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Supplementary Note 1. Characterization on crystal structure of PtBi2

X-ray diffraction (XRD) pattern of a PtBi2 single crystal and Low energy electron diffraction (LEED) on a cleaved surface of
PtBi2 are shown in Supplementary Figure 1(a) and (b), respectively. The smooth surface and sharp (0 0 n) peaks without any
trace of secondary phases indicate that our sample is of high crystalline quality. The high quality is also confirmed by the sharp
LEED pattern. The LEED pattern also supports that it belongs to trigonal symmetry. Moreover, single crystal XRD analysis was
performed on the sample and structure refinement has been done by evaluating the peak intensity ratios leading to the conclusion
that the sample belongs to P31m space group. We summarize the information about its structure analysis in Supplementary
Table I, Supplementary Table II, and Supplementary Table III.
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Supplementary Figure 1: (Color online) Crystal structure characterization of PtBi2. a. XRD pattern of a PtBi2 single crystal. Inset:
photograph of typical PtBi2 crystals on a 1 mm grid paper. b. LEED pattern on a cleaved surface of PtBi2 single crystal.

Supplementary Note 2. Band structures of PtBi2

Supplementary Figure 2(a) shows the bulk band structure of PtBi2 with SOC and there are spin splittings from inversion
symmetry breaking. The band structures in blue box are expanded and symmetrized in Supplementary Figure 2(b) with spin
polarization information. Besides the Rashba-like splitting bands discussed in the main text, there is another spin splitting bands
at about Eb = 930 meV as shown in Supplementary Figure 2(c). Both the two splittings are in reasonable agreement with
calculated results shown in Supplementary Figure 2(b).
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Supplementary Table I: Crystallographic and structure refinement data for PtBi2
empirical formula PtBi2
formula weight (g mol−1) 613.05
crystal size (mm) 0.122 × 0.094 × 0.009
temperature 273(2) K
wavelength Mo Kα (0.71073Å)
crystal system trigonal
space group P31m
unit cell dimensions (Å) a = 6.5657(9); b = 6.5657(9); c = 6.1601(9)
cell volume (Å3) 229.97(7)
Z 3
density, calculated (g cm−3) 13.280
F(000) 732
h k l range -8 ≤ h ≤ 8, -8 ≤ k ≤ 8, -8 ≤ l ≤ 8
θmin (◦), θmax (◦) 3.583, 28.296
linear absorption coeff. (mm−1) 159.67
absorption correction multi-scan
no. of reflections 1285
no. independent reflections 401
no. observed reflections 392 [I >2σ(I)]
R indexes 8.42% (R1[F0>4σ(F0)]), 21.77% (wR2)
weighting scheme w = 1/[σ2(F0

2) + (0.1376)P 2 + 44.9502P ],
where P = [Max(P0

2) + 2Fc
2]/3

refinement software SHELXL-2014/7

Supplementary Table II: Atomic coordinates and equivalent isotropic thermal parameters of PtBi2 (295 K) result from single-crystal XRD
analysis

Atoms WPa Occup. x y z Ueqb

Pt 3c 1 -0.2631(6) -0.2631(6) 0.3405(8) 0.0202(11)
Bi1 1a 1 0.0000 0.0000 0.0000 0.0234(18)
Bi2 2b 1 -0.6667 -0.3333 0.1249(7) 0.0199(12)
Bi3 3c 1 -0.3889(7) 0.0000 0.6147(7) 0.0202(11)

aWyckoff positions
bEquivalent isotropic thermal parameter (in unit of ·Å2)
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Supplementary Table III: Anisotropic displacement parameters (·Å2) of PtBi2 result from single-crystal XRD analysis

Atoms U11 U22 U33 U23 U13 U12

Pt 0.0184(16) 0.0184(16) 0.023(3) 0.0000(14) 0.0000(14) 0.0091(17)
Bi1 0.024(2) 0.024(2) 0.022(5) 0.000 0.000 0.0121(12)
Bi2 0.0211(16) 0.0211(16) 0.017(3) 0.000 0.000 0.0105(8)
Bi3 0.0210(15) 0.0214(19) 0.019(2) 0.000 -0.0004(12) 0.0107(10)
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Supplementary Figure 2: Band structures of PtBi2. a. Bulk band structures of PtBi2 with SOC. b. Band structures along Γ–M–Γ direction
with spin polarization information (the scale bar represents spin polarization). c. ARPES measurement (hν = 9 eV) of the band structure along
Γ–M–Γ direction. The spin splitting bands at about Eb = 930 meV are highlighted by dashed lines.

Supplementary Note 3. The origin of the observed giant Rasha-type splitting in PtBi2

We plot the charge density isosurface in Supplementary Figure 3(a). The integrated charge density in xy plane (red line) and its
derivative with respect to z (blue line) are shown in Supplementary Figure 3(b). It is evident that charge exhibits an asymmetric
distribution, which can generate a potential gradient. We further perform calculations for the linearly interpolated structures
between P 3̄ and P31m and the obtained Rashba energy and momentum offset are shown in Supplementary Figure 3(c). For the
centrosymmetric P 3̄ structure, the Rashba splitting vanish. With increasing distortion to P31m, Rashba splitting along Γ–M
first increases and reaches the maximum before the structure becomes P31m. It inspires us to tune the strength of Rashba-type
splitting in PtBi2 by external pressure.
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Supplementary Figure 3: (Color online) The origin of the Rashba-type splitting. a, Electron charge density isosurface with ρ = 0.03

e/Bohr3. b. Integrated electron charge ( in xy plane) as a function of z (red line) and its derivative (blue line). c. Rashba energy and
momentum offset for the linear interpolation structures from P 3̄ to P31m.

Supplementary Note 4. 3D k · p model around M point for PtBi2
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The space group of trigonal PtBi2 is P31m and the corresponding point group is C3v , which includes rotational operations
Ĉ1

3 , Ĉ2
3 and mirror operations m̂1, m̂2, m̂3. At M point, the little group is Cs. Within the A′ basis function at M1, the point

group operations are: D(m̂1) = −iσx and T̂ = −iσyK. The M3(M2) and M1 are related by Ĉ1
3 (m̂3) and these operation are

D(Ĉ1
3 ) = e−2iπ/3σz and D(m̂3) = e−in·σ with n = (− 1

2 ,
√
3
2 ). M1, M2 and M3 are given in Supplementary Figure 5. To

preserve both point group symmetry and time reversal symmetry, the effective model around M1 point up to the second order is
given by,

HM1 =
∑

k

c†M1khM1(k)cM1k (1)

hM1(k) =
k2x

2mx
+

k2y
2my

+
k2z

2mz
+ α1(σxky − σykx) + β1(σxky + σykx) + α2(σxkz − σzkx) + β2(σxkz + σzkx), (2)

where the first three terms are the quadratic and the others terms corresponds to the Rashba(α) and Dresselhaus(β) spin-orbit
couplings in kx–ky and kx–kz planes. In the kz = 0 plane, the effective model is reduced to,

hM1(kx, ky) =
k2x

2mx
+

k2y
2my

+ α1(σxky − σykx) + β1(σxky + σykx) + (β2 − α2)σzkx. (3)

The effective Hamiltonian around M2 and M3 can be obtained by the point group operations,

HM2
= Pm̂3

HM1
P−1m̂3

, hM2
(k) = D(m̂3)HM1

(m̂−13 k)D†(m̂3) (4)

HM3
= PĈ1

3
HM1

P−1
Ĉ1

3

, hM3
(k) = D(Ĉ1

3 )HM1
((Ĉ1

3 )−1k)D†(Ĉ1
3 ). (5)

hM2(k) and hM3(k) are given by,

hM2(k) = (
1

8mx
+

3

8my
)k2x +

√
3(

1

4mx
− 1

4my
)kxky + (

3

8mx
+

1

8my
)k2y

+α1

(
0 (ky + ikx)

(ky − ikx) 0

)
+ β1

(
0 −eiπ3 (ky − ikx)

−e−iπ3 (ky + ikx) 0

)

+α2

(
1
2kx +

√
3
2 ky ei

2π
3 kz

e−i
2π
3 kz − 1

2kx −
√
3
2 ky

)
+ β2

(
− 1

2kx −
√
3
2 ky ei

2π
3 kz

e−i
2π
3 kz

1
2kx +

√
3
2 ky

)
(6)

hM3(k) = (
1

8mx
+

3

8my
)k2x −

√
3(

1

4mx
− 1

4my
)kxky + (

3

8mx
+

1

8my
)k2y

+α1

(
0 ky + ikx

ky − ikx 0

)
+ β1

(
0 −e−iπ3 (ky − ikx)

−eiπ3 (ky + ikx) 0

)

+α2

(
1
2kx −

√
3
2 ky e−i

2π
3 kz

ei
2π
3 kz − 1

2kx +
√
3
2 ky

)
+ β2

(
− 1

2kx +
√
3
2 ky e−i

2π
3 kz

ei
2π
3 kz

1
2kx −

√
3
2 ky

)
(7)

To describe the observed electronic band structure, we introduce couplings between the state from different M points and the
total Hamiltonian matrix is,

Heff (k) =

 hM1
(k) V V

V † hM2
(k) V

V † V † hM3
(k)

 . (8)

where V only includes coupling between state with the same spin and V = tσ0.

Supplementary Figure 4(a) shows the anisotropic bands without spin-orbit coupling and the corresponding constant energy
contour is elliptic, as shown in Supplementary Figure 5(a). With only Rashba SOC, the band structure is shown in Supplementary
Figure 4(b), where the band with large effective mass has large Rashba splitting energy. With further including Dresselhaus
SOC, the band splitting energy ER for the band with small effective mass become larger and the corresponding band is shown in
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Supplementary Figure 4(c). At Eb=100 meV, the constant energy contours are ellipses around M point. With increasing Eb, all
ellipses enlarge and the outer ellipses from different M points will meet around K and hybridize with each other. Finally, the
outer pockets form a big closed loop around Γ point, as shown in Supplementary Figure 5(c). These constant energy contours
are in reasonable agreement with those in DFT calculations (Supplementary Figure 5(d)).
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Supplementary Figure 4: (Color online) Band structures from the effective model. (a) without spin-orbit coupling (SOC). (b) with Rashba
SOC (α1 = 1.3 eV·Å and α2 = 0.32 eV·Å). (c) with both Rashba and Dresselhaus SOC (β1 = 0.53 eV·Å). The adopted parameters are
1/mx = 32.6 eV·Å2, 1/my = 11.8 eV·Å2 and β2 = 0.
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Supplementary Figure 5: (Color online) Constant energy contours from the effective model. (a) without SOC and Eb=100 meV (b)
with both Rashba and Dresselhaus SOC and Eb=100 meV. (c) with both Rashba and Dresselhaus SOC and Eb=260 meV. (d) Constant energy
contours of PtBi2 from DFT calculation.

Supplementary Note 5. Second-derivative E-k images measured by ARPES with different photon energies

To be clearer, Supplementary Figure 6 shows the second-derivative E–k images measured by ARPES with different photon
energies. We can see clearer differences between various photon energies, which indicates strong dispersion along kz .
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Supplementary Figure 6: Second-derivative E–k images measured by ARPES. a-d. Second-derivative E–k images measured by ARPES
with hν = (a) 9eV, (b) 10eV, (c) 11eV and (d) 12eV.

Supplementary Note 6. Estimation of inner potential V0 for PtBi2

The process to determine the inner potential V0 of PtBi2 is as follows. The E–k image measured by ARPES with different
photon energies were compared with the calculated results. And then the image measured with hν = 9 eV was found to be in
good agreement with the calculated Rashba splitting band (Fig. 2(a) and Fig. 2(b) in the main text) — there is no gap at the
crossing point. Since the calculation indicates the position of the crossing point is at kz = 2nπ/c (n = 0, 1, 2, 3...), using
the formula kz =

√
2m[(hν −W − Eb) cos2 θ + V0]/~, we can get inner potential V0 = 11.1 eV. This value is reasonable, and

we assume the inner potential of PtBi2 to be 11.1 eV. The kz values in Fig. 5(e) of the main text were calculated using inner
potential V0 = 11.1 eV.


