

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2019

Unexpected Molecular Structure of a Putative Rhenium-Dioxo-Benzocarbaporphyrin Complex. Implications for the Highest Transition Metal Valence in a Porphyrin-Type Ligand Environment

Abraham B. Alemayehu, Hugo Vazquez-Lima, Simon J. Teat, and Abhik Ghosh*© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Unexpected Molecular Structure of a Putative Rhenium-Dioxo-Benzocarbaporphyrin Complex. Implications for the Highest Transition Metal Valence in a Porphyrin-Type Ligand Environment

Abraham B. Alemayehu,^[a] Hugo Vazquez-Lima,^[b] Simon J. Teat^[c] and Abhik Ghosh^{*[a]}

^[a] Department of Chemistry UiT – The Arctic University of Norway 9037 Tromsø, Norway

^[b] Centro de Química, Instituto de Ciencias Universidad Autónoma de Puebla Edif. IC9, CU, San Manuel 72570 Puebla, Puebla, Mexico

^[c] Advanced Light Source Lawrence Berkeley National Laboratory Berkeley, CA 94720-8229, USA

Correspondence: <u>abhik.ghosh@uit.no</u> (AG)

A. ¹H NMR spectra

Figure S1. ¹H NMR spectrum of Re[TPBCP](O), in CD₂Cl₂ at 253 K.

Figure S2. ¹H NMR spectrum of Re[T*p*FPBCP](O), in CD₂Cl₂ at 253 K.

Figure S3. ¹H NMR spectrum of Re[TPBCP](O)₂, in CD₂Cl₂ at 253 K.

Figure S4. ¹H NMR spectrum of Re[T*p*FPBCP](O)₂, in CD₂Cl₂ at 253 K.

Figure S5. Comparison of the ¹H NMR spectra of Re[T*p*FPBCP](O) (top) and Re[T*p*FPBCP](O)₂ (bottom) in CD₂Cl₂ at 253 K.

B. ESI mass spectra

Figure S6. ESI (positive mode) MS of Re[TPBCP](O): experimental (top) and simulation (bottom).

Figure S7. ESI (positive mode) MS of Re[TPBCP](O)₂: experimental (top) and simulation (bottom).

Figure S8. ESI (positive mode) MS of Re[T*p*FPBCP](O): experimental (top) and simulation (bottom).

Figure S9. ESI (positive mode) MS of Re[T*p*FPBCP](O)₂: experimental (top) and simulation (bottom).

C. Optimized B3LYP-D3(ZORA-STO-TZ2P Cartesian coordinates (Å)

(a) Re[BCPO] (O) (C_s)

Re	0.600845	-0.192344	0.000014
0	0.248422	-1.841074	0.000204
0	-0.403531	1.518931	-0.000324
Ν	0.603669	0.181353	2.059257
Ν	0.603707	0.181195	-2.059300
N	2.610951	-0.029478	-0.000030
С	1,295430	0.286239	4.235895
C	1 296099	0 287042	-4 235719
C	1 704955	0 113960	2 877360
C	1 704993	0.113044	-2 877254
C	3 011971	-0 059614	-2 136371
C	2 011076	0 057270	2 426405
C	2 424204	-0.037270	1 121//5
C	2 424214	-0.12/104	-I.IZI44J 1 101070
	3.434210	-0.124995	1.1213/3
C	4.//92/1	-0.284531	-0.681952
C	4.//9424	-0.282980	0.682187
C	-0.053069	0.4/589/	-4.226892
С	-0.053905	0.473972	4.226839
С	-0.495014	0.423287	-2.867403
С	-0.495336	0.422408	2.867214
С	-1.554697	0.800953	-0.000418
С	-1.831677	0.492069	-2.469464
С	-1.831729	0.491431	2.468750
С	-2.305861	0.493575	1.168665
С	-2.306318	0.494178	-1.169649
С	-3.634139	0.087248	0.707625
С	-3.634513	0.087220	-0.708159
С	-4.755283	-0.331316	1.409102
С	-4.756136	-0.332114	-1.408499
С	-5.889882	-0.712757	0.697798
С	-5.890283	-0.712890	-0.696168
Η	1.957786	0.271511	5.086175
Н	1.958771	0.272793	-5.085769
Н	3.779133	-0.123742	-3.195689
Н	3.779291	-0.120973	3.195697
Н	5.626933	-0.390809	-1.339582
Н	5.626993	-0.388190	1.340006
Н	-0.700666	0.643496	-5.072463
Н	-0.701946	0.640048	5.072390
H	-2.554785	0.446450	-3.275032
H	-2.555246	0.445061	3.273916
Н	-4.754798	-0.361951	2.490835
Н	-4.756424	-0.363685	-2.490278
Н	-6.778481	-1.021101	1.232628
Н	-6.779141	-1.021847	-1.230380
(b)	Re[BCPO](O) (sym	metry-uncons	strained)
Re	0.207476	-0.191020	1.516523
0	0.280393	1.555408	1.241539
0	0.431212	-1.939536	1.572085
Ν	0.081197	-0.079173	3.589990
Ν	0.381524	-0.307287	-0.552835
Ν	2.364595	-0.106904	1.709866

С	0.622126	0.001568	5.797920
С	1.131980	0.116091	4.462034
С	1.269274	-0.332373	-2.645129
С	1.565812	-0.463690	-1.239535
С	2.479033	0.217548	4.110912
С	2.827964	-0.516752	-0.661055
С	3.073310	0.084057	2.847024
С	3.214591	-0.361391	0.689711
С	4.476563	-0.031978	2.534361
С	4.562664	-0.321633	1.204010
С	-0.056371	-0.040127	-2.755212
С	-0.604430	-0.016379	-1.420953
С	-0.704253	-0.309430	5.704368
С	-1.036319	-0.355842	4.310971
С	-1.802733	-0.191262	1.397015
С	-1.973223	0.171603	-1.061495
С	-2.342814	-0.534655	3.775121
С	-2.535407	0.119009	0.195935
С	-2.723695	-0.468954	2.451291
С	-3.962550	0.023280	0.532954
С	-4.077003	-0.350533	1.895133
С	-5.102400	0.216119	-0.237528
С	-5.328344	-0.516722	2.475148
С	-6.349288	0.047242	0.352119
С	-6.461519	-0.317392	1.695714
Н	1.207497	0.122990	6.694796
Н	1.989837	-0.428218	-3.441151
Н	3.163689	0.319421	4.943654
Н	3.647933	-0.616785	-1.361605
Н	5.286176	0.074547	3.237981
Н	5.456458	-0.485939	0.624189
Н	-0.617060	0.136464	-3.658803
Н	-1.397573	-0.482560	6.511286
Н	-2.644084	0.284961	-1.905469
Н	-3.121833	-0.633826	4.522582
H	-5.027825	0.504913	-1.277829
Н	-5.425326	-0.807321	3.513150
Н	-7.244879	0.202607	-0.234913
Н	-7.442805	-0.448821	2.132189