N75 length	587
N50 length	1,089
N25 length	1,837
Minimum length	249
Maximum length	13,155
Average length	848
Total bases	35,531,974
Contig counts	41,856
Unigene counts	39,615

a

Supplementary Figure 1. RNA-seq data of *A. capillaris* leaves

- **a**. Basic information for assembled contigs. A unigene set of 39,615 sequences was generated by TGICL clustering of 41,856 contigs.
- **b**. Histogram of unigenes by sequence length.

_	<i>A. capillaris</i> unigene ID	Query with highest homology	Amino acid identity(%)	Predicted function
	1147	HaCOX10	84.1	COX10
	1403	LsVTE2-1	94.7	VTE2-1
	4037	LsVTE2-1	70.2	VTE2-1
	4523	HaATG4	90.0	ATG4
	5921	HaABC4	75.8	ABC4
	6131	HaVTE2-2	62.6	VTE2-2
	6132	HaVTE2-2	61.3	VTE2-2
	9515	LsVTE2-1	43.5	Unknown
	11013	HaATG4	95.0	ATG4
	11389	HaVTE2-2	84.6	VTE2-2
	12392	HaVTE2-2	93.6	VTE2-2
	14791	HaPPT	93.9	PPT
	19105	HaCOX10	78.2	COX10
	20817	LsVTE2-1	22.1	Unknown
	21310	HaCOX10	66.6	COX10
	22890	HaPPT	31.6	Unknown
	22891	HaPPT	35.5	Unknown
	27493	HaCOX10	31.1	Unknown

Supplementary Figure 2. In silico analysis of the UbiA superfamily in A. capillaris RNA-seq unigenes

- **a.** Grouping of unigenes in the UbiA superfamily. Asteraceae proteins belonging to each of six UbiA subfamilies dedicated to primary metabolism (LsVTE2-1, HaVTE2-2, HaABC4, HaATG4, HaCOX10 and HaPPT) were selected as queries. Each unigene was functionally annotated according to the percent amino acid identity with the query protein and assorted relative to highest homology to the unigene. If amino acid identity was higher than 60%, the unigene was predicted to have the same function as the query. Unigenes showing amino acid identities lower than this threshold were selected as candidates possessing unknown functions. Unigene9515 contains the full CDS of *AcPT1*.
- **b.** RPKM values of UbiA unigenes (n = 1). Unigenes predicted to be related to primary metabolism and to have unknown functions are highlighted in gray and red, respectively.

а

Predicted transit peptide MASLTVESLC KPTSNELSIL VTSSSSLSTG AHASNFLRIS KVENWSAQF 50 QRRGYKNHFG QSLHEPLSLQ KMDEEKFKLN AASTNNPQFD ATHDLVKPTE 100 SVI SFLEVLF RFI RPYAAVG TVLCI ASM5L LTVEKLSDFS PLFFMKVLQA 150 1st aspartate-rich motif LVGAMFMQMW VCGI NOICOI ELDKI NKPSL PLASGELSMT TAI TVSALSA 200 I MSFSI GWI A SPALFWOFVG WFVVGTAYSA NLPWLRWKRF PLTSAFYMLC 250 2nd aspartate-rich motif SRALVVPI GY YLHMQKSI HG GSALLSRPI L FAVGMLSAFC I STI FFKDI P 300 DIEGORMHGI KSLAITLGEK RTFWMCIWIL EIAYVAAAFF GATSPITWSK 350 YI TVI SHLAM ALALWTRAKS TDVKNKDAVQ SMYYFLWQLF FAEYGLI ALV 400 R 401

Supplementary Figure 3. In silico analysis of the AcPT1 polypeptide

- **a.** Polypeptide sequence of AcPT1. The two aspartate-rich motifs and the transit peptide predicted by the ChloroP program are shown in pink and green boxes, respectively.
- **b.** Transmembrane regions of AcPT1 predicted by the TMHMM program. Amino acids with high transmembrane possibilities (> 50%) are shown in blue as components of transmembrane regions, together with the aspartate-rich motifs (pink bars) and the predicted transit peptide (green bar).

а

Supplementary Figure 4. Microscopic investigation of AcPT1TP-sGFP expressed in *N. benthamiana* epidermal cells

a - **c**. *sGFP* (**a**) and *AcPT1TP-sGFP* (**b** and **c**) were transiently expressed in epidermal cells of *N*. *benthamiana* leaves by agroinfiltration.
c. Regions indicated by white arrowheads in **b** are enlarged.

d. Water was infiltrated into the leaves as a negative control. The images show GFP signaling, chlorophyll autofluorescence, DIC, and their merged image. For merging, contrast of images is

unbiasedly adjusted with magenta used as a pseudo-color for the chlorophyll signal. Bars represent 20 μ m (**a**, **b**, and **d**) and 2 μ m (**c**).

а

Supplementary Figure 5. MS-based identification of enzymatic reaction products in *p*-coumaric acid dimethylallyltransferase assay of AcPT1

MS and MS^2 spectra of standard specimens (**a**) and reaction products (**b**) detected in the positive ion mode.

Supplementary Figure 6. Detailed enzymatic properties of AcPT1

- **a.** Negative control reactions for the *p*-coumaric acid dimethylallyltransferase activity of AcPT1. Shown are overnight reactions without *p*-coumaric acid (- prenyl acceptor), DMAPP (- prenyl donor), or microsomes (- enzyme), and the addition of EDTA instead of MgCl₂ (EDTA) and the use of heat-denatured enzyme (Heat denatured) were also tested. The sum of the averages of produced drupanin and artepillin C in the full assay condition was set at 100%. Values (n = 3 independent experiments) are shown as box plots (center line, median; box limits, first and third quartiles or minimum and maximum).
- **b.** Kinetic analysis of AcPT1 using drupanin and DMAPP as substrate pair. The reaction time was shortened to 20 min to calculate apparent $K_{\rm m}$ values for drupanin and DMAPP. Values are means \pm standard errors (n = 3 independent experiments).

а

b

Supplementary Figure 7. LC/MS analysis of enzymatic reaction mixtures of AcPT1 in substrate specificity test

a and **b**. UV chromatogram of a drupanin dimethylallyltransferase reaction mixture with AcPT1 (**a**), and MS and MS² spectra of this reaction product, P3 (**b**).

Supplementary Figure 7. LC/MS analysis of enzymatic reaction mixtures of AcPT1 in substrate specificity test - *continued*

c - **e**. UV chromatogram of ferulic acid dimethylallyltransferase reaction mixture with AcPT1 (**c**), MS and MS² spectra of this reaction product, P4 (d), and its predicted chemical structure (**e**).

Supplementary Figure 7. LC/MS analysis of enzymatic reaction mixtures of AcPT1 in substrate specificity test - *continued*

f - **h**. UV chromatogram of *p*-coumaric acid geranyltransferae reaction mixture with AcPT1 (**f**), MS and MS² spectra of the reaction product 5 (**g**), and its predicted chemical structure (**h**).

Supplementary Figure 8. UV chromatograms of medium fractions from the Δ TPAcPT1 transformants of the yeast COUM11 strain

Plasmids containing $\Delta TPAcPT1$ and $\Delta TPAcPT1_Sc$ were introduced into the yeast COUM11 strain engineered to produce *p*-coumaric acid by introduction of *PAL*, *C4H*, and *CPR*. Twenty-four hours after galactose treatment to induce expression of all foreign genes, phenolic compounds were extracted from the media of these yeast cultures and analyzed by HPLC.

Supplementary Figure 9. Metabolic design of DAC yeast strains

The DD104 strain with a large DMAPP pool due to mutations in endogenous *FPPS* and *squalene synthase* was used as an expression host. *Truncated HMGCoA Reductase* ($\Delta NtHMGCoAR$), *PAL*, *C4H*, and *CPR* were introduced into DD104 to increase quantities of AcPT1 substrates. The transformant was further genetically modified by pESC-His-EV, pESC-His-*AcPT1*, pESC-His- $\Delta TPAcPT1$ (a truncated CDS lacking its transit peptide), and pESC-His- $\Delta TPAcPT1$ _Sc (a codon-optimized $\Delta TPAcPT1$ for expression in budding yeast cells) to establish the DAC-EV, DAC-full, DAC- Δ , and DAC- Δ Sc strains, respectively. All the transgenes were expressed under the control of galactose-inducible promoters.

Supplementary Figure 10. MS spectra of *p*-coumarate derivatives from the DAC- Δ Sc strain MS spectra at retention times of 7.7 min (a) and 9.1 min (b) on MS chromatograms of standard specimens of drupanin and artepillin C, and extracts from the DAC- Δ Sc culture.

Supplementary Figure 11. Proportion of produced phenylpropane derivatives in DAC- Δ Sc cultures Proportion of *p*-coumaric acid (only for **a**), drupanin and artepillin C in cell and medium fractions of DAC- Δ Sc cultures without (**a**) and with (**b**) *p*-coumaric acid administration. Values are means ± standard errors (n = 3 independent experiments).

Supplementary Figure 12. UV chromatograms of extracts of the DAC-ΔSc strain supplemented with *p*-coumaric acid

Cell (a) and medium (b) fractions were collected by centrifugation after galactose induction in the presence of 1.0 mM of p-coumaric acid. All chromatograms are shown on a comparative scale, except for standards.

Supplementary Table 1. Primers used in this work

Primer name	Sequence (5' – 3')	
AcPT1_5'UTR_Fw	TTTTCTTCAGGGTTGAATTCTTG	
AcPT1_3'UTR_Rv	ATGTCGGGTTGTTCTTCACC	
AcPT1_qRTPCR_Fw	CCATGGAGGATCCGCATTAC	
AcPT1_qRTPCR_Rv	ATTCCATGCATCCGATCTCC	
Ac26SrRNA_Fw	GGTGCGAGTTCTATCGGGTA	
Ac26SrRNA_Rv	CACTTGGAGCTCTCGATTCC	
AcPT1TP_Fw	CACCATGGGCGTCTCTAACAGTGG	
AcPT1TP_Rv	AAATTGCGCAGAGACATTAT	
AcPT1_TOPO_Fw	CACCATGGCGTCTCTAACAGTGGG	
AcPT1_TOPO_Rv	TCAGCGCACAAGCGCGATAA	
∆NtHMGCoAR_Fw	AAGCGGCCGCATGACTGCAGACCAATTGGTG	
∆NtHMGCoAR_Rv	GCTTAATTAATTAGGATTTAATGCAGGTGACG	
CPR_Fw	AAAAAACCCCGGATCATGCAATCATCAAGCAGCTC	
CPR_Rv	ACCAAGCTTACTCGATTACCATACATCACGCAGAT	
∆TP-AcPT1_Sc_EcoRI_Fw	GCGAATTCATGCAGAGAAGAGGTTACAA	
∆TP-AcPT1_Sc_SacI_Rv	CGGAGCTCTCATCTAACCAAAGCAATCA	
AcPT1_EcoRI_Fw	AAGAATTCATGGCGTCTCTAACAGTGG	
AcPT1_SacI_Rv	AAGAGCTCTCAGCGCACAAGCGC	
∆TP-AcPT1_EcoRI_Fw	AAGAATTCATGCAACGAAGAGGTTATAAAAATCATT	

Supplementary Table 2. Primary metabolism-related PTs used in phylogenetic analysis

PT member	Plant species	Protein ID	
Tocopherol biosynthesis			
AtVTE2-1	Arabidopsis thaliana	NP_849984.1	
GmVTE2-1	Glycine max	NP_001241496.1	
HvVTE2-1	Hordeum vulgare	BAJ97902.1	
LaVTE2-1	Lactuca sativa	ACN78585.1	
OsVTE2-1	Oryza sativa	XP_015644510.1	
TaVTE2-1	Triticum aestivum	ABB70123.1	
ZmVTE2-1	Zea mays	ACG45339.1	
Plastoquinone biosy	nthesis		
AtVTE2-2	Arabidopsis thaliana	NP_001078138	
GmVTE2-2	Glycine max	NP_001237900	
HaVTE2-2	Helianthus annuus	XP_022000593.1	
OsVTE2-2	Oryza sativa	XP_015646905.1	
ZmVTE2-2	Zea mays	NP_001146703.1	
Phylloquinone biosy	nthesis		
AtABC4	Arabidopsis thaliana	NP_001117518.1	
GmABC4	Glycine max	XP_003532605.1	
HaABC4	Helianthus annuus	XP_021989185.1	
OsABC4	Oryza sativa	NP_001049226.1	
ZmABC4	Zea mays	NP_001152170.1	
Chrolophyll biosynth	nesis		
AtATG4	Arabidopsis thaliana	NP_190750.1	
GmATG4	Glycine max	NP_001239633.1	
HaATG4	Helianthus annuus	XP_021970771.1	
OsATG4	Oryza sativa	ABO31092.1	
ZmATG4	Zea mays	NP_001142204.1	
Heam <i>a</i> biosynthesis	5		
AtCOX10	Arabidopsis thaliana	NP_566019.1	
GmCOX10	Glycine max	XP_003556552.1	
HaCOX10	Helianthus annuus	XP_022025736.1	
OsCOX10	Oryza sativa	EEC70799.1	
ZmCOX10	Zea mays	AFW89544.1	
Ubiquinone biosyntl	hesis		
AtPPT1	Arabidopsis thaliana	NP_567688	
GmPPT	Glycine max	XP_006602724.1	
HaPPT	Helianthus annuus	XP_021993218.1	
OsPPT1	Oryza sativa	BAE96574.1	
ZmPPT	Zea mays	NP_001148558.1	

Supplementary Table 3. Specialized metabolism-related PTs used in phylogenetic analysis

PT member	Plant species	Protein ID
Asteraceae		
AcPT1	Artemisia capillaris	LC425153
Polaceae		
HvHGGT	Hordeum vulgare	AAP43911.1
OsHGGT	Oryza sativa	AAP43913.1
TaHGGT	Triticum aestivum	AAP43912.1
ZmHGGT	Zea mays	XP_008659772.1
Rutaceae		
CIPT1	Citrus limon	BAP27988.1
Apiaceae		
PcPT	Petroselinum crispum	BAO31627.1
PsPT1	Pastinaca sativa	AJW31563.1
PsPT2	Pastinaca sativa	AJW31564.1
Fabaceae		
AhR3'DT-1	Arachis hynoaaea	AOM74173.1
AhR3'DT-2	Arachis hypogaea	AOM74174 1
AhR3'DT-3	Arachis hypogaea	AOM74175.1
AhR3'DT-4	Arachis hypogaea	AOM74176.1
AhR4DT-1	Arachis hypogaea	AOM74172 1
GmC4DT	Glycine max	BAW32575.1
GmG2DT	Glycine max	BAW32578.1
GmG4DT	Glycine max	NP 001235990
GmIDT1	Glycine max	BAW32576.1
GmIDT2	Glycine max	BAW32577.1
GuA6DT	Glycyrrhiza uralensis	AIT11912.1
GulLDT	Glycyrrhiza uralensis	AMR58303.1
LaPT1	Lupinus albus	AFR35706.1
LiG6DT	Lotus iaponicus	ARV85585.1
SfFPT	Sophora flavescens	AHA36633.1
SfG6DT	Sophora flavescens	BAK52291.1
SfiLDT	Sophora flavescens	BAK52290.1
SfN8DT-1	Sophora flavescens	BAG12671.1
SfN8DT-2	Sophora flavescens	BAG12673.1
SfN8DT-3	Sophora flavescens	BAK52289.1

Supplementary Table 3. Specialized metabolism-related PTs used in phylogenetic analysis - *continued*

PT member	Plant species	Protein ID
Moraceae		
CtIDT	Cudrania tricuspidata	AJD80983.1
MaIDT	Morus alba	AJD80982.1
Cannabaceae		
HIPT-1	Humulus lupulus	BAJ61049.1
HIPT-2	Humulus lupulus	AJD80255.1
Hypericaceae HcPT	Hypericum calycinum	ALD84371
Boraginaceae		
AePGT	Arnebia euchroma	ABD59796.2
AePGT4	Arnebia euchroma	ANC67957.1
AePGT6	Arnebia euchroma	ANC67959.1
LePGT1	Lithospermum erythrorhizon	BAB84122.1
LePGT2	Lithospermum erythrorhizon	BAB84123.1