GigaScience

A chromosomal-level genome assembly for the giant African snail Achatina fulica --Manuscript Draft--

Manuscript Number:	GIGA-D-19-00006		
Full Title:	A chromosomal-level genome assembly for the giant African snail Achatina fulica		
Article Type:	Data Note		
Funding Information:	This work was supported by the National Key Research and Development Program of China (No. 2016YFC1200500 and 2016YFC1202000)	Dr Ning Xiao	
Abstract:	Background: Achatina fulica (A. fulica), also called giant / reported terrestrial mollusks. Due to its gree adaptability, high growth rate and reproduct wide invasion, mainly in Southeast Asia, Jan A. fulica is a pest to damage the agricultural many parasites to threaten human health. H still limited, hindering the genetic and genor and management of the species.	African snail, is the largest species in the edy appetite, wide environmental ion capacity, the species caused world- pan, the western Pacific islands and China. I crops, as well as an intermediate host of lowever, genomic information of A. fulica is nic studies with the aim to invasion control	
	Finding: Using Kmer-based method, we estimated the high repeat content up to 71%. About 101.6 were generated from the PacBio sequencing fulica genome of 1.85 Gb with a contig N50 from the Hi-C sequencing data, we success into 31 chromosomes, leading to the final control of the fina	he A. fulica genome size of 2.12 Gb with a Gb genomic long-read data of A. fulica g platform and assembled to the first A. length of 726 kb. Using contact information fully anchored 99.32% contig sequences ontig and scaffold N50 length of 721 kb and leteness and accuracy were evaluated by omes, BUSCO assessment and genomic a were predicted from the assembled s were functionally annotated. The protein-coding genes revealed that A. fulica Biomphalaria glabrata around 182 million e was the first terrestrial mollusk genome es of A. fulica will not only provided the urce for the population genetics and ecies, as well as, for the chromosome level lica, PacBio, Hi-C, chromosome assembly	
Corresponding Author:	ning xiao		
	CHINA		
Corresponding Author Secondary Information:			
Corresponding Author's Institution:			
Corresponding Author's Secondary Institution:			
First Author:	Yunhai Guo		
First Author Secondary Information:			
Order of Authors:	Yunhai Guo		

	Yi Zhang
	Qin Liu
	Yun Huang
	Guangyao Mao
	Zhiyuan Yue
	Eniola M. Abe
	Jian Li
	Zhongdao Wu
	Shizhu Li
	Xiaonong Zhou
	Wei Hu
	Ning Xiao
Order of Authors Secondary Information:	
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our <u>Minimum Standards Reporting Checklist</u> . Information essential to interpreting the data presented should be made available in the figure legends. Have you included all the information requested in your manuscript?	
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> <u>Identifiers</u> (RRIDs) for antibodies, model organisms and tools, where possible.	Yes

Have you included the information requested as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	
Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	

±

A chromosomal-level genome assembly for the giant African snail Achatina fulica

Guo Yunhai^{1,2, #}, Zhang Yi^{1,2, #}, Liu Qin^{1,2}, Huang Yun^{1,2}, Mao Guangyao^{1,2}, Yue Zhiyuan^{1,2}, Eniola M. Abe^{1,2}, Li Jian³, Wu Zhongdao⁴, Li Shizhu^{1,2}, Zhou Xiaonong^{1,2}, Hu Wei^{1,2,3,*}, Xiao Ning^{1,2,*}

¹National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention

- ²Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- ³Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan
- University, Shanghai 200438, China
- ⁴Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University,
- Guangzhou 510080, China

Abstract

27 Background:

Achatina fulica (A. fulica), also called giant African snail, is the largest species in the reported terrestrial mollusks. Due to its greedy appetite, wide environmental adaptability, high growth rate and reproduction capacity, the species caused world-wide invasion, mainly in Southeast Asia, Japan, the western Pacific islands and China. A. fulica is a pest to damage the agricultural crops, as well as an intermediate host of many parasites to threaten human health. However, genomic information of A. fulica is still limited, hindering the genetic and genomic studies with the aim to invasion control and management of the species.

Finding:

Using Kmer-based method, we estimated the A. fulica genome size of 2.12 Gb with a high repeat content up to 71%. About 101.6 Gb genomic long-read data of A. fulica were generated from the PacBio sequencing platform and assembled to the first A. fulica genome of 1.85 Gb with a contig N50 length of 726 kb. Using contact information from the Hi-C sequencing data, we successfully anchored 99.32% contig sequences into 31 chromosomes, leading to the final contig and scaffold N50 length of 721 kb and 59.6 Mb, respectively. The continuity, completeness and accuracy were evaluated by genome comparison with other mollusk genomes, BUSCO assessment and genomic read mapping. 23,726 protein-coding genes were predicted from the assembled genome, among which 96.34% of the genes were functionally annotated. The phylogenetic analysis using whole-genome protein-coding genes revealed that A. fulica separated from the common ancestor with Biomphalaria glabrata around 182 million years ago.

Conclusion:

As our best knowledge, the *A. fulica* genome was the first terrestrial mollusk genome reported so far. The chromosome sequences of *A. fulica* will not only provided the research community valuable genome resource for the population genetics and environmental adaptation studies for the species, as well as, for the chromosome level evolution investigation with other mollusks.

Key Words: Giant African snail, *Achatina fulica*, PacBio, Hi-C, chromosome 59 assembly

60 Data description

61 Introduction

The giant African snail, A. fulica, is a Gastropod species (Figure 1). It is the largest interrestrial mollusks with greedy appetite, strong environmental adaptability, and high growth and reproduction rate¹⁻³. Originating from East Africa, A. fulica gradually invaded Southeast Asia, Japan and the western Pacific islands in the last century⁴⁻⁶ with the direct or indirect help fromhumans⁷⁻⁹. In mainland China, the first A. fulica invasion event was reported in 1931¹⁰. At present, the snail's natural distribution in the wild has been found in Guangdong, Hainan, Guangxi, southern parts of Yunnan Province and Fujian Province, and a county of Guizhou Province¹¹. A. fulica was included as the first alien invasive species in China (http://www.mee.gov.cn/gkml/zj/wj/200910/t20091022_172155.htm) in 2003, and was also listed by International Union for Conservation of Nature (IUCN) as the 100 most threatening alien invasive species¹². This snail has been recognized as an agricultural and garden pest that has caused significant damages in both tropical and subtropical regions^{9,12,13}. In addition, A. fulica is also the intermediate host of Angiostrongyl cantonensis. Human infection with angiostrongyliasis, which occurs mainly through consumption of snails carrying A. cantonensis larvae, causes eosinophilic meningoencephalitis^{4,11,14-18}. As a consequence, *A. fulica* is attracting more and more attention in fields of both agricultural crops protection and human disease control.

To date, a variety of mollusk genomes have been analyzed and published, including two freshwater gastropods snails *Pomacea canaliculata*¹⁹ and *Biomphalaria glabrata*²⁰. However, no genome has been reported for terrestrial mollusks. *A. fulica* is considered to be one of the most serious threat and a destructive terrestrial gastropod which poses a significant hazard to agriculture, the environment, biodiversity and human health. In this work, we applied Illumina, PacBio and Hi-C techniques to construct the chromosome of *A. fulica*. The genome is the first terrestrial mollusk

genome, providing an important reference for the molecular mechanism
investigations for its broad environmental adaptability and the development of control
strategy of the world-wide invasion.

90 Sample and sequencing

An adult snail (**Figure 1**), which was collected in Pingxiang city, Guangxi Autonomous Region, was used for reference genome construction. The snail was dissected and abdominal foot (17.4 g) and liver pancreas (40.4 g) tissues were collected and quickly frozen in liquid nitrogen overnight before transferring to -80 °C for storage. DNA was extracted using the traditional phenol/chloroform extraction method and was quality checked using agarose gel electrophoresis, meeting the requirement for library construction for the Illumina X Ten (Illumina Inc., San Diego, CA, USA) and for the PacBio Sequel (Pacific Biosciences of California, Menlo Park, CA, USA) sequencing platforms.

Using the DNA molecules from abdominal foot, a library with the insertion length of 300 bp were constructed and sequenced for Illumina sequencing platform according to the manufacturer's protocol. About 195.4 Gb short reads were obtained from the Illumina X Ten sequencing technology (Table 1), which was used for the following genome survey analysis, and for final base-level genome sequence correction. Meanwhile, four 20 kb libraries were constructed for PacBio Sequel sequencing. Using 16 sequencing SMRT cells, 101.6 Gb long reads were generated (Table 1). The mean and N50 lengths of the polymerases for sequencing cells ranged from 6.4 kb to 10.4 kb and from 12.3 kb to 20.3 kb for cells, respectively. Those long genomic DNA reads were used for reference genome construction.

110 Genome features estimation from Kmer method

With sequencing data from the Illumina platform, several genome characters could be
evaluated form *A. fulica*. To ensure the quality of the analysis, ambiguous bases and
low-quality reads were trimmed and filtered using the HTQC package²¹. The following

quality control were performed under the framework of HTQC. First, the quality of bases at two read ends were checked. Bases in sliding 5 bp windows were deleted if the average quality of the window was below phred quality score of 20. Second, reads were filtered if the average phred quality score were smaller than 20 or the read length was shorter than 75 bp. Third, the mate reads were also removed if the corresponding reads were filtered.

The quality-controlled reads were used for genome character estimation. We calculated the number of each 17-mer from the sequencing data using the jellyfish software²², and the distribution was analyzed with GCE software²³. We estimated the genome size of 2.12 Gb with the heterozygosity of 0.47% and repeat content of 71% in the genome. Previous studies revealed that repeat content varies in mollusks, and that repeat content is correlated with genome size²⁴. The large genome size and high proportion of repeat contents of A. fulica provided additional supporting data for the statically analysis.

Genome assembly by third-generation long reads

After removing adaptor sequences in polymerases, 101.6 Gb subreads were generated for the following whole genome assembly. The average and N50 length of subreads reached 5.25 kb and 8.80 kb, respectively. To optimize the genome assembly using the PacBio sequencing data, we applied two packages in the assembly process, Canu²⁵ and FALCON²⁶. Canu package was first applied for the assembly with the default parameters. As a result, a 1.93 Gb genome was constructed with 10,417 contigs and a contig N50 length of 662.40 kb. FALCON was also employed using the length_cutoff and pr_length_cutoff parameters of 10 kb and 8 kb, respectively. We obtained 1.85 Gb genome with 8,585 contigs, with a contig N50 of 726.63 kb. We adopted the FALCON assembly as the reference genome for A. fulica (Table 2). The genome sequences were subsequently polished by PacBio long reads using arrow²⁷ and Illumina short reads by pilon²⁸ to correct base errors. The

corrected genome was further applied for the following chromosome assemblyconstruction using Hi-C data.

In situ Hi-C library construction and chromosome assembly using Hi-C data

Liver pancreas tissue of *A. fulica* was used for library construction for Hi-C analysis and the library was constructed using the identical method in previous studies²⁹. Finally, the library was sequenced with 150 paired-end mode on the Illumina HiSeq X Ten platform (San Diego, CA, United States). From the Illumina sequencing platform, 1,313 million paired-end reads were obtained for the Hi-C library (**Table 1**). The reads were mapped to the above A. fulica genome with Bowtie³⁰, with two ends of paired reads being mapped to the genome separately. To increase the interactive Hi-C reads ratio, an iterative mapping strategy was performed as previous studies, and only read pairs that both ends uniquely mapped were used for the following analysis. From the alignment status of two ends, self-ligation, non-ligation and other sorts of invalid reads, including StartNearRsite, PCR amplification, random break, LargeSmallFragments and ExtremeFragments, were filtered out by Hi-Clib³¹. Through the recognition of restriction sites in sequences, contact counts among contigs were calculated and normalized.

According to previous karyotype analyses, *A. fulica* had 31 chromosomes³². By clustering the contigs using the contig contact frequency matrix, we were able to correct some minor errors in the FALCON assembly results. Contigs with errors were broken into shorter contigs. We obtained 8,701 contigs, slightly more than the 8,585 contigs in the FALCON assembly. We successfully clustered these contigs into 31 groups in Lachesis³³ using the agglomerative hierarchical clustering method (Figure 2). Lachesis was further applied to order and orient the clustered contigs according to the contact matrix. As a result, 7,106 contigs were reliably anchored, ordered and orientated on chromosomes, accounting for 99.32% of the total genome bases. Then,

we applied PBJelly³⁴ to fill the gap using PacBio long reads to merge the contig
sequences. Finally, the first chromosomal-level assembly of *A. fulica* was obtained
with 8,211 contigs, a contig N50 of 721.0 kb and a scaffold N50 of 59.59 Mb (**Table 2**and **Figure 3**).

Genome quality evaluation

We assessed the quality of genome of *A. fulica* after the assembly process. The quality evaluation was carried out in three aspects: continuity, completeness and base level accuracy.

First of all, we compared the sequence number and N50 length of contig of A. fulica with public genome of mollusks and found that our assembly has a high quality on contig and scaffold N50 among mollusk genomes. (Figure 3) As previous studies, genomic heterozygosity of mollusk was one of the biggest challenges for genome assembly, both in terms of contig and scaffold assembly³⁵. Our work illustrated that the genome assembly using PacBio long sequencing data was affordable and effective to overcome the difficulty of mollusk genome assembly. Traditional chromosomal genome assembly requires physical maps and genetic maps, which is enormously time-and labor-consuming. With Hi-C data analysis, we successfully assembled A. fulica genome into chromosome-level with just one individual.

Second, the assembled genome was subjected to the BUSCO (version 3.0)³⁶ to
assess the completeness of the genome. 91.7% of the BUSCO genes were identified
in *A. fulica* genome. More than 84.7% BUSCO gene were single-copy completed in
our genome, illuminating a high level of completeness of the genome.

Third, NGS short reads were aligned to the genome using BWA package³⁷. About
98.7% of paired reads were aligned to the genome, of which 98.24% were reads
paired aligned. From the NGS reads alignment, we detected 128,998 homologous
SNP loci using the GATK pipeline³⁸, demonstrating the high base-level accuracy of
99.33%.

Repeat element and gene annotation

Tandem Repeat Finder (TRF)³⁹ was used for repetitive element identification in the *A*. *fulica* genome. A *de novo* method applying RepeatModuler was used to detect
transposable elements (TEs). The resulted *de novo* data, combined with known
repeat library from Repbase⁴⁰, were used to identify TEs in the*A. fulica* genome by
RepeatMasker⁴¹ software. All repetitive elements were masked in the genome for the
protein-coding gene prediction.

Protein-coding genes in the A. fulica genome were annotated using the de novo program Augustus⁴². Protein sequences of the closely related species including Aplysia californica, Biomphalaria glabrata, Crassostrea gigas, Lottia gigantea and Patinopecten vessoensis, were downloaded from the Ensembl database, and aligned to the A. fulica genome with TBLASTN. Full-length transcripts obtained using Iso-Seg were mapped to the genome using Genewise⁴³. Finally, gene models predicted from all above methods were combined by MAKER⁴⁴, resulting in 23,726 protein-coding genes. The gene number, gene length, CDS length, exon length and intron length distribution were all comparable with the related mollusks (Figure 4).

To functionally annotate protein-coding genes in the *A. fulica* genome, we searched all predicted gene sequences to NCBI non-redundant nucleotide (NT) and protein (NR), Swiss-Prot databases by BLASTN⁴⁵ and BLASTX⁴⁶ utility. Blast2GO⁴⁷ was also used to assign gene ontology (GO)⁴⁸ and Kyoto Encyclopedia of Genes and Genomes (KEGG)⁴⁹ pathways. A threshold of e-value of 1e-5 was used for all BLAST applications. Finally, 22,858 (96.34%) genes were functionally annotated (**Table 3**).

217 Phylogenetic analysis of *A. fulica* with other mollusks

OrthoMCL⁵⁰ was used to cluster gene families. First, proteins from *A. fulica* and the
closely related mollusks, including *Aplysia californica*, *Biomphalaria glabrata*, *Crassostrea gigas*, *Lingula anatina*, *Lottia gigantea*, *Patinopecten yessoensis*,
Octopus bimaculoides, Helobdella robusta, Drosophila melanogaster and Pomacea

canaliculata were all-to-all blasted by BLASTP⁴⁶ utility with an e-value threshold of
1e-5. Only proteins from the longest transcript were used fro genes with alternative
splices. We identified 25,448 gene families for *A. fulica* and the related species,
among them 675 single-copy orthologs families were detected.

Using single-copy orthologs, we could probe the phylogenetic relationships for the A. fulica and other mollusks. To this end, protein sequences of single-copy genes were aligned using CLUSTALX⁵¹. Guided by the protein multi-sequence alignment, the alignment of the coding DNA sequences (CDS) for those genes were generated and concatenated for the following analysis. The phylogenetic relationships were constructed using PhyML⁵² using the concatenated nucleotide alignment with the JTT+G+F model. The PAML MCMCtree program⁵² was used to estimate the species divergent time scales for the mollusks using approximate likelihood method. We found that A. fulica was most closely related to Biomphalaria glabrata, and the two species diverged from their common ancestor around 177.1-187.1 million years ago (MYA) (Figure 5).

237 Conclusion

We reconstructed the first chromosome level assembly for A. fulica using an integrated strategy of PacBio, Illumina and Hi-C technologies. Using the long reads from PacBio Sequel platform and short reads from the Illumina X Ten platform, we successfully constructed contig assembly for A. fulica. Leveraging contact information among contigs from Hi-C technology, we further improved the assembly to the chromosome-level quality (Figure 2 and Figure 3). We annotated 23,726 protein-coding genes in the A. fulica genome and 22,858 of genes were functionally annotated. With 675 single-copy orthologs from A. fulica and other related mollusks, we construct the phylogenetic relationship of these mollusks, and found that A. fulica might have diverged from its common ancestor of Biomphalaria glabrata around 177.1-187.1 MYA. Given the increasing interests in mollusk genomic evolution and

the biological importance of *A. fulica* as an invasive animal, our genomic and transcriptome data provide valuable genetic resource for the following functional genomics investigations for the research community.

Ethics Statement

This study was approved by the Animal Care and Use committee of National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention. All participates consent the study under the 'Ethics, consent and permissions' heading. All participants consent to publish the work under the 'Consent to publish' heading.

Availability of supporting data

The Illumina, PacBio and Hi-C sequencing data are available from NCBI via the accession number of SRR8369706, SRR8369311 and SRR8371669, respectively. The Illumina transcriptome sequencing data were deposited to NCBI via the accession number of SRR8371872 and SRR8371873. The genome, annotation and intermediate files were uploaded to GigaScience FTP server.

Competing interests

265 The authors declare that they have no competing interests.

266 Acknowledgement

This work was supported by the National Key Research and Development Program of
China (No. 2016YFC1200500 and 2016YFC1202000). The authors thank Frasergen
Bioinformatics for providing technique supports for this work.

270 Author Contributions

Z.X, H.W and X.N conceived the project. G.Y, Z.Y, L.Q collected the samples and
extracted the genomic DNA. G.Y, Z.Y and L.Q performed the genome assembly and
data analysis. G.Y, Z.X, H.W and X.N wrote the paper.

274 **References**

1

- 22751Schreurs, J. Investigations on the biology, ecology and control of Giant African Snail 290 in3276West New Guinea. (Manokwari Agricultural Research Station., 1963).
- 52772Albuquerque, F. S., Peso-Aguiar, M. C. & Assunção-Albuquerque, M. J. Distribution, feeding6278behavior and control strategies of the exotic land snail Achatina fulica7279(Gastropoda:Pulmonata) in the Northeast of Brazil. Braz.J. Biol. 68, 6 (2008).
- 92803Thiengo, S. C., Fernandez, M. A., Torres, E. J., Coelho, P. M. & Lanfredi, R. M. First record of10281anematode Metastrongyloidea (Aelurostrongylus abstrusus larvae) in Achatina (Lissachatina)12282fulica (Mollusca, Achatinidae) in Brazil. J. Invertebr. Pathol. 98, 6 (2008).
- 13
14
152834Lv, S., Zhang, Y. & Liu, H. X. Invasive Snails and an Emerging Infectious Disease: Results from
the First National Survey on Angiostrongylus cantonensis in China. BioOne,
doi:10.1371/journal.pntd.0000368 (2009).
- 172865Cowie, R. H. Non-indigenous land and freshwater molluscs in the islands of the Pacific:18287Conservation impacts and threats. 143-172 (2000).
- 202886Cowie, R. H. Can snails ever be effective and safe biocontrol agents? Int J Pest Manage 47, 1821289(2001).
- 23
 290
 7
 Cowie, R. H. & Robinson, D. G. Pathways of introduction of nonindigenous land and

 24
 291
 freshwater snails and slugs.
 93-122 (Island Press, 2003).

 25
 202
 0
 K is a labor of the state of the st
- 26 292 8 Kotangale, J. P. Giant African snail (*Achatina fulica* Bowdich). J Environ Sci Eng, 6 (2011).
- 272939Raut, S. K. & Barker, G. M. Achatina fulica Bowdich and Other Achatinidae as Pests in Tropical28294Agriculture. (CABI International, 2002).
- 2929510Jarreit, V. H. C. The spread of the snail Achatina fulica to south China. Hong Kong Nat 2, 331296(1931).
- 32
3329711Shan, L., Yi, Z. & Peter, S. Emerging Angiostrongyliasis in Mainland China. Emerging Infectious34298Diseases 14, 4 (2008).
- 35
36
37299
30012Lowe, S., Browne, S. M., Boudjrlas, S. & De Poorter, M. 100 of the world's worst invasive alien
species: A selection from the global invasive species database. The Invasive Species Specialists38
39
40301Group of the Species Survival Commission of the World Conservation Union., (Hollands
Printing, 2000).
- 1030313Mead, A. R. Pulmonates volume 2B. Economic malacology with particular reference to42304Achatina fulica. (Academic Press, 1979).
- 43
4430514Alicata, J. E. The discovery of Angiostrongylus cantonensis as a cause of human eosinophilic45306meningitis. Parasitol Today 7, 151-153 (1991).
- 46
47
4830715Prociv, P., Spratt, D. M. & Carlisle, M. S. Neuro-angiostrongyliasis: unresolved issues. Int J
Parasitol **30**, 1295-1303 (2000).
- 4930916Deng, Z. H., Zhang, Q. M., Huang, S. Y. & Jones, J. L. First provincial survey of Angiostrongylus50310cantonensis in Guangdong Province, China. Trop Med Int Health 17, 4 (2012).51
- 5231117Maldonado, J. A. et al. First report of Angiostrongylus cantonensis (Nematoda:53312Metastrongylidae) in Achatina fulica (Mollusca: Gastropoda) from Southeast and South54313Brazil. Mem Inst Oswaldo Cruz 105, 4 (2010).
- 5631418Vitta, A., Polseela, R., Nateeworanart, S. & Tattiyapong, M. Survey of Angiostrongylus57315cantonensis in rats and giant African land snails in Phitsanulok Province, Thailand. Asian Pac J58316Trop Med 4, 3 (2011).
- 60 **317** 19 Liu, C. *et al.* The genome of the golden apple snail *Pomacea canaliculata* provides insight into 61
- 63 64 65

- stress tolerance and invasive adaptation. Gigascience 7, doi:10.1093/gigascience/giy101 (2018). Adema, C. M. et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nature communications 8, 15451, doi:10.1038/ncomms15451 (2017). Neff, K. L. et al. Mojo Hand, a TALEN design tool for genome editing applications. BMC б Bioinformatics 14, 1, doi:10.1186/1471-2105-14-1 (2013). Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764-770, doi:10.1093/bioinformatics/btr011 (2011). Binghang Liu, Y. S., Jianying Yuan, Xuesong Hu, Hao Zhang, Nan Li, Zhenyu Li, Yanxiang Chen, Desheng Mu, Wei Fan. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quantitative Biology 35, 62-67 (2013). Murgarella, M. et al. A First Insight into the Genome of the Filter-Feeder Mussel Mytilus galloprovincialis. PLoS One 11, e0151561, doi:10.1371/journal.pone.0151561 (2016). Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27, 722-736, doi:10.1101/gr.215087.116 (2017). Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 13, 1050-1054, doi:10.1038/nmeth.4035 (2016). Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature methods 10, 563 (2013). Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS one 9, e112963 (2014). Gong, G. et al. Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis. Gigascience, doi:10.1093/gigascience/giy120 (2018). Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25, doi:10.1186/gb-2009-10-3-r25 (2009). Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature biotechnology 31, 1119 (2013). Sun, T. Chromosomal studies in three land snails. Sinozoologia 12, 154-162 (1995). Near, T. J. et al. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of Sciences of the United States of America 110, 12738 (2013). English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PloS one 7, e47768 (2012). Zhang, G. et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 49 (2012). Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212 (2015). Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. bioinformatics 25, 1754-1760 (2009). McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research (2010).

-	362	39	Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res
1 2	363		27 , 573-580 (1999).
3	364	40	Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in
4	365		eukaryotic genomes. <i>Mob DNA</i> 6 , 11, doi:10.1186/s13100-015-0041-9 (2015).
6	366	41	Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Current
7	367		protocols in bioinformatics 5 , 4.10. 11-14.10. 14 (2004).
8 9	368	42	Stanke, M. <i>et al.</i> AUGUSTUS: ab initio prediction of alternative transcripts. <i>Nucleic acids</i>
10	369		research 34 , W435-W439 (2006).
11 12	370	43	Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. <i>Genome research</i> 14 , 988-995
13	371	ЛЛ	(2004).
14 15	373		organism genomes. <i>Genome research</i> 18 , 188-196 (2008).
16	374	45	Gertz, E. M., Yu, Y. K., Agarwala, R., Schaffer, A. A. & Altschul, S. F. Composition-based
17 18	375		statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC
19	376		<i>Biol</i> 4 , 41, doi:10.1186/1741-7007-4-41 (2006).
20 21	377	46	Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421,
22	378		doi:10.1186/1471-2105-10-421 (2009).
23 24	379	47	Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in
25	380		functional genomics research. Bioinformatics 21, 3674-3676 (2005).
26 27	381	48	Consortium, G. O. The Gene Ontology (GO) database and informatics resource. Nucleic acids
27 28	382		research 32 , D258-D261 (2004).
29	383	49	Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids
30 31	384		research 28 , 27-30 (2000).
32	385	50	Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic
33 24	386		genomes. <i>Genome research</i> 13 , 2178-2189 (2003).
34 35	387	51	Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW
36	388		and ClustalX. Current protocols in bioinformatics, 2.3. 1-2.3. 22 (2003).
37 38	389	52	Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. PHYML Online—a web server for fast
39	390		maximum likelihood-based phylogenetic inference. Nucleic acids research 33, W557-W559
40	391		(2005).
4⊥ 42	392		
43	393		
44			
45 46			
47			
48			
49 50			
50 51			
52			
53			
54			
55 56			
57			
58			
59			
ъО 61			
62			
63			
64 65			
CO			

Tables and Figures

Table 1: Sequencing data generated for *A.fulica* genome assembly and annotation

Source	Library type	Platform	Library size (bp)	Data size (Gb)	Application
	Short reads	HiSeq X Ten	350	195.4	Genome survey and base correction
Genome	Long reads	PacBio SEQUEL	20,000	101.6	Genome assembly
	Hi-C	HiSeq X Ten	300-500	208.9	Chromosome construction
Transcriptome	Long reads	PacBio SEQUEL	3000, 5000	22.5	Genome annotation

 $\begin{array}{r} 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 57\\ 58\\ 59\\ 60\\ \end{array}$

401 Table 2: Statistics for genome assembly of *A. fulica*

_	Sample ID	Length		Number	
		Contig** (bp)	Scaffold (bp)	Contig**	Scaffold
	Total	1,852,282,574	1,855,883,074	8,211	1,010
	Max	5,947,392	116,558,012	-	-
	N50	721,038	59,589,303	697	13
	N60	538,883	58,013,356	995	16
	N70	399,612	53,672,006	1,396	20
	N80	268,901	50,673,968	1,957	23
	N90	141,756	44,109,545	2,888	27

404 Table 3: Statistics for genome annotation of *A. fulica*

Database	Number	Percent
InterPro	16,252	68.50
GO	12,101	51.00
KEGG ALL	21,325	89.88
KEGG KO	10,161	42.83
Swissprot	17,050	71.86
TrEMBL	22,403	94.42
NR	22,553	95.06
Total	23,726	

_	407	
1 2 3 4 5 6 7 8 9 10 11		
12 13	408	
14 15	409	Figure 1. A picture of <i>A. fulica</i> that used for genome sequencing and assembly.
16 17	410	
18	411	
20		
21 22		
23		
25		
26 27		
28		
30		
31 32		
33		
34 35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56 57		
58		
59 60		
61 62		
63		
64 65		

428 Figure 3: Genome assembly comparison of *A. fulica* with other sequenced mollusk

429 genomes. The x- and y-axis represent the contig and scaffold N50s, respectively. The

430 genomes assembled into chromosomal level are labeled with names.

Figure 5. Phylogenetic relationship between *A. fulica* and related species. The
divergence time (million years ago) and the 95% confidential intervals are labeled at
branch sites and the red dots in the tree illuminated the speciation for the time
recalibration.