1967, 32, 213. (d) Carlson, R.; Nilsson, A. Acta Chim. Scand. 1984, 38b, 49. (e) Verkruijsse, H.; Bos, H.; de Noten, L.; Brandsma, L. J. Royal Netherlands Chem. Soc. 1981, 100, 244. (f) Ireland, R. E.; Anderson, R. C.; Badoud, R.; Fitzsimmons, B. J.; McGarvey, G. J.; Thairivongs, S.; Wilcox, C. S. J. Am. Chem. Soc. 1983, 105, 1988.


S2. Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.


S3. (a) Butler, R. N.; Cunningham, D.; McArdle, P.; O'Halloran, G. A. J. Chem. Soc., Chem. Commun. **1988**, *3*, 232. (b) Butler, R. N.; Evans, A. M.; McNeela, E. M.; Cunningham, D.; McArdIe, P. J. Chem. Soc. Perkin Trans. 1. **1990**, 2527.


S4. Muathen, H. A. Indian J. Chem. 1991, 30B, 521.


S5. Charushin, V. N.; van der Plas, H. C. J. Org. Chem. 1983, 48, 2667.

