The wild-type flagellar filament of the Firmicute *Kurthia* at 2.8 Å resolution *in vivo*

Thorsten B Blum^{1,2,*}, Sevasti Filippidou³, Mathilda Fatton³, Pilar Junier³, Jan Pieter Abrahams^{1,2,4}

Affiliations:

¹Biology and Chemistry, Laboratory of Nanoscale Biology, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland.

²Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel, Switzerland.

³Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.

⁴Institute of Biology, Leiden University, Sylviusweg 72, 2333 CC Leiden, The Netherlands.

*Correspondence to Thorsten B Blum, thorsten.blum@psi.ch

Supplementary Figure 1. The majority of the picked flagella are bent and had a curvature between 0.8 and 1.5 rad/ μ m. Scale bars: 50 nm.

Supplementary Figure 2. Helical net of the flagellar filament. Each point represents one flagellin. One asymmetrical unit containing 11 flagellins is indicated in green. The 11-start helix is tilted by $\sim 0.06^{\circ}$ to the left.

Supplementary Figure 3. Cryo-EM density map with part of the refined model.

Supplementary Figure 4. Amino acid sequence alignment of the gram-positive bacteria *Kurthia* sp. 11kri321, *Bacillus subtilis* and *Clostridium tetani*. The six O-glycosylations sites of Kurthia are marked by blue hexagons.

11-start	1947Å ²
5-start	1809Å ²
6-start	569Å ²
16-start	293Å ²
1-start	9Å ²

Interfacial subunit-subunit areas

Supplementary Figure 5. One flagellin subunit (green) with it 5 interacting neighbours (yellow) in the + direction shows a new interaction with the 1-start subunit (red circle). This new interaction is tentative because the C-terminus is flexible and therefore the electron density map is not well resolved.

Supplementary Video 1. Time lapse movie showing the active movement of *Kurthia* sp. 11kri321 cells in a growth chamber in liquid medium.