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Supplementary Methods 

CMS overview 

Consider testing the association between a genotype G and a phenotype Y1. When there exists another 

measured variable Y2 correlated with the outcome Y1 because both variables depend on the same unmeasured 

risk factor (say U), then Y2 can be considered a proxy for that risk factor U. As a proxy, Y2 can potentially be used 

as a covariate when regressing Y1 on G. Adjusting Y1 for Y2 can substantially reduce the residual variance of Y1, 

increasing power to detect G-Y1 association. However, as we discussed in previous work1, when Y2 depends on 

the predictor G, using it as a covariate faces a multicollinearity issue, further leading to both false positive and 

false negative results depending on the underlying causal structure of the data. The core of the CMS method is a 

principled approach to selecting a set of covariates Yk1 that are correlated with the phenotype, but not with the 

genotype tested, thereby reducing phenotypic variance independent of the genotype and concomitantly 

increasing power. Our previous work showed that a naïve solution consisting in filtering out covariates based on 

a p-value threshold from the association test between each covariate and the predictor (e.g. testing whether G-

Y2 association p-value is < 0.05) results in an overall type I error inflation. Instead, we developed a heuristic that 

uses conditional mean and variance of the parameters in question. In brief, consider 𝛿 and 𝛽̂, the marginal 

estimated regression coefficients between G and Y2, and between G and Y1 (not adjusted for Y2), respectively, 

and let 𝛾 be the estimated correlation between Y1 and Y2. The central advance of CMS is the implementation of 

an inclusion threshold based on 𝔼(𝛿|𝛽̂) and 𝑣𝑎𝑟(𝛿|𝛽̂) under a complete null model (𝛿 = 𝛽 = 0). 

 

Covariates pre-selection method 

To address the high computational burden of CMS, we applied some additional pre-filtering to 𝑌𝑘≠1 before 

applying CMS. Indeed, CMS computation time increases with the number of covariates (𝑁) with a complexity of 

𝑂(𝑁2) (Supplementary Figure 7). Thus, instead of using about 150 candidate covariates as CMS input for each 

outcome tested, we focused only on the subset explaining the largest (but not too large, see next section) 

amount of the primary outcome variance. We considered two approaches: 1) a naïve one, only based on the 

marginal correlation between each covariates and the outcome tested, and 2) an alternative one using existing 

model selection methods -i.e. Akaike information criterion (AIC) and Bayesian information criterion (BIC)- in 

order to avoid selecting sets of highly correlated covariates to avoid redundancy. The two strategies are 

described in Supplementary Figure 8. Overall, exploratory analyses in the METSIM data showed that a total 

number of covariates N=30 was enough in most cases to capture the vast majority of the primary outcome 

variance (Supplementary Figure 9). As expected, the naïve approach requires a larger number of covariates than 

model selection-based approaches to explain the same amount of total variance. There was no observable 

qualitative difference between AIC and BIC analyses, we therefore only present results from the AIC analyses. 

Besides pre-selecting covariates for computational reason, we also applied some additional filtering to 

maximize robustness. Indeed, the CMS principle paper2 showed a potential increased risk of false positive when 

including covariates with extremely high correlation with the primary outcome. To address this potential issue, 

we used an arbitrary absolute correlation threshold of 𝑇 = 0.7 (reflecting the amount of outcome variance 

explained) above which candidate covariates were automatically filtered out. Furthermore, previous work also 

showed potential robustness issues when covariates are either parent or linear combination of the outcome 

tested. To address this issue, we excluded from the set of initial covariates all secondary outcomes that were in 

the same biological group as the primary outcome. For example, for the GWAS of total lipids in large VLDL 

(L_VLDL_L), we excluded all other VLDL related variables from the list of candidates’ covariates. All exclusions 

and pre-filtering are listed in Supplementary Data 1. 



 

Definition of region using LD blocks 

In our analysis, we summarized results per region, using linkage disequilibrium (LD) blocks computed by 

Berisa et al3. In brief, they computed blocks using European data from 1000 Genomes phase 1 dataset. The 

mean block size was set at 10,000 SNPs. They first computed covariance matrix for all pair of SNPs, and then 

derived a matrix of squared Pearson product moment (where each coefficient is obtained dividing covariance 

𝐶𝑖,𝑗 by the product of 𝐶𝑖,𝑖 and 𝐶𝑗,𝑗). They converted this last matrix to a vector by summing antidiagonals, then 

they applied a low-pass filter to filter out high-frequency fluctuation in the signal. Eventually, they performed 

local search around minima to define LD blocks. Here we used blocks pre-computed using the 1000 Genomes 

Europeans individual data as a reference panel for ease of comparison with other studies which include other 

European ancestry. There were a total of 1703 blocks, with a minimum and maximum length of 10Kb and 26Mb, 

respectively, and an average size of 1.6 Mb. However, to ensure the map of blocks for Finns and other European 

population was comparable, were re-computed LD blocks using genotype data from 1000 Genomes Finnish 

participants. We found only minimal variation with less than 3% of our associations being impacted. In 

Supplementary Data 3, 5, 6, 10 and 12, we summarized results per regions by keeping for each region the SNP 

with the lowest p-value obtained by either STD or CMS test. 

 

Mapping of gene with top associated variants 

Parsing of the results and assignment to genes was performed through a multi-steps procedure. First, we 

selected all SNPs-metabolites associations with STD or CMS p-value under the genome-wide significance 

threshold after correction for multiple testing (P < 1.28 x 10-9). The resulting 3289 SNP-metabolite associations 

are listed in Supplementary Data 2. Second, we used the UCSC database to assign a gene to each SNP. For SNPs, 

we used table snp150 with columns name, chrom, chromStart and chromEnd, corresponding to rs number, 

chromosome and position. For Genes, we used table refFlat with columns geneName, chrom, txStart and txEnd 

corresponding to gene name, chromosome and transcription start and end. If the SNP position was in to one or 

more genes transcription areas, or in an inter-genic area, we kept the closest gene. Third, we grouped these 

results by regions, keeping the SNP with the minimum p-value (either in STD or CMS approach) in each region-

metabolite association. These 588 locus-metabolite associations are listed in Supplementary data 3. Finally, to 

determine which associations were new, we filtered region-metabolite associations with p-values above our 

significance threshold in replication studies. The complete list of 228 new associations is in Supplementary Data 

5. New results after grouping the 228 region-metabolite associations per gene are presented in Table 1. 

Comparisons with other GWAS, after grouping the 588 region-metabolite associations, are presented in 

Supplementary Data 5. In Figure 1, we present the repartition of the 588 associations per metabolite, while 

corresponding data are provided in Supplementary Data 4. In Figure 3, we present the 70 genes and the 147 

metabolites involved in locus-metabolite associations. 

 

Comparison and replication with previous GWAS 

We used nine metabolite GWAS studies for comparison and replication purposes4-12, described in 

Supplementary Table 1. Five of them considered a range of metabolites5-9 and had sample size from 2,076 to 

24,925, and two focused on a small set of metabolites4,11, and each included approximately 8,000 individuals. 

The two remaining studies focused only on total lipids (TC, TG, HDL, and LDL) and had very large sample size of 

188,57710 and 616,62612. The Kettunen et al study8 had the largest number of overlapping metabolites with our 

study (N=114) while at the same time a large sample size (N=24,925) and therefore contributed the most to 



both replication and comparison. Note that the Davis et al study9 had a strong sample overlap with our analysis 

and was therefore not used for replication purposes. All these GWAS were performed using standard linear 

regressions adjusted for known confounding factors such as age, sex, and principal components of the 

genotypes.  

We first used the 7 studies that considered a range of metabolites, plus the Klarin et al study of total lipids12 

to identified previously known region-metabolite association. Out of the 451 region-metabolite pairs were 

available for comparison across all studies, 360 (80%) showed significant association at the 1.28x10-9 significance 

threshold used in our discovery study, and 228 were considered new. Among these new association we further 

assessed the replication of the best SNP and the same metabolite across studies using the Kettunen et al study8. 

Overall, 68.2% of SNP-metabolite associations had p-value below the nominal threshold of 5% (Supplementary 

Data 5). Finally, we also used genome-wide summary statistics for total lipids from Willer et al10 to assess 

previous associations between our top SNPs from the new locus-metabolite associations (N=87, note than the 

same SNP can exist multiple times in Supplementary Data 5). We found that 76 (87%) showed nominal 

significance with at least one of the four phenotypes.  

 

Clustering of genes 

We applied a hierarchical clustering using the hclust() R function13 to identified pattern within the master 

regulator genes. We used the most common approach: the centroid method and Euclidian distance to quantify 

cluster dissimilarity, which we applied to the relative number of hits for the lipoprotein type -i.e. the group with 

the strongest heterogeneity and the less likely to change. The clusters were relatively robust to change in the 

method (e.g. Ward and median methods generated similar clusters), but we did observe some variability when 

changing the metric used to derive the distance matrix (e.g. maximum, manhattan), the input data (absolute vs 

relative number of hits), and the set of features considered (lipoprotein type, size and class).  

A visual inspection of the dendrogram suggests 3 primary clusters. We derived the silhouette for various 

number of clusters using the same dissimilarity matrix as the one used in the hierarchical clustering (i.e. the 

Euclidian distance) after cutting the dendrogram based on phylogeny heights. We obtained the following 

average silhouette: 0.608, 0.645, 0.622, 0.598, for 2, 3, 4 and 5 clusters respectively, thus confirming three 

clusters as the most parsimonious model. Note that for 6 or more clusters the silhouette could not be derived 

because of the presence of clusters of size 1. 

 

 

LIPC fine mapping 

An individual locus might harbor hundreds of trait-associated variants. To prioritize potentially causal 

variants, we explored the identified locus using FINEMAP software14 using the region harboring association with 

the LIPC gene. FINEMAP utilizes shotgun stochastic search algorithm to identify the most likely causal variants 

within a trait-associated locus. FINEMAP software requires SNP association statistics and their correlation matrix 

as an input. For LIPC, we focus on the sub-region spanned by the SNPs associated with any metabolite and 

expanding it by 750kb on each side. This resulted in a 1.5Mb region (chr15:57,935,995-59,498,577). We 

increased the SNP density of this region by imputing new SNPs using minimac and the 1000 Genome phase 1 v3 

panel. After imputation our region contained 5,100 SNPs with MAF>0.01. We computed the variant correlation 

matrix using the METSIM subjects. We applied FINEMAP with default settings for each of the 75 metabolites 

associated separately. To select the main causal SNPs, we summed the posterior probability for each SNPs 

across the 75 phenotypes to form a single probability score. We arbitrarily declared the SNPs value of this score 



above 10 as best causal candidate SNP. We next explored the functional annotation of theses SNPs. We first 

search for previous association of those SNPs in the GWAS catalog15 and Pubmed search. We then used 

HaploReg v4.116 to check if the potentially causal SNPs were (i) in promoter or enhancer regions (according to 

the H3K4me1/H3K4me3 and H3K27ac/H3K9ac peaks), (ii) in transcription factors binding sites, (iii) missense 

variants. 

 

 

Supplementary Notes 
 

Supplementary Note 1: Association with diseases 

We compared our gene-metabolites association results with previous GWAS on coronary heart disease 

(CHD)16, body mass index (BMI)17and type 2 diabetes (T2D)18 (Supplementary Data 6). We considered here the 

70 genes associated with at least one metabolite. We observed substantial enrichment for nominal significance, 

with 25, 7, and 11 of these genes showing p-value below the 5% significance threshold for CHD, BMI and T2D, 

respectively. Among those, CELSR2, PSRC1 and LDLR were genome-wide significant (P = 9.01 x 10-19, P = 5.20 x 

10-17 and P = 1.42 x 10-13 respectively) with CHD, while CELF1 and MTCH2 were genome wide significant (P = 2.24 

x 10-13 and P = 1.41 x 10-13) with BMI. Conversely, no association showed genome-wide significance with T2D. To 

quantify further the observed enrichment for association with these phenotypes, we derived the q-values for all 

SNPs per disease17.  Given a false discovery rate (FDR) at 10%, we observed 30 significant genes for CHD, 5 for 

BMI and 4 for T2D (in bold in Supplementary Data 6). 

 

Supplementary Note 2: Clustering of all genes 

We also applied the clustering approach to all genes associated with at least one lipoprotein. It was not 

possible here to derive the silhouette because of a one gene cluster (PCDH15) showing up even when 

considering 2 clusters. Therefore, we defined cluster based on a visual inspection of the dendrogram. The three 

clusters observed with the master regulators (Figure 4) were consistent. The first cluster remain unchanged 

(CETP, FADS1-2, DOCK7 and LIPC). One additional gene (CELF1) was added to the second one (TRIB1, LPL, GCKR, 

GALNT2, and APOA5), and multiple genes (LINC00663, MLXIPL, FADS3, USP1, MICB, TOMM40, CHIC2 and APOB) 

were added to the third one (PCSK9, LDLR, CELSR2 and APOC1). Two new clusters appear in this extended 

analysis: i) the genes PSRC1, HNF1A and MYO1E, associated with LDL only; ii) MIR3925, PLTP, MYRF, PTPMT1, 

PCIF1, APOE, MIR4634, LIPG, and LINC02161, associated only with HDL. The two remaining genes had specific 

association pattern with PCDH15 being associated with IDL only, and LOC283665 being associated with LDL, HDL 

and IDL. 

 

 

Supplementary Note 3: Detail results from LIPC fine mapping 

We cross-referenced top variants of these three signals identified in the fine mapping of LIPC with GWAS of 

common human diseases18, and functional annotations from Haploreg16. The first signal is composed only of SNP 

rs10468017, which was previously strongly associated with age-related macular degeneration (AMD)19-21. It is 

located in a region harbouring H3K4me1/H3K4me3 and H3K27ac/H3K9ac marks of promoter and enhancer in 

adipose derived Mesenchymal Stem Cell Cultured Cells. This variant was also reported to be associated with LIPC 



expression in human liver tissue in a previous study22, suggesting a potential mode of action through the 

regulation of LIPC expression.  

The second signal includes 4 SNPs in complete linkage disequilibrium that were previously associated with 

hypertension23, and also AMD24,25. It colocalizes with histone marks of promoters and enhancers in liver. These 

SNPs are also in a region bound by 4 transcription factors: FOXA1 (rs1077834); FOXA1 and FOXA2 (rs1800588); 

and RXRA and USF1 (rs2070895). Among those transcription factors, USF1 has been associated with low-density 

lipoprotein cholesterol levels, triglycerides26,27, and combined hyperlipidemia28,29. Furthermore, USF1 has been 

implicated in the expression of hepatic lipase30, making rs2070895 the strongest candidate for potential 

functional effects through differential regulation of LIPC.  

Finally, the last signal included 2 SNPs, among which rs113298164 clearly harboured the highest number of 

relevant bio-features. It is a rare missense mutation in a region having promoter histone marks in hESC Derived 

CD184+ Endoderm Cultured Cells. The SNP is also detected by GERP31 as part of a sequences that is constrained 

across mammalian genomes. It induces a T405M mutation in LIPC protein and is referenced as involved in 

hepatic lipase deficiency32. 

 

 

  



Supplementary Tables 

Supplementary Table 1: Reference studies used for count of new signals and replication analysis 

Reference Title Sample size Ancestry 
Metabolites 
measured 

Metabolites 
overlap 

Rhee et al A genome-wide association study of 
the human metabolome in a 
community-based cohort 

2,076 European 217 15 

Shin et al An atlas of genetic influences on 
human blood metabolites 

7,824 European 486 16 

Mozaffarian et al Genetic loci associated with 
circulating phospholipid trans fatty 
acids: a meta-analysis of genome-
wide association studies from the 
CHARGE Consortium 

8,013 European 5 2 

Kettunen et al  Genome-wide study for circulating 
metabolites identifies 62 loci and 
reveals novel systemic effects ofLPA 

24,925 European 123 114 

Rhee et al An exome array study of the plasma 
metabolome 

3,604 European 217 16 

Davis et al Common, low-frequency, and rare 
genetic variants associated with 
lipoprotein subclasses and 
triglyceride measures in Finnish men 
from the METSIM study 

8,372 European 72 72 

Willer et al Discovery and refinement of loci 
associated with lipid levels 

188,577 European 4 4 

Klarin et al Genetics of blood lipids among 
~300,000 multiethnic 
participants of the Million Veteran 
Program 

616,626 mostly 
European 

4 4 

Teslovich et al Identification of seven novel loci 
associated with amino acid levels 
using single-variant and gene-based 
tests in 8545 Finnish men from the 
METSIM study 

8,545 European 9 9 

 

 



Supplementary Table 2: Principal component analysis of metabolites associated with master 

regulators 

  Including all metabolites   Including lipoprotein only 

 

Total 
number of 
association 

Number of PC required to explained 
X% the total  variance  

Total 
number of 
association 

Number of PC required to explained 
X% the total  variance 

  X=50% X=90% X=99% X=99.9%  X=50% X=90% X=99% X=99.9% 

TRIB1 23 1 2 6 11  18 1 2 4 8 

LPL 29 1 3 9 16  19 1 3 6 9 

GALNT2 28 1 3 8 12  23 1 2 5 9 

GCKR 38 1 4 11 17  27 1 2 5 10 

APOA5 53 1 4 15 25  36 1 3 9 16 

PCSK9 45 1 4 10 19  37 1 4 9 16 

LIPC 75 2 7 19 36  46 2 5 12 22 

LDLR 39 1 3 8 16  31 1 2 7 13 

CELSR2 23 1 2 5 11  18 1 1 4 9 

APOC1 33 1 2 7 15  27 1 2 6 12 

CETP 51 2 5 12 23  41 2 5 11 19 
FADS1-
2 19 2 5 11 15  9 1 3 5 6 

DOCK7 20 1 4 9 14   10 1 3 5 8 

 

 

 

Supplementary Table 3: SNPs with highest sum of posterior probabilities of causality across 75 traits 

SNP Chr. Position MAF 
Distance 
to LIPC 

Sum of 
post 
prob 

linkage disequilibrium (r²) in METSIM data 

rs
1

0
4

6
8

0
1

7
 

rs
1

0
7

7
8

3
5

 

rs
1

0
7

7
8

3
4

 

rs
1

8
0

0
5

8
8

 

rs
2

0
7

0
8

9
5

 

rs
1

1
3

2
9

8
1

6
4

 

rs
1

1
1

2
8

5
5

0
4

 
rs10468017 15 58,678,512 0.328 45,662 32.2 1.    0.003 0.003 0.003 0.003 7.6E-4 7.6E-4 

               

rs1077835 15 58,723,426 0.281 748 10.7 0.003 1.    1.    1.    1.    0.003 0.003 

rs1077834 15 58,723,479 0.281 695 10.7 0.003 1.    1.    1.    1.    0.003 0.003 

rs1800588 15 58,723,675 0.281 499 10.7 0.003 1.    1.    1.    1.    0.003 0.003 

rs2070895 15 58,723,939 0.281 235 10.7 0.003 1.    1.    1.    1.    0.003 0.003 

               

rs113298164 15 58,855,748 0.015 0 12.3 7.6E-4 0.003 0.003 0.003 0.003 1.    1.    

rs111285504 15 58,859,395 0.015 0 12.3 7.6E-4 0.003 0.003 0.003 0.003 1.    1.    

 

 

  



Supplementary Table 4: Trend test for the top SNPs of regulator genes 

 

  Statin interaction Delta 

  sumZ coef. SD pval sumZ coef. SD pval 

APOA5 6.6 567.4 0.78 -109.1 567.4 4.6E-6 

APOC1 -89.0 315.5 5.3E-7 -54.8 315.5 2.0E-3 

CELSR2 -15.4 210.0 0.29 -33.0 210.0 0.023 

CETP -61.3 759.8 0.026 -52.5 759.8 0.057 

DOCK7 1.7 63.1 0.83 -24.6 63.1 1.9E-3 

FADS2 0.1 49.6 0.98 -18.3 49.6 9.4E-3 

GALNT2 -14.7 245.8 0.35 -38.5 245.8 0.014 

GCKR 7.7 339.1 0.68 -62.6 339.1 6.7E-4 

LDLR -68.9 352.4 2.4E-4 -78.4 352.4 3.0E-5 

LIPC 4.1 1128.2 0.90 -49.7 1128.2 0.14 

LPL 11.5 231.8 0.45 -10.4 231.8 0.50 

PCSK9 34.0 530.3 0.14 2.7 530.3 0.91 

TRIB1 -44.1 134.0 1.4E-4 -38.9 134.0 7.7E-4 

 

 

 

Supplementary Table 5: Correlation of fixed effect sizes between time points 

 

Parameter Correlation 

Intercept -0.696 

age 0.641 

age2 0.626 

PC1 0.822 

PC2 0.903 

PC3 0.635 

PC4 0.609 

PC5  0.337 

PC6 0.333 

PC7 0.290 

PC8 0.506 

PC9 0.826 

PC10 0.114 

 

 

  



 

Supplementary Figures 
 

Supplementary Figure 1: Metabolites pairwise correlation 

Illustration of the 158 analyzed metabolites pairwise correlation. Negative values are in blue and positive values 
are in red. The inner histogram shows the distribution of the pairwise correlation across all metabolites pairs. 

 
 

 

  



Supplementary Figure 2: Variance explained by SNP, confounding factors and covariates 

Example of gain in power achieved by CMS using the reported association between leucine and rs1260326. Each 

panel represents leucine variance. (a) In standard model, SNP and confounding factors explain a small fraction of 

leucine variance. Residual variance equals 96%. (b) Adding preselected covariates in the model without filtering 

for collinearity with the SNP tested. Residual variance equals 9%. (c) After exclusion of covariates likely 

associated with the SNP by CMS. (d) Final model with CMS-selected covariates. Residual variance equals 34 %. 

 
 

 

  



Supplementary Figure 3: Distribution of variance explained by covariates 

The histogram shows the outcome variance explained by covariates selected by CMS across the 158 metabolites 

by 600,000 SNPs analyzed (barplot and Y axis on the left). For the lower bound of each bar category, we derived 

the equivalent sample size that is achieved (red curve, and red Y axis on the right). 

 
  



Supplementary Figure 4: Effect size in METSIM as a function of -log10(P) in Kettunen et al. 

To explore the performances of the replication stage, we plotted the 442 region-metabolite association with 

data for both the discovery stage in METSIM and replication stage in Kettunen et al 2016. The Y axis shows the 

variance explained by the top variant (defined as the squared correlation) in METSIM, and the X axis shows the -

log10(P-value) observed in the Kettunen et al. study for the same variant. The size of the points are proportional 

to the gain in power achieved by CMS. The green and blue dashed lines show the significance threshold at 5e-9 

and 0.05, respectively. For clarity we cut the Y and X axis at 0.02 and 100, removing a few data points outside 

that range. The strong correlation indicates ((=0.63) that lack of replication was mostly due to limited power in 

the replication for SNPs discovered thanks top the boost in power by CMS. 

 

 
 

  



Supplementary Figure 5: Distribution of associations per gene 

Barplots represent the number of metabolites associated for each of the 70 genes reported in Supplementary 

Data 4. Contribution of the seven metabolite groups is showed by different colors. Genes are ordered by their 

respective total number of associations. The red line shows the cumulated percentage of the total number of 

gene-metabolite association reported in our study (right axis). 

 
 

  



Supplementary Figure 6: Distribution of associations per gene 

We performed a hierarchical clustering of the association between the between all genes associated with at 

least one lipoprotein and the lipoprotein type (a). Further panels show the total number of associations, the 

number of associations with lipoprotein, and the total number of top associated SNP (b); the count of 

association hits by lipoprotein type (c), their size (d), and class (e). The background colours represent the relative 

proportion of association within each gene-item stratum, highlighting heterogeneity in the distribution of signal. 

 
  



Supplementary Figure 7. Expected CMS computation time relative to the number of covariates 

Simulation of 500 phenotypes with a normal distribution. We run CMS on the first phenotype – the outcome – 

varying the number of covariates from 1 to 200.  We measure computation time of CMS on each model. This 

plot shows that complexity is in 𝑂(𝑁²) when 𝑁 is the number of covariates. 

 
 

 

  



Supplementary Figure 8. Covariate pre-selection procedure 

Presentation of the two methods tested to pre-select covariates before applying CMS. (a) Naïve approach where 

we compute outcome variance explained by each variable. We sort the variables according to this criterion and 

select the 𝑁 first as covariates. (b) Approach using Akaike Information Criteria (AIC). We first add the variable 

that explains the highest outcome variance. Then we compute AIC for each possible model and add iteratively 

covariates, stopping when we have 𝑁 of them. 

 
  



Supplementary Figure 9. Outcome variance explained by pre-selected covariates  

We applied the procedure described in Supplementary figure 5 in METSIM data, in Leucine. Plots show outcome 

explained variance depending on the number of covariates incorporated in the model, for method 1 (in red) or 2 

(in blue). We applied the thresholds 0.1 (a), 0.3 (b), 0.5 (c), 0.7 (d), 0.9 (e), 1 (f) on outcome variance explained 

by each covariate added in the model. Dashed grey line shows that most of the outcome variance can be 

explained by approximately 30 covariates. 
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