
Supplementary data of manuscript
“Denoising of Aligned Genomic Data”

Irena Fischer-Hwang, Idoia Ochoa, Tsachy Weissman
and Mikel Hernaez

In this supplementary document, we provide details of our implementa-
tion. We also discuss the supplementary results that support the main text.

Data

Data sets

The data sets used in this study were obtained from the following sources:
ERR262997 (data set 1) with 30×-coverage (http://www.ebi.ac.uk/
ena/data/view/ERA207860), CEUTrio.HiSeq.WGS (data set 2) with
100×-coverage (ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/b37/CEUTrio.HiSeq.WGS.b37.NA12878.bam), and
NA12878 V2.5 Robot 2 (data set 3) with 40×-coverage (https://www.
garvan.org.au/research/kinghorn-centre-for-clinical-genomics/

clinical-genomics/sequencing-services/sample-data).

Data coverage

We tested SAMDUDE on three different paired-end WGS datasets of the
H. Sapiens individual NA12878. The datasets (referred to by run accession
number) are: ERR262997 with to 30×-coverage, CEUTrio.HiSeq.WGS with
to 100×-coverage, and NA12878 V2.5 Robot 2 with to 40×-coverage, which
we refer to these datasets as 1, 2 and 3, respectively in the main text. Denois-
ing was also tested on a dataset with lower (15×) coverage, paired-end WGS
dataset ERR174324. The results are shown in Supplementary Table 6, and
demonstrate an overall lack of improvement and actual slight negative effect

1

of SAMDUDE denoising. These results are not entirely surprising, given
that SAMDUDE makes significant use of alignment information in order to
estimate the noise channel, create counts vectors and to perform denoising,
so we expect better denoising performance with higher coverage. Based on
these results, we focused our efforts on denoising data with 30× or higher
coverage, namely datasets 1, 2 and 3. This tends to be the coverage range of
WGS data used in practice, especially for clinical purposes.

SAMDUDE operation

The following subsections discuss specific aspects of SAMDUDE operation
used in our experiments.

Choice of k

For all denoising experiments, we used a single-sided context length of k = 7
(14 bases total in the double-sided context). This choice is rooted in the
theory underlying DUDE, as well as in practical considerations. For discrete
universal denoising using DUDE, the optimal single-sided context length kn
depends on both sequence length and alphabet size:

kn = dc logM ne

with c < 1
2
, noise-free sequence alphabet size M and noise-free sequence

length n [1]. Intuitively, the optimal context length maximizes the number
of times each context is counted without skewing the context histograms
towards a uniform distribution, which occurs when k is either too small or
too large. In the genomic sequencing setting, M= 4, and n—interpreted as
chromosome length—ranges from 51×106 up to 248×109 for somatic human
chromosomes. For these values, kn = 5 or 6.

Supplementary Table 4 shows the results of denoising extracted SAM
files for chromosomes 11 and 20 from dataset 1 using k = 5 and 6, and
confidence probability threshold tp = 0.9. These values of k resulted in
improvements in both S and P, but very little change in F-score. These results
seemed to indicate that k was too short, since when k is insufficiently long,
information from genomic locations other than the one under consideration
may be incorporated, leading to artificially inflated counts in the m vectors.
We hypothesized that denoising performance might be improved by limiting

2

denoising decisions to reads that map closer to the one under consideration.
To test this hypothesis, we tried larger values of k. Intuitively, larger k
should ensure that most context counts are taken from the same pileup, while
still allowing counts information to be obtained from misaligned or poorly-
mapped reads found elsewhere in the SAM file. Results for denoising dataset
1 with k = 10 for chromosome 20 are shown in the last line of Supplementary
Table 4. Although the best denoising performance was obtained for k = 10,
a computationally prohibitive amount of memory was required to store the
context vectors. Thus, we decided to use k = 7.

Choices of tm and tp

For sequence and channel estimation we used a majority threshold of tm = 0.9
for a high-confidence genomic sequence estimate, and also to eliminate the
confounding effects due to heterozygous genomic positions which might not
have a clear majority base.

The choice of confidence probability threshold tp is a tradeoff. Too high
a threshold might prevent the correction of true sequencing errors, while too
low a threshold might result in SAMDUDE attempting to denoise where
there are no errors. Supplementary Table 5 shows the results of denoising
dataset 1 with tm = 0.9 and tp = 0.99, corresponding to a quality score of 20.
Compared to the results in Supplementary Table 4, there is less improvement
in sensitivity (in fact, worsening of sensitivity for chromosome 20 using k =
6), especially for the GATK filtered variant calls. Additionally, histograms
of quality score changes shown in Supplementary Fig. 7 demonstrate that
generally SAMDUDE quality score updating tends to shift the quality score
distribution towards smaller values. In other words, SAMDUDE denoising
decisions tend to decrease the “certainty” of the corrected base. It is unclear
how this directly affects variant calling, but intuitively it makes sense to
avoid lowering the quality score of bases that were called by the sequencer
with high confidence. Finally, a lower threshold of tp = 0.9 has the additional
benefit of reducing computational runtime and preventing over-processing of
the original data. Based on these results, we chose to use a lower confidence
probability threshold of tp = 0.9 for our denoising experiments.

3

Variations on SAMDUDE

Two “variations” on SAMDUDE were presented in the “Human chromosome
denoising with SAMDUDE” subsection of the Results section in the main
text: partial denoising and random noise. The results of these variations
are summarized in Supplementary Table 1. Supplementary Table 2 lists the
total number of bases in the original SAM files, as well as the percent of base
changes under each denoiser in the chromosome files for each data set.

Sensitivity vs. precision curves

Supplementary Figs. 1, 2, 3, 4, 5, and 6 show precision as a function of
sensitivity for variant call sets filtered by QD. The odd-numbered figures
include an additional rightmost point corresponding to the raw variant calls
corresponding to those reported in all other tables and figures, while the
even-numbered figures omit the rightmost point for ease of visualization.

In all curves, the performance of SAMDUDE is compared with lossy
quality score compressors P-Block and R-Block, as well as with Musket and
RACER. For ease of visualization, the results of denoising with BFCounter
and Lighter are omitted.

Computational details

State-of-the-art denoising software

In this section we provide the commands and parameters used for denoising
with Musket, RACER, BFCounter and Lighter.

Musket

Musket was invoked using all default parameters, and the number of threads
t specified with the -p parameter.

Version: 1.1
Website: http://musket.sourceforge.net/homepage.htm
Command:

$ musket -p t read_1.fastq read_2.fastq -omulti denoised -inorder

4

RACER

RACER was invoked using 3×109 as an estimate of the whole human genome
length.

Version: 1.0.1
Website: http://www.csd.uwo.ca/~ilie/RACER/
Command:

$ racer read_1.fastq read_2.fastq 3000000000

BFCounter

BFCounter was invoked using estimated sequence lengths of 64 × 106 and
100×106 for chromosomes 20 and 11, respectively, and 4×109 as an estimate
of the whole human genome length.

Version: r181
Website: https://github.com/lh3/bfc
Command for denoising chromosome 11 data:

$ bfc -s 100m read_1.fastq.gz read_2.fastq.gz

Lighter

Lighter was invoked using estimated sequence lengths of 63×106 and 135×106

for chromosomes 20 and 11, respectively, and k-mer length of 17.
Version: 1.1.1
Website: https://github.com/mourisl/Lighter/
Command for denoising chromosome 20 data:

$ lighter read_1.fastq read_2.fastq -K 17 63500000

Variant calling pipeline

In this subsection we describe the variant calling pipeline.

5

Preprocessing

Prior to variant calling, all data was preprocessed using the steps recom-
mended by the Broad Institute’s Genome Analysis Toolkit (GATK) [2, 3, 4].
They are: conversion of the SAM file to the BAM format, file sorting, du-
plicate reads marking, group name adding, file indexing and quality score
recalibration.

If the denoised file is in FASTQ format, alignment to a reference genome
must be performed prior to applying all other preprocessing steps. This
was done using the BWA mem alignment program and NCBI build 37
of the human reference [http://www.ncbi.nlm.nih.gov/assembly/GCF$\
_$000001405.13/] as the reference genome. We included the -M option
for compatibility with Picard tools (http://broadinstitute.github.io/
picard/), and used the -t option to specify the desired number of threads
for computation.

$ bwa mem -t num_threads -M ref.fa read_1.fastq read_2.fastq > aln.sam

The SAM file was converted to BAM format using SAMtools [?], specifying
the number of threads with the -@ option and inclusion of the SAM header
with the -h option.

$ samtools view -@ num_threads -b -h aln.sam > aln.bam

The BAM file was sorted using SAMtools, with a temporary file prefix spec-
ified with the -T option, and the output file format specified with the -O

option.

$ samtools sort -T ./tmp -@ num_threads -O bam aln.bam > aln.sorted.bam

Duplicates were marked using Picard tools, with M specifying the file to which
metrics calculated during the duplication marking process were written. Note
that marking the duplicates is sufficient to exclude them from downstream
processes.

$ java -jar picard.jar MarkDuplicates I=aln.sorted.bam \

O=aln.sorted.dedup.bam M=metrics.txt ASSUME_SORTED=true

Read group names were then added to the file, with read group parameters
specified by RGID, RGLB, RGPL, RGPU and RGSM.

$ java -jar picard.jar AddOrReplaceReadGroups INPUT=aln.sorted.dedup.bam \

OUTPUT=aln.sorted.dedup.rg.bam RGID=group1 RGLB=lib1 \

RGPL=illumina RGPU=unit1 RGSM=NA12878

6

Then, the BAM file was indexed.

$ java -jar picard.jar BuildBamIndex I=$aln.sorted.dedup.rg.BAM

Finally, the quality scores were recalibrated using the GATK Base Quality
Score Recalibration workflow [2], and NCBI build 37 of the human reference
as the reference genome.

$ java -jar GenomeAnalysisTK.jar -nct num_threads -T BaseRecalibrator -R pathHumanReference \

-I aln.sorted.dedup.rg.bam \

-knownSites bundle_2 .8/ dbsnp_138.b37.vcf \

-knownSites bundle_2 .8/ Mills_and_1000G_gold_standard.indels.b37.vcf \

-knownSites bundle_2 .8/1000 G_phase1.indels.b37.vcf -o bqsr.data

$ java -jar GenomeAnalysisTK.jar -nct num_threads -T PrintReads -R pathHumanReference \

-I aln.sorted.dedup.rg.bam -BQSR recal_data -o aln.sorted.dedup.rg.recal.bam

Variant calling and filtering

We used the GATK Haplotype Caller for variant calling, specifying the target
chromosome with the -L option.

$ java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R pathHumanReference \

-I aln.sorted.dedup.rg.recal.bam -L targetRegion \

--genotyping_mode DISCOVERY -stand_emit_conf 10 -stand_call_conf 30 -o rawVCF

Finally, we used the Illumina open source hapolotype comparison tool hap.py
(https://github.com/Illumina/hap.py#happy) to compare the variant
calls of the denoised files with those of the original file. The tool gener-
ates comparisons for both raw variant calls as well as variant calls filtered by
the GATK Best Practices variant filtering procedure [3]. The hap.py evalu-
ation pipeline was also used to filter extract true and false positive variant
call values.

$ python hap.py ground_truth.vcf $raw_VCF -f ground_truth.bed -o results -r ref.fa -l targetRegion --roc VQLSOD

$ python rep.py -o results.html -l tsv_file

We reported results for both raw variants and variants filtered under the
GATK Best Practices-recommended variant filtering process.

Computing requirements

We ran most experiments on a workstation computer with 12 Intel Xeon cores
at 3.4 GHz and 32 GB of RAM, running Linux Ubuntu 14.04.4. SAMDUDE

7

denoising for the chromosome 11 file of dataset 3 was run on a different
workstation with 80 Intel Deon cores at 2.2 GHz and 504 GB RAM, running
CentOS 7.4.1708. Time and peak computational memory requirements for
denoising datasets 1, 2 and 3 using all denoisers are summarized in Supple-
mentary Table 7. In its current manifestation, SAMDUDE generally uses
about an order of magnitude more memory than Musket and RACER, and
nearly two orders of magnitude more memory than BFCounter and Lighter.
This is due to the large number of context histogram vectors that SAM-
DUDE acquires. SAMDUDE also generally requires about one to two orders
of magnitude more runtime than the state-of-the-art denoisers. This result
is not surprising, given that SAMDUDE is currently implemented in Python
with no parallelization.

8

Tables and Figures

Partial Random
SAMDUDE denoising noise

data ∆S ∆P ∆F ∆S ∆P ∆F ∆S ∆P ∆F
set [%] [%] [%] [%] [%] [%] [%] [%] [%]

raw 1 0.04 0.12 0.08 -0.01 0.19 0.09 -1.39 1.58 0.10
2 – 0.95 0.47 0.01 0.05 0.03 -0.88 1.00 0.06
3 – 0.02 0.01 – -0.01 – – 0.03 0.01

GATK 1 0.03 0.11 0.07 -0.01 0.12 0.06 -2.29 0.78 -0.76
filtered 2 -0.01 0.75 0.37 0.01 0.02 0.02 -1.39 0.80 -0.29

3 0.01 – – – 0.01 0.01 -0.01 0.02 0.01

Supplementary Table 1: Changes (∆) in sensitivity (S), precision (P) and F-
score (F) under SAMDUDE, SAMDUDE-denoised reads with original quality
scores (Partial denoising), and random noise (Random noise) calculated rel-
ative to the original file. Positive ∆ indicates improvement with respect to
the original data, and horizontal lines indicate no change.

data SAMDUDE Musket RACER BFCounter Lighter
chr set n [%] [%] [%] [%] [%]

11 1 5,806,522,969 0.36 0.34 8.41 0.23 0.42
2 11,960,009,536 1.80 0.53 1.26 0.55 0.62
3 6,769,559,684 0.07 0.80 1.84 0.89 0.62

20 1 2,538,750,907 0.35 0.30 8.76 0.26 0.42
2 5,206,460,817 1.80 0.59 1.34 0.63 0.73
3 3,064,700,879 0.11 1.77 1.99 0.99 0.70

Supplementary Table 2: Total number of bases in the original SAM files (n)
compared to the percentage of base changes recommended under the five
denoisers.

9

10

Quality score bin Quality score range

1 < 2
2 2–9
3 10–19
4 20–24
5 25–29
6 30–34
7 35–39
8 ≥ 40

Supplementary Table 3: Quality score bin labels and ranges.

Raw variant calls GATK filtered variant calls

∆C ∆S ∆P ∆F ∆C ∆S ∆P ∆F
chr k [%] [%] [%] [%] [%] [%]

11 5 26 0.01 0.03 – 50 0.01 0.02 –
6 -199 0.03 0.17 0.10 -80 0.03 0.11 0.10

20 5 59 0.04 0.07 – 59 0.04 0.06 –
6 -19 0.01 0.10 – 18 0.01 0.05 –
10 373 0.21 0.16 0.20 72 0.20 0.12 0.10

Supplementary Table 4: Results of denoising data set ERR262997 with dif-
ferent values of k, with changes (∆) in T.P. and F.P. calculated relative to the
original file. C is the number of additional variants called for each condition
relative to the variant call set for the original file. For S, P and F, positive
∆ indicates improvement with respect to the original data, and horizontal
lines indicate no change.

11

Raw variant calls GATK filtered variant calls

∆C ∆S ∆P ∆F ∆C ∆S ∆P ∆F
chr k [%] [%] [%] [%] [%] [%]

11 5 71 0.01 0.03 – 103 0.01 0.02 –
6 -238 – 0.20 0.10 -112 – 0.12 0.10

20 5 79 0.05 0.05 – 92 0.05 0.03
6 -23 -0.01 0.10 – 20 -0.03 0.03 –

Supplementary Table 5: Results of denoising data set ERR262997 with var-
ious k with confidence threshold tp = 0.99. C is the number of additional
variants called for each condition relative to the variant call set for the origi-
nal file, and changes (∆) were calculated relative to the original file. Positive
∆ indicates improvement with respect to the original data, and horizontal
lines indicate no change.

Raw variant calls GATK filtered variant calls

∆C ∆S ∆P ∆F ∆C ∆S ∆P ∆F
chr k [%] [%] [%] [%] [%] [%]

11 5 -13 0.01 – – -7 0.01 – –
6 -209 – 0.01 – -220 -0.02 0.01 –
7 -451 -0.03 0.03 – -382 -0.03 – –

20 5 18 – -0.01 – 39 0.01 – –
6 -111 -0.03 0.01 – -103 -0.04 – –
7 -153 -0.02 – – -117 -0.03 – –
10 235 0.05 -0.04 – 189 0.03 -0.02 –

Supplementary Table 6: Results of denoising low coverage data set
ERR174324 with confidence threshold tp = 0.9. C is the number of addi-
tional variants called for each condition relative to the variant call set for
the original file, and changes (∆) were calculated relative to the original
file. Positive ∆ indicates improvement with respect to the original data, and
horizontal lines indicate no change.

12

SAMDUDE Musket RACER BFCounter Lighter

dataMemory Time Memory Time Memory Time Memory Time Memory Time
chr set [GB] [s/MB] [GB] [s/MB] [GB] [s/MB] [GB] [s/MB] [GB] [s/MB]

11 1 27.45 0.89 2.76 0.42 7.66 0.05 5.18 0.55 0.66 0.17
2 31.79 3.77 6.53 0.56 16.07 0.08 5.22 0.36 0.66 0.12
3 77.57 4.37 5.52 0.76 11.05 0.06 5.16 0.43 0.66 0.14

20 1 31.90 6.12 1.06 0.60 3.50 0.06 2.94 0.37 0.33 0.17
2 31.74 2.58 2.14 0.72 7.35 0.05 2.94 0.35 0.33 0.14
3 31.86 4.37 1.73 0.76 5.08 0.06 2.85 0.4 0.33 0.11

Supplementary Table 7: Time and peak memory requirements for denoising
individual chromosome files from data sets 1, 2 and 3 using the five denois-
ers. RACER, BFCounter and Lighter requirements are averaged between the
paired-end files.

0.25 0.50 0.75 1.00

0.6

0.7

0.8

0.9

1.0

Chr11

0.25 0.50 0.75 1.00

0.5

0.6

0.7

0.8

0.9

1.0

Chr20

0.25 0.50 0.75 1.00

0.96

0.97

0.98

0.99

1.00

0.25 0.50 0.75 1.00

0.95

0.96

0.97

0.98

0.99

1.00

Original

SAMDUDE

Random noise

P-Block=3

R-Block=40

Musket

RACER

Sensitivity

P
re
ci
si
on

Supplementary Figure 1: Sensitivity vs. precision curves for the data set 1
variant call set filtered at 10th percentiles, starting with no filtering. The top
row shows results for all files, and the bottom row omits results for Musket-
and RACER-denoised files for closer comparison.

13

14

0.25 0.50 0.75 1.00

0.6

0.7

0.8

0.9

1.0

Chr11

0.25 0.50 0.75 1.00

0.6

0.7

0.8

0.9

1.0

Chr20

0.25 0.50 0.75 1.00

0.985

0.990

0.995

1.000

0.25 0.50 0.75 1.00

0.980

0.985

0.990

0.995

1.000

Original

SAMDUDE

Random noise

P-Block=3

R-Block=40

Musket

RACER

Sensitivity

P
re
ci
si
on

Supplementary Figure 2: The same sensitivity vs. precision curves as in
Supplementary Fig. 1, but with the rightmost point in each subplot removed
for ease of visualization.

15

Supplementary Figure 3: Sensitivity vs. precision curves for the data set 2
variant call set filtered at 10th percentiles, starting with no filtering. The top
row shows results for all files, and the bottom row omits results for Musket-
and RACER-denoised files for closer comparison.

16

0.25 0.50 0.75 1.00
0.970

0.975

0.980

0.985

0.990

0.995

1.000

Chr11

0.25 0.50 0.75 1.00

0.97

0.98

0.99

1.00

Chr20

0.25 0.50 0.75 1.00

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0.25 0.50 0.75 1.00

0.992

0.994

0.996

0.998

1.000

Original

SAMDUDE

Random noise

P-Block=3

R-Block=40

Musket

RACER

Sensitivity

P
re
ci
si
on

Supplementary Figure 4: The same sensitivity vs. precision curves as in
Supplementary Fig. 3, but with the rightmost point in each subplot removed
for ease of visualization.

17

0.25 0.50 0.75 1.00

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Chr11

0.25 0.50 0.75 1.00

0.85

0.90

0.95

1.00

Chr20

0.25 0.50 0.75 1.00

0.995

0.996

0.997

0.998

0.999

1.000

0.25 0.50 0.75 1.00

0.995

0.996

0.997

0.998

0.999

1.000

Original

SAMDUDE

Random noise

P-Block=3

R-Block=40

Musket

RACER

Sensitivity

P
re
ci
si
on

Supplementary Figure 5: Sensitivity vs. precision curves for the data set 3
variant call set filtered at 10th percentiles, starting with no filtering. The top
row shows results for all files, and the bottom row omits results for Musket-
and RACER-denoised files for closer comparison.

18

0.25 0.50 0.75 1.00

0.90

0.92

0.94

0.96

0.98

1.00

Chr11

0.25 0.50 0.75 1.00

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Chr20

0.25 0.50 0.75 1.00

0.9985

0.9990

0.9995

1.0000

0.25 0.50 0.75 1.00

0.9985

0.9990

0.9995

1.0000

Original

SAMDUDE

Random noise

P-Block=3

R-Block=40

Musket

RACER

Sensitivity

P
re
ci
si
on

Supplementary Figure 6: The same sensitivity vs. precision curves as in
Supplementary Fig. 5, but with the rightmost point in each subplot removed
for ease of visualization.

19

0 5 10 15 20 25 30 35 40 45
0

2

4

×106

0 5 10 15 20 25 30 35 40 45
0.00

0.25

0.50

0.75

×108

0 5 10 15 20 25 30 35 40 45
0

1

2

3

×107

0

2

4

×108

0.0

0.5

1.0

×109

0.0

0.5

1.0

1.5

×109

quality scores

C
ou

nt
s

of
 o

rig
in

al
 q

ua
lit

y
sc

or
es

 f
or

 b
as

es
 c

ha
ng

ed
 u

nd
er

 S
A

M
D

U
D

E
C
ounts of original quality scores for all bases

Supplementary Figure 7: From top to bottom: quality score histograms for
chromosome 20 reads taken from datasets 1, 2 and 3. Histograms summarize
all original quality scores (light orange and outlined, right-hand axis) and
scores only of bases changed under the SAMDUDE denoising rule using k =
7, tm = 0.9 and tp = 0.9 (dark orange, left-hand axis).

References

[1] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdú, and M. J. Weinberger,
“Universal discrete denoising: Known channel,” IEEE Transactions on
Information Theory, vol. 51, no. 1, pp. 5–28, 2005.

[2] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly et al.,
“The genome analysis toolkit: a mapreduce framework for analyzing
next-generation dna sequencing data,” Genome research, vol. 20, no. 9,
pp. 1297–1303, 2010.

[3] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire,
C. Hartl, A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna
et al., “A framework for variation discovery and genotyping using next-
generation dna sequencing data,” Nature genetics, vol. 43, no. 5, pp.
491–498, 2011.

[4] G. A. Van der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel,
A. Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault et al.,
“From fastq data to high-confidence variant calls: the genome analysis
toolkit best practices pipeline,” Current protocols in bioinformatics, pp.
11–10, 2013.

20

