CRISPR/Cas9-assisted seamless genome editing in *Lactobacillus plantarum* and its application in *N*-acetylglucosamine production

Running title: seamless genome editing of Lactobacillus plantarum

Ding Zhou^a, Zhennan Jiang^b, Qingxiao Pang^b, Yuan Zhu^a, Qian Wang^{a,b} * Qingsheng Qi^{b, c}

^a National Glycoengineering Research Center, ^b State Key Laboratory of Microbial Technology, Shandong

University, Qingdao 266237, P. R. China

^c CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China

Correspondence: qiqi20011983@gmail.com (Qian Wang)

Strain or plasmid	Relevant characteristics	References
Strains		
Lactobacillus plantarum WCFS1	wild type	(1)
Escherichia coli XL1-Blue	subcloning host	Transgen
E. coli DH5α	∆lacZ M15 recA	Transgen
Lactococcus lactis MG1363	subcloning host	(2)
WG1	Lactobacillus plantarum WCFS1 ⊿nagB	this study
WG2	Lactobacillus plantarum WCFS1 ⊿nagB; P _{3a} :: glmS1	this study
WG3	Lactobacillus plantarum WCFS1 ∆nagB; P _{3a} :: glmS1 ^{G472S}	this study
Plasmids		
pNZ8148	source of chloramphenicol-resistance gene <i>cat</i>	lab stock
pSIP403	<i>spp</i> -based inducible expression vector; 256rep and pUC(pGEM)ori; Ery ^R ; P _{sppA} :: <i>gusA</i>	(3)
pSIP411	<i>spp</i> -based inducible expression vector; SH71 _{rep} ; Ery ^R ; P _{orfX} :: <i>gusA</i>	(3)
pLP-gba	pSIP411 derivative, P _{orfX} :: <i>lp_0640-</i> <i>lp_0641-lp_0642</i>	(4)
pLP-cre	pSIP411 derivative, PorfX:: cre	(4)
p99S-Cas9	source of Cas9 gene and sgRNA	(5)
pNnsGM	pTrc99a, harboring nanA, slr1975, GNA1 and mutant glmS gene	(6)
pSIP-C9 (nagB)	pSIP403 derivative, P_{sppA} :: <i>Cas9</i> , P_{3a} :: sgRNA (<i>nagB</i>), Cm ^R	this study
pSIP-C9 (lox)	pSIP403 derivative, P _{sppA} :: <i>Cas9</i> , P _{3a} :: sgRNA (lox), Cm ^R	this study
pSIP-C9 (472)	pSIP403 derivative, P _{sppA} :: <i>Cas9</i> , P _{3a} :: sgRNA (472), Ery ^R	this study
p411-RecT	pSIP411 derivative, PorfX:: RecT, Cm ^R	this study
p411-RecT-Dam	pSIP411 derivative, P _{orfX} :: RecT and Dam, Cm ^R	this study

Table S1. Strains and plasmids used in this study

Table S2. Oligonucleotides used in this study.

_

Primer	Sequence(5'-3')	
403-Cas9-f	AAGTATGCTTTATAAAATAATATATAGGAGTATGATTCCCcgagct	
Cas9-3a-r	TTTAGGAGGCAAAAATGGA	
	CGCAACTATTAAAGTTTATCATCATCAGAACAAGCTGTCAACATC	
	TTTTTATAACCAGAAATCATCCTTAGCGAAAGCT	
	CTGATGATGATAAACTTTAATAGTTGCGACTAGTACACCCAATTG	
3a-gRNA (nagB)-f	<u>ACTTACAAATCTTAGGGAT</u> GTTTTAGAGCTAGAAATAGCAAGTTA	
	AAATAAGGCT	
3a-gRNA(lox)-f	CTGATGATGATAAACTTTAATAGTTGCGACTAGTTACCGTTCGTAT	
	AGCATACATTATACGAAGTTTTAGAGCTAGAAATAGCAAGTTAAA	
	ATAAGGCT	
3a-gRNA(472)-f	CTGATGATGATAAACTTTAATAGTTGCGACTAGTCTTATTGAATAC	
	<u>GCCAAACGCCTTTTATATGTTTTAGAGCTAGAAATAGCAAGTTAA</u>	
	AATAAGGCT	
sgRNA-403-r	TGGCGCCTTCGAACCCGGGGTACCGATAAAACGAAAGGCCCAG	
	TCTTTCG	
RecT-f	ATGAGTAATGAGCTAGTTACGATGGTTAAT	
RecT-r	GGGTACCGAATTCCTCGAGTCTAGATTAGCTGGCGTCAAAGTCTC	
	CG	
p411-f	TCTAGACTCGAGGAATTCGGTACCC	
n/111_r	ATTAACCATCGTAACTAGCTCATTACTCATGGCTAAAATCTCCTTG	
piiri	TAATAGTATTTATAGAAT	
cm-f	AACAAATCGTTTAACTTCAGGAGAGATTACATGAACTTTAATAAA	
••••	ATTGATTTAGACAATTGGAAGAGAA	
cm-r	TTTCCAAATTTAAAAAAGCGACTCATAGAATTATAAAAGCCAGTC	
	ATTAGGCCTATCTGA	
p411-cm-f	TTCTATGAGTCGCTTTTTTAAATTTGGAAAGTT	
p411-cm-r	GTAATCTCTCCTGAAGTTAAACGATTTGTT	
Dam-f	<u>CTTTGACGCCAGCTAATCTAGACTCGAGG</u> TAACAGATTCGCAAG	
	TAAGGAGTTTATATATATCTGGCACAAGCAGAAACCG	
Dam-r	TGCGTTCTCACTGGATGCTGTTCT	
nagB-cf	GTGAACAAATAAATGGTTGGCGTAG	
nagB-cr	CCTACCGCTACACCGCAAC	
3a-cf	GAGACCCAGTGCCTCCCAAAC	
3a-cr	GTGGTAACAAATGCGTCTGCAC	
472-cr	AAGGTCGCTGGTATTCGCCA	
472-cf	CAACGCTATCGCGCGAAGCAA	
rpob-cf	GGATGGAACGGGTTGTGCG	
rpob-cr	TTGCTGGACCATCGGCTAA	
cm-cf	GGTGGCTACGTATTGACGGAAC	
cm-cr	CTCTCCGTCGCTATTGTAACCAG	

cm-cre-cf	GAGACCCAGTGCCTCCCAAAC	
cm-cre-cr	TTGAAGCCTTCGCCGACCC	
nagB-f	AGTGCTTGACCGATGGGAGA	
nagB-r	TCTTTTCCGCCGGCAGCTTGATC	
nagB-f2	AGGATCAAGCTGCCGGCGGAAAAGAGAGAGCGAAGCGGCTGCTAGC	
	AA	
nagB-r2	AACTGAAACCACTGCCACCAA	
3a-f1	GCTGGAAGAAGCCTTGATTG	
3a-r1	CCGCTTTAACCAATTAACAATTGGTC	
3a-f2	GACCAATTGTTAATTGGTTAAAGCGGTACCGTTCGTATAATGTATG	
	CTATACGAAGTTATTGATCCCCTTAGAAGCAAACTTAAGAGT	
3a-r2	ATCATCATCAGAACAAGCTGTCAACATCTTTTTATAATACCGTTCG	
	TATAGCATACATTATACGAAGTTATGCTCACCAACAACCTATCTTA	
	ACGAG	
3a-f3	GTTGACAGCTTGTTCTGATGATGATAAACTTTAATAGTTGCGTGA	
	GGTTGGTGACAGATATATTGACCACG	
3a-r3	TTCGCCAAGTTTGTTGCCTCT	
lov r1	ATCATCATCAGAACAAGCTGTCAACATCTTTTTATAACCGCTTTA	
107-11	ACCAATTAACAATTGGTC	
law f	GTTGACAGCTTGTTCTGATGATGATAAACTTTAATAGTTGCGTGA	
107-12	GGTTGGTGACAGATATATTGACCACG	
a f	TAAAATAATATATAGGAGTATGATTCCCATGATACCAGCACAGGC	
5-1	AGGTTTAAAC	
ssDNA-472-5	AAGGCCGTTTCTAATGAGACGGCGTAATCCAGTCCCCTTGATATA	
	TAAAAGGCGTTTGGCGTATTCAATAAGGCACTCT	
ssDNA-472-3	AAGGCCGTTTCTAATGAGACGGCGTAATCCAGTCCCCG <mark>TGA</mark> AAT	
	ATAAAAGGCGTTTGGCGTATTCAATAAGGCACTCT	
ssDNA-rpob-1	TCAAACCACCAGGTCCTAAGGCTGATAAACGCCGCTTA <mark>C</mark> GCGTT	
	AATTCACCTAAGGGGTTGGTTTGGTCCATGAATTG	
ssDNA-rpob-2	TCAAACCACCAGGTCCTAAGGCTGATAAACGCCGCTT <mark>CC</mark> GCGTT	
	AATTCACCTAAGGGGTTGGTTTGGTCCATGAATTG	
ssDNA-rpob-3	TCAAACCACCAGGTCCTAAGGCTGATAAACGCCGCTT <mark>CCT</mark> CGTT	
	AATTCACCTAAGGGGTTGGTTTGGTCCATGAATTG	
ssDNA-rpob-4	TCAAACCACCAGGTCCTAAGGCTGATAAACGCCGCTT <mark>CCTA</mark> GTT	
	AATTCACCTAAGGGGTTGGTTTGGTCCATGAATTG	
ssDNA-rpob-5	TCAAACCACCAGGTCCTAAGGCTGATAAACGCCGCTT <mark>CCTGC</mark> TT	
	AATTCACCTAAGGGGTTGGTTTGGTCCATGAATTG	
ssDNA-rpob-3+N	TCAAACCACCAGGTCCTAAGGCTGATAAACGCCGCTTNCGGCTT	
	AATTCACCTAAGGGGTTGGTTTGGTCCATGAATTG	

Underlined sequences indicate homology arms for Gibson assembly. Wavy underlined sequences indicate spacers

for sgRNA. Yellow background sequence indicates RBS. Dark blue background sequences indicate lox site. Red

coloured words indicate mutant bases.

Figure S1. The efficiency of the two-step gene insertion.

(A) The efficiency of the two-step gene insertion was also divided into two parts. The efficiency of the first step that insertion of the chloramphenicol resistance gene, loxP sites and the 3a promoter was 82% as shown in the Supplementary Figure 1A. We use primers cm-cf/cm-cr to verify this result, the primer cm-cr is located on the inserted chloramphenicol gene and there is no band if it is not inserted successfully. (B) The results of removing the chloramphenicol label using the loxP / Cre system. We verify this result with primers cm-cre-cf/cm-cre-cr. The strains was cultured for 24 hours after transformation of Cre enzyme, all of the nine tested colonies showed the mutant genotype and could not grow on chloramphenicol-containing media, the first band is a negative control. (C) The second step is CRISPR-assisted seamless genome knockout of loxP sites, 57 colonies were obtained on the plate and in 24 tested colonies, 14 were correct mutants identified by colony PCR and sequenced. The positive rate is 58.3%. Part of the sequencing results are shown in the Supplementary Figure 1C.

Figure S2. Partial DNA sequencing results of point mutations G472S.

ctaagagtgccttattgaatacgccaaacgccttttatattggtcggggactggattacgccgtctcattagaaacggccttgaaa

gatteteacggaataacttatgcggtttgcggaaaatataaccagcccctgacctaatgcggcagagtaatctttgccggaacttt
gimS1 →
tctcacggaataacttatgcggttgcggaaaatatacccctgacctaatgcggcagagtaatctttgccggaa ssDNA-471-5
${\tt ctaagagtgccttattgaatacgccaaacgccttttatattggtcggggactggattacgccgtctcattagaaacggccttgaaa$
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATAT <mark>ATCAA</mark> GGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATATTGGTCGGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATAT <mark>ATCAA</mark> BGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATAT <mark>ATCAA</mark> GGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATAT <mark>ATCAA</mark> GGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATAT <mark>ATCAA</mark> GGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATAT <mark>ATCAA</mark> BGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATAT <mark>ATCAA</mark> BGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATATTGGTCGGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA
CTAAGAGTGCCTTATTGAATACGCCAAACGCCTTTTATAT <mark>ATCAA</mark> GGGGACTGGATTACGCCGTCTCATTAGAAACGGCCTTGAAA

The ssDNA recombineering result was verified by PCR using primers 472-cf/472-cr. The sequencing results was

shown above.

Figure S3. Mutation efficiency of interval mismatches ssDNA.

(A)The ssDNA with various interval mutant bases marked red were used to change the genome. (B)The efficiency

of ssDNA recombination resulting in various mismatches.

Figure S4. The recombination efficiency of different bases.

(A)The fourth base is a degenerate base, we design single-stranded DNAs named ssDNA-rpob-4A/G/C/T to verify the mismatch efficiency of each base at this site. When the fourth base is A, the mismatch efficiency is the highest and single colonies can achieve about 800 on rifampicin-resistant plates which is probably twice the other bases. (B) We designed an ssDNA named ssDNA-rpoB-3+N (N=A/G/C/T) to calculate the mismatch efficiency of this site. After transformation of ssDNA, we got single colonies growing on plates containing rifampicin resistance and sequenced the genome of single colonies to calculate the number of bases that appeared in the position of yellow bottom N. The mismatch efficiency towards base C is the highest, while base G is the lowest.

References

- Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ. 2003. Complete genome sequence of *Lactobacillus plantarum* WCFS1. Proc Natl Acad Sci U S A 100:1990-5.
- Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, van Sinderen D, Kok J. 2007. Complete genome sequence of the prototype lactic acid bacterium *Lactococcus lactis* subsp. cremoris MG1363. J Bacteriol 189:3256-70.
- 3. Sorvig E, Mathiesen G, Naterstad K, Eijsink VG, Axelsson L. 2005. High-level, inducible gene expression in Lactobacillus sakei and *Lactobacillus plantarum* using versatile expression vectors. Microbiology 151:2439-49.
- 4. Yang P, Wang J, Qi Q. 2015. Prophage recombinases-mediated genome engineering in *Lactobacillus plantarum*. Microb Cell Fact 14:154.
- 5. Su T, Jin H, Zheng Y, Zhao Q, Chang Y, Wang Q, Qi Q. 2018. Improved ssDNA recombineering for rapid and efficient pathway engineering in *Corynebacterium glutamicum*. Journal of Chemical Technology & Biotechnology 93:3535-3542.
- 6. Kang J, Gu P, Wang Y, Li Y, Yang F, Wang Q, Qi Q. 2012. Engineering of an N-acetylneuraminic acid synthetic pathway in *Escherichia coli*. Metab Eng 14:623-9.