

Figure S1. mRNA of canonical H3 histones is reduced by metastatic signaling (related to Figure 1)

(A) mRNA levels of H3.1 encoding genes *HIST1H3A*, *HIST1H3B* and *HIST1H3F* evaluated by qPCR in MCF-10A expressing ERK2 D319N inducibly for 3 days (n = 4). All values are expressed as mean \pm SEM (***p < 0.001).

(B) Levels of histone H3 variants in chromatin extracts and Coomassie Blue stain of total histones in histone extracts of the MDA-MB-231 parental versus the more metastatic LM2 clone; representative images (n = 4).

Figure S2. Histone H3 variants regulate distinct genetic programs in metastatic cells (related to Figure 2)

(A-C) Summary of H3.1/H3.2 and H3.3 ChIP-seq analysis in LM2 cells displayed as: an average plot of H3.1/H3.2 and H3.3 distribution across transcriptional starting sites (TSS) (A), GSEA

enrichment plots evaluating H3.1/H3.2 enrichment in GO-term gene sets for RNA processing and mitotic cell cycle, and H3.3 enrichment in GO-term gene sets for response to wounding and cell activation (B), H3.1/H3.2 and H3.3 signal tracks for genes *ZNF257*, *POLQ* and *DROSHA* (C). (D and E) Validation of the H3.1/H3.2 ChIP-seq top targets *ZNF268*, *POLQ* and *DROSCHA* (D), and the H3.3 ChIP-seq top targets *ZEB1*, *SNAI1* and *SOX9* (E) by ChIP-qPCR in LM2 cells (n = 3).

(F) Validation of antibody specificity for histone H3 variants in LM2 cells expressing a HA-tagged version of H3.1 or a V5-tagged version of H3.3; "shorter" and "longer" indicates shorter/longer film exposures, representative images (n = 4).

(G and H) Validation of the H3.1/H3.2 ChIP-seq top targets *ZNF268*, *POLQ* and *DROSCHA* (G), and the H3.3 ChIP-seq top targets *ZEB1*, *SNAI1* and *SOX9* (H) by ChIP-qPCR in LM2 cells expressing a HA-tagged version of H3.1 or a V5-tagged version of H3.3 (n = 3).

All values are expressed as mean \pm SEM (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure S3. Metastatic signaling suppresses the CAF-1 complex and increases HIRA in a variety of cell models (related to Figure 3)

(A-D) Levels of the histone H3 chaperones in NMuMG with TGF β + TNF α for 10 days (A), MCF-10A transformed by induction of oncogenic H-RAS and treated with TGF β + TNF α for 5 days (B), MCF-10A expressing ERK2 D319N for 6 days after transduction (C), HCC38, HCC1937, SKBR3 and HCT116 treated with TGF β + TNF α for 10 days (D); "shorter" and "longer" indicates shorter/longer film exposure, representative images (n = 4).

(E) EMT induction determined by the protein levels of the mesenchymal marker fibronectin and the epithelial marker E-cadherin after 14 days of expression of H3F3A or HIRA or DAXX in MCF-10A; representative images (n = 3).

Figure S4. Suppression of the CAF-1 complex promotes aggressiveness of cancer cells (related to Figure 4)

(A) Time-course analysis of CAF-1 complex protein levels in MCF-10A expressing ERK2 D319N inducibly for 1, 3 or 5 days; representative images (n = 4).

(B-D) EMT induction determined by protein levels of the mesenchymal marker fibronectin and the epithelial marker E-cadherin in MCF-10A cells transformed by induction of oncogenic H-RAS and with CHAF1B knockdown for 5 days (B), NMuMG with CHAF1B knockdown for 10 days (C),

SKBR3 and HCT116 both with CHAF1B knockdown for 10 days (D); "shorter" and "longer" indicates shorter/longer film exposures, representative images (n = 4).

(E-G) Viability of MCF-10A cells transformed by induction of oncogenic H-RAS with CHAF1B knockdown for 5 days (E), SKBR3 with CHAF1B knockdown for 10 days (F), and HCT116 with CHAF1B knockdown for 10 days (G) treated with the chemotherapeutic drugs carboplatin and paclitaxel (n = 4).

(H) EMT induction determined by protein levels of the mesenchymal marker fibronectin and the epithelial marker E-cadherin in MCF-10A with CHAF1B knockdown and overexpression of a shRNA-resistant *CHAF1B* cDNA; representative images (n = 4).

(I) Viability of MCF-10A with CHAF1B knockdown and a shRNA-resistant CHAF1B cDNA treated with the chemotherapeutic drugs carboplatin and paclitaxel (n = 4).

All values are expressed as mean \pm SEM (**p < 0.01, ***p < 0.001).

Figure S5. CAF-1 levels are not acutely regulated by cell cycle or SRC activation (related to Figure 5)

(A) CAF-1 complex protein levels in MCF-10A, HCC1806 and A549 treated with thymidine for 24 hours; representative images (n = 4).

(B and C) Protein levels of EGR1, Sp1 pT739 and ERK2 pT202/pY204 phosphorylation in MCF-10A cells transformed by induction of oncogenic H-RAS and treated with TGF β + TNF α for 5 days (B), and SKBR3 and HCT116 treated with TGF β + TNF α for 10 days (C); representative images (n = 4).

(D and E) CAF-1 complex protein levels in MCF-10A expressing EGR1 for 3 days (D), and MCF-10A treated with the Sp1 inhibitor mithramycin A for 24 hours (E); representative images (n = 4). (F) Binding of Sp1 and/or EGR1 to biotinylated DNA fragments of either the CHAF1B promoter containing the overlapping Sp1/EGR1 site or a scrambled control in lysates from MCF-10A expressing inducible ERK2 D319N and either Sp1 WT or the Sp1 T453/T739 phosphorylation site mutants for 3 days; IgG control for the immunoprecipitation of the DNA fragments with streptavidin; representative images (n = 4).

(G) CAF-1 complex protein levels in MCF-10A treated with the SRC inhibitor KX2-391 and TGF β + TNF α for 24 hours; representative images (n = 4).

Figure S6. CAF-1 levels dictates metastatic-like properties of cancer cells (related to Figure 6)

(A and B) Quantification of migration and invasion of MDA-MB-231 parental cells with CHAF1B knockdown for 10 days (A), and LM2 overexpressing CHAF1B for 10 days (B) evaluated by transwell assays (left); representative images (right) (n = 4), scale bar = 1 mm. All values are expressed as mean \pm SEM (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure S7. Suppression of the CAF-1 complex triggers a pro-metastatic transcriptional reprogramming (related to Figure 7)

(A) EMT induction determined by protein levels of the mesenchymal marker fibronectin and the epithelial marker E-cadherin in MCF-10A, HCC1806 and A549 treated with thymidine for 7 days; representative images (n = 4).

(B) Induction of EMT determined by protein levels of the mesenchymal marker fibronectin and the epithelial marker E-cadherin in MCF-10A with CHAF1B knockdown as well as HP1 knockdown for 10 days; "shorter" and "longer" indicates shorter/longer film exposures, representative images (n = 4).

(C-E) Summary of RNA-seq analysis in MCF-10A with CHAF1B knockdown for 3 days (*n*=3): a heatmap representation of differentially expressed genes (up regulated genes are indicated with red and down regulated genes are indicated with blue) (C), GSEA analysis of the > 2-fold changed mRNAs (D), GSEA enrichment plots for the wound healing and TGF β GO-term gene sets (E). (F) Relative mRNA levels of *SERPINE1*, *VIM*, *MMP9* and *PDCD1LG2* evaluated by qPCR in MCF-10A with CHAF1B knockdown for 3 days (n = 3). All values are expressed as mean ± SEM (*p < 0.05, **p < 0.01, ***p < 0.001).

С

Figure S8. DAXX does not mediate the pro-metastatic effects of CAF-1 suppression (related to Figure 8)

(A and B) EMT induction determined by the protein levels of the mesenchymal marker fibronectin and the epithelial marker E-cadherin in MCF-10As with both CHAF1B and RPA1 knockdown (A), and in MCF-10As with DAXX knockdown treated with TGF β + TNF α for 5 days (B); representative images (n = 4).

(C) Morphology of LM2 cells with HIRA knockdown; representative images (n = 4), scale bar = $200 \ \mu$ m.

Table S5. Human primers used for mutagenesis, related to STAR Methods

Target		Primer Sequence
<i>CHAF1B</i> T195C/C204A	Forward	AACGCACAACATTGACTGCTTTGGTGTGACGAGCAAGATTGG
	Reverse	CCAATCTTGCTCGTCACACCAAAGCAGTCAATGTTGTGCGTT
CHAF1B C198T/C207T	Forward	GAGAAAAACGCACAACATTAACTGCTTTAGTATGACGAGCAAGATT GG
(after T195C/C204A)	Reverse	CCAATCTTGCTCGTCATACTAAAGCAGTTAATGTTGTGCGTTTTTCT C
<i>CHAF1B</i> T192A/A201G	Forward	CCAGTTGGAGAAAAACGCACAACATTAACTGCCTTAGTGTGTCGAG CAAGATTGGACAAAAATTCCAC
(after T95C/C198T/ C204A/C207T)	Reverse	GTGGAATTTTTGTCCAATCTTGCTCGACACACTAAGGCAGTTAATGT TGTGCGTTTTTCTCCAACTGG
Sp1 T453A	Forward	CCCCACTGTTGGTGCCCGGATGATGATGG
	Reverse	CCATCATCATCCGGGCACCAACAGTGGGG
<i>Sp1</i> T453E	Forward	TTGGGCCCCACTGTTGGCTCCCGGATGATGATGGGAC
	Reverse	GTCCCATCATCCGGGAGCCAACAGTGGGGCCCAA
<i>Sp1</i> T739A	Forward	AGGGCTGAAGGAGCGGCAGTGCCACTG
	Reverse	CAGTGGCACTGCCGCTCCTTCAGCCCT
<i>Sp1</i> T739E	Forward	GGTAATAAGGGCTGAAGGCTCGGCAGTGCCACTGCCTTC
	Reverse	GAAGGCAGTGGCACTGCCGAGCCTTCAGCCCTTATTACC

Table S6. Human primers used for gene expression qPCR analysis, related to STAR methods

Gene		Primer Sequence
ACTB	Forward	CATGTACGTTGCTATCCAGGC
	Reverse	CTCCTTAATGTCACGCACGAT
TBP	Forward	GAGCCAAGAGTGAAGAACAGTC
	Reverse	GCTCCCCACCATATTCTGAATCT
CHAF1A	Forward	CAGCCAGACAGTCTTGTGGAC
	Reverse	GTCGTTCTGAATGGCCTTCAA
CHAF1B	Forward	GCGTGGACACCAATGTCAG
	Reverse	GCTCCGGCTCCTTGTTATCAT
ZEB1 -	Forward	TTACACCTTTGCATACAGAACCC
	Reverse	TTTACGATTACACCCAGACTGC
SNIA 11	Forward	ACAAGCACCAAGAGTCCG
SINATI	Reverse	ATGGCAGTGAGAAGGATGTG
FOSL1 -	Forward	GCCCACTGTTTCTCTTGAGC
	Reverse	GGAGATAGGGTTGGGTGGAT
SOVO	Forward	ACTTGCACAACGCCGAG
30,79	Reverse	CTGGTACTTGTAATCCGGGTG
MMP9	Forward	CGAACTTTGACAGCGACAAG
	Reverse	CACTGAGGAATGATCTAAGCCC
SERPINE1	Forward	GTGGACTTTTCAGAGGTGGAG
	Reverse	GAAGTAGAGGGCATTCACCAG
VIM	Forward	CGTGAATACCAAGACCTGCTC
	Reverse	GGAAAAGTTTGGAAGAGGCAG
PDCD1LG2	Forward	GGACGAAGGACAGTACCAATG
	Reverse	GCTCTACCTCATCTGTTTCTGG

Table S7. Human primers used for ChIP-qPCR analysis, related to STAR methods

Target		Primer Sequence
ZEB1 promoter	Forward	AGGCGTGGGACTGATGGTAG
	Reverse	TGGCTGATTCTCCCTGTACC
SNAI1 promoter	Forward	CGCTCCGTAAACACTGGATAA
	Reverse	GCACATCACTGGGGAGGAAG
SOX9 promoter	Forward	CAGGAGGCAAAGACCAAAAC
	Reverse	CACATCGACCTTGAGCTCTG
ZNF268 gene body	Forward	CCTGTTGATCCTGCTCTTCTG
	Reverse	GAATAAAGACCCCTTGGATTCAG
POLQ gene body	Forward	GCAGTCCCTTACTGGCAATG
	Reverse	TGGAGAGTGAGAACCCCTTC
DROSHA gene body	Forward	TCCATAAAAGGGCAGTTTCAC
	Reverse	ATGCTTCTCCCATCCTGTTG