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Supplementary Text S1.
Clinical presentation

The female proband (111:9, Figure S5) presented at the age of 4 years with two episodes of
transient left sided weakness and aphasia, brought on by excitement. Both episodes resolved
completely. She also had a long-standing history of alternate day headache, without other
associated features. She underwent brain magnetic resonance imaging, and subsequently
cerebral angiography (Supplementary Figure S1) that confirmed the diagnosis of bilateral
Moyamoya disease (MMD). She was commenced on aspirin, underwent right sided pial synan-
giosis and has subsequently remained clinically and radiologically stable for over 5 years. Of
note, there was a positive family history of MMD in at least 2 generations on her paternal
side (Figure S5). Her paternal grandmother (1:2) was diagnosed with MMD and died aged
65 years. Her father (11:8) had brain imaging for investigation of epilepsy that did not show
evidence of MMD. Her paternal aunt (I:1) had 3 children; she was unaffected as was her
youngest son (I11:3). However her other 2 children (Ill:1 and I11:2) had a diagnosis of MMD,
having presented with stroke aged 5 and a movement disorder, respectively. The paternal
uncle (11:5, clinically unaffected) had a child who died from a brain haemorrhage aged 7 years
although no formal diagnosis of MMD is recorded. Another paternal aunt (I1:7) has a diagno-
sis of MMD, having suffered a stroke at the age of 21. Finally the other paternal aunt, (11:3)
had 3 sons. One of the sons (I11:4) was under investigation for learning difficulties, without
current diagnosis, and the remaining sons (I11:5 and 111:6) were in good health.



Supplementary Text S2.
Methods

Diagnosis of Moyamoya disease: Diagnosic criteria of MMD by the Research Committee
on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis (Moyamoya
disease) in Japan (Fukui, 1997; Hashimoto et al., 2012) were used for diagnosis of MMD
in the affected members of the family and include all of the following items based on the
conventional angiographic findings: (i) stenosis or occlusion of the terminal portion of the
intracranial internal carotid artery or proximal portions of the anterior cerebral artery and/or
the middle cerebral artery, (ii) development of abnormal vascular networks near the occlusive
or stenotic lesions in the arterial phase, (iii) bilaterality of findings (i) and (ii).

Whole exome sequencing and alignment: Whole exome capture and sequencing was
performed at BGI (Shenzhen, China) using SureSelect Human All Exon v4 51 Mb kit (Ag-
ilent Technologies, Santa Clara, CA, USA) and lllumina HiSeq2000 System (Illumina, San
Diego, CA, USA). We aimed for a mean coverage of 100x for the exome capture target
regions. Sequencing reads were aligned with Burrows-Wheeler Aligner (BWA) v0.7.17 (Li and
Durbin, 2010) to human genome build 38 (GRCh38.p1) not including alternate assemblies
(GCA 000001405.15 GRCh38 no_alt analysis set.fna) and read duplicates were marked
with Sambamba (Tarasov et al., 2015).

Variant calling and annotation: Variant calling across the exome capture target regions
with 100 bp padding was performed using Genome Analysis Toolkit (GATK) v4.0.3.0 (De-
Pristo et al., 2011; McKenna et al., 2010) according to the best practices workflow for joint
(multi-sample) calling (Van der Auwera et al., 2013). The result variants were normalized
and decomposed using Bcftools v1.8 (https://github.com/samtools/bcftools) and
annotated with ANNOVAR (Wang et al., 2010) and dbNSFP v4.0b1 (Liu et al., 2011; Dong
et al., 2014; Liu et al., 2016).

Variant filtering: Rare variants were defined as those having an allele frequency lower
than 0.5% in public databases: ExAC (v0.3.1) (Lek et al., 2016), gnomAD (v2.0.2) (Lek
et al., 2016), 1000 Genomes (phase 3) (1000 Genomes Project Consortium et al., 2015) and
NHLBI ESP (ESP6500SI-V2; evs. gs.washington.edu/EVS/). Genotype requirements for
autosomal dominant mode of inheritance were following: (i) all affecteds must be heterozygous
(0/1), (i) no unaffected can be heterozygous (0/1) or homozygous alternate (1/1), (iii) if
there is incomplete penetrance suspected in the kindred with unaffected obligate carriers, these
individuals must be considered affected (0/1). Genotype requirements for X-linked dominant
mode of inheritance were following: (i) affected males are heterozygous (0/1) or homozygous
alternate (1/1), (i) affected females must be heterozygous (0/1), (iii) unaffecteds must be
homozygous reference (0/0).

Variant interpretation: The modified criteria from the American College of Medical Ge-
netics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines
were used for variant classification (Richards et al., 2015; Gelb et al., 2018). Pathogenicity
and benign evidence tags was input into ClinGen Pathogenicity Calculator (Patel et al., 2017)
for assessing pathogenicity of genetic variants.


https://github.com/samtools/bcftools
evs.gs.washington.edu/EVS/

Sanger sequencing: PCR amplicon sequencing was used to verify the presence of each mu-
tation and to perform segregation analysis. The target region was amplified using primers (for-
ward 5-TCCACAGTCACATTGGCGACT-3' and reverse 5-AGCCCAGTAGTAGTCTATTCG-
3’). PCR products were purified with ExoSap and sequenced using Big Dye Terminator Cycle
Sequencing Kit v3.1 (Life Technologies, Foster City, CA, USA). Result electropherograms
were analyzed with Geneious software (Biomatters Ltd., Auckland, New Zealand).



Supplementary Text S3.
Variant analysis

To identify a causative variant in the family affected with MMD over three generations, we
performed whole exome sequencing of five family members: 11:8 (father), 11:9 (mother), I1I:1
(cousin), 111:8 (sister) and 111:9 (proband). We focused our analysis on rare (allele frequency
<0.5% or absent in public databases) variants (SNVs and indels) within RefSeqGene exonic
and splice regions, as annotated by ANNOVAR (Wang et al., 2010).

We promptly excluded the possibility of MMD being caused in this family by de novo
mutations because its occurence in three generations. We also ruled out the possibility of
autosomal recessive mode of inheritance because parental consanguinity was absent in the
family and MMD occurred in three first cousins from two different marriages. X-linked re-
cessive, Y-linked and mitochondrial modes of inheritance were excluded as well because both
sexes were affected (with more affected females than males) and the disease appeared to be
transmitted by either sex, including male-to-female. The most compatible mode of inheri-
tance was found to be either X-linked dominant (XLD) or autosomal dominant (AD) since
both sexes in subsequenct generations were affected with the same disease.

Because the pedigree was not fully consistent with AD or XLD mode, we suspected in-
complete penetrance of the condition, supported by previous studies on MMD inheritance
(Mineharu et al., 2006, 2008). Since the affected proband (I11:9) most likely inherited the
condition from her father (11:8) with a family history of MMD, we assumed that the father
was an asymptomatic carrier of a dominant defective allele. Moreover, although the father
did not have MMD per se, he had epilepsy which can be one of the clinical presentations of
MMD (Cho and Tominaga, 2010; Koizumi et al., 2017). We applied the same assumption
to the unaffected sister (I11:8) that could have either 0/0 or 0/1 genotype. Assuming AD or
XLD mode of inheritance with incomplete penetrance, the unaffected mother (11:9) was the
only individual not related to the index case (I:2) and served as a control (genotype 0/0),
while the father (11:8), the affected cousin (III:1), the sister (111:8) and the affected proband
(111:9) were all case samples.

No variants following XLD mode of inheritance were identified (Figure S2). The search for
the causative genotype under AD mode of inheritance in the affected family members resulted
in 20 variants, with 16 of them being deleterious (missense and frameshift variants) (Figure S2,
Table S1). Out of the sixteen variants, two missense variants (Table S1) were detected in
the RNF213 gene, previously associated with MMD (Kamada et al., 2011; Liu et al., 2011).
Both variants were private to the family (with no presence in public databases) and were also
found in the unaffected sister (I11:8) (Figure S3, Table S2) supporting incomplete penetrance
of the condition. Beside the RNF213 variants, no other candidates that could explain the
clinical phenotype were identified in our analysis.



Supplementary Text S4.
Variant interpretation

The ¢.12553A>G (p.(Lys4185Glu)) and c.12562G>A (p.(Ala4185Thr)) variants in affected
family members and obligate carriers were observed in the RNF213 gene, which has previ-
ously been reported as a major susceptibility gene for MMD (PP4-Supporting) (Kamada
et al., 2011; Liu et al., 2011; Koizumi et al., 2017), and have not been published to our
knowledge. Both variants were absent from NHLBI Exome Sequencing Project (evs.gs.
washington.edu/EVS/), 1000 Genomes Project (1000 Genomes Project Consortium et al.,
2015), or ExAC/gnomAD (Lek et al., 2016) databases (PM2-Moderate) and were private
to the family. The RNF213 variants cosegregate with MMD in multiple affected family
members (PP1-Supporting) and obligate carriers. Since there are 5 segregations in the
family (Supplementary Figure S5), we upgraded PP1 evidence from default supporting to
moderate strength (PP1-Moderate) according to the modified ACMG/AMP criteria for
RASopathies (Gelb et al., 2018). Multiple lines of computational evidence support a dele-
terious effect of the c.12553A>G variant on the gene product (PP3-Supporting) (Sup-
plementary Table S6). A heterozygous missense variant affecting the same lysine residue
(c.12554A>C, p.(Lys4185Thr)) has been previously reported for another family of European
ancestry with MMD (Smith et al., 2014; The Human Gene Mutation Database (HGMD) ac-
cession CM1414304). The p.(Lys4185Thr) variant has in silico predictions similar to those
for p.(Lys4185Glu) (Supplementary Table S6) and is listed as “disease causing” in the HGMD
database although no classification according to the ACMG/AMP guidelines is provided. Given
that the p.(Lys4185Thr) variant does not meet “likely pathogenic”/“pathogenic” criteria, we
downgraded PMS5 from default moderate to supporting strength (PM5-Supporting). Since
there are 2 moderate and >2 supporting pathogenicity evidence tags, p.(Lys4185Glu) variant
in the RNF213 gene is therefore interpreted to be likely pathogenic for MMD and acts in a
dominant manner (Supplementary Figure S6).

For the p.(Ala4185Thr) variant multiple lines of computational evidence suggest lim-
ited impact on gene product (BP4-Supporting) (Supplementary Table S6). We interpret
p.(Ala4188Thr) variant in the RNF213 gene as a variant of uncertain significance with re-
spect to MMD due to conflicting/insufficient evidence (>1 supporting benign evidence tag,
>1 moderate and >1 supporting pathogenicity evidence tags) (Supplementary Figure S6).


evs.gs.washington.edu/EVS/
evs.gs.washington.edu/EVS/

Figure S1. Catheter cerebral angiograms (frontal projection) of left (a) and right (b) internal carotid arteries
showing severe occlusive disease of both middle and anterior cerebral arteries and typical basal “moyamoya”
collaterals in the proband undertaken at the age of 6 years.
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Figure S2. Variant filtering flowchart. In total 148,682 variants were identified in joint (multi-sample) calling
for the sequenced family members. 34,863 variants lied in RefSeqGene exonic and splice regions. Out of these
variants, 1,936 were not present or were rare (allele frequencies <0.5%) in public databases. Twenty variants
were further retained based on genotype requirements for autosomal dominant (AD) mode of inheritance (see
Supplementary Text S1), with 16 variants being deleterious (missense and frameshift variants). Out of the
sixteen variants, two were found in the gene (RNF213) previously associated with the disease. No variants
following X-linked dominant (XLD) mode of inheritance were identified.
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Figure S4.  Sanger sequencing validation of RNF213 variants, c.12553A>G (p.(Lys4185Glu)) and
c.12562G>A (p.(Ala4188Thr)), in the family.
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Variant NM _ 001256071.2:c.12553A>G, NP _001243000.2:p.(Lys4185Glu)
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Figure S6. Interpretation of the RNF213 variants according to the ACMG/AMP guidelines (Richards et al.,
2015; Gelb et al., 2018).
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Variant NM _ 001256071.2:c.12562G>A, NP _001243000.2:p.(Ala4188Thr)

~

(PM2-Moderate

Absence from controls (or at extremely low fre-
quency if recessive) in Exome Sequencing Project,
1000 Genomes, or ExAC databases

J

~

(PPl—Supporting
Cosegregation with disease in multiple affected
family members in a gene definitely known to

cause a disease
N\ s

( 7
PP1-Moderate
Upgraded to moderate because of 5 segregations Uncertain significance
in the family

\ J

PP4-Supporting
Patient’s phenotype or family history is highly spe- ——/

cific for a disease with a single genetic etiology
- J

~

( -

BP4-Supporting
Multiple lines of computational evidence suggest
no impact on gene or gene product (conservation,

evolutionary, splicing impact, etc.)
. J

Figure S6. Continued.
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Table S3. dbNSFP v4.0b1 (Liu et al., 2011; Dong et al., 2014; Liu et al., 2016) predictions for the RNF213
(NM 001256071.2) missense variants reported in this study and by Smith and coworkers (Smith et al., 2014)

Variant Variant Variant
c.12553A>G c.12554A>C c.12562G>A
Position chr17:80,372,536 chr17:80,372,537 chrl7:80,372,545
Variant consequences Missense Missense Missense
cDNA change c.12553A>G c.12554A>C c.12562G>A
Protein change p.(Lys4185Glu) p.(Lys4185Thr) p.(Ala4188Thr)
PolyPhen-2 HumDiv prediction? Variable Variable Benign

(probably damaging,
possibly damaging)

(probably damaging,
possibly damaging)

PolyPhen-2 HumVar prediction? Variable Variable Benign
(possibly damaging,  (probably damaging,
benign) possibly damaging)
SIFT prediction® Deleterious Deleterious Tolerated
SIFT4G prediction® Deleterious Deleterious Tolerated
LRT prediction Deleterious Deleterious Neutral

MutationTaster prediction®
MutationAssessor prediction’

Polymorphism
Medium impact

Polymorphism
Medium impact

Polymorphism
Medium impact

FATHMM prediction® Tolerated Tolerated Tolerated
fathmm-MKL prediction” Deleterious Deleterious Neutral
PROVEAN prediction’ Neutral Deleterious Neutral
M-CAP prediction/ Possibly pathogenic ~ Possibly pathogenic  Likely benign
CADD scorek 26.3 24.3 15.8
MetaSVM prediction’ Tolerated Tolerated Tolerated
MetalR prediction / Tolerated Tolerated Tolerated
phyloP30way (mammals) score™ 1.312 1.312 0.224
phyloP100way (vertebrates) score™ 5.992 2.067 1.019
phastCons30way (mammals) score” 0.308 0.295 0.057
phastCons100way (vertebrates) score” 1 1 0.001
GERP++ score® 5.29 421 1.9
Allele frequency in public databases:
ExAC Not present Not present Not present
1000 Genomes Not present Not present Not present
NHLBI ESP Not present Not present Not present
gnomAD Not present Not present Not present
Presence in dbSNP Not present Not present Not present
Reference This study Smith et al., 2014 This study

@ Adzhubei et al., 2010

5Ng and Henikoff, 2003

¢Vaser et al., 2016

9 Chun and Fay, 2009

€ Schwarz et al., 2010

f Reva et al., 2011

& Shihab et al., 2013

h Shihab et al., 2014

i Choi and Chan, 2015

J Jagadeesh et al., 2016

kThe larger the score (Phred-like), the more likely the variant is damaging (Kircher et al., 2014;
Rentzsch et al., 2018)

Dong et al., 2014

™ The larger the score, the more conserved the site (maximum scores 1.312 for phyloP30way and 10.003
for phyloP100way) (Pollard et al., 2010)

" The larger the score, the more conserved the site (maximum score 1 for both phastCons30way and
phastCons100way (Siepel et al., 2005)

© The larger the score, the more conserved the site (maximum score 6.17) (Cooper et al., 2005, 2010)
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