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Scattering analysis in multiple cylinders 

When there are multiple samples, it is very critical to model distortions in the wave front (phase modulation) 
introduced by the precedent samples which determine the illumination on subsequent samples. We generate 
synthetic measurements using Mie theory for 1-layer, 2-layers and 3-layers of cylinders as shown in Fig. S1a. 
Each layer contains 3 cylinders and light propagates along the z-axis and illumination angle varies from -45 
degrees to +45 degrees in the 𝑥𝑥𝑥𝑥 plane. We denote the total electric field and incident field as 𝑢𝑢𝑖𝑖_𝑓𝑓 and 𝑢𝑢𝑖𝑖_𝑓𝑓

(𝑖𝑖𝑖𝑖), 
respectively, where 𝑖𝑖 is the number of layers in the sample and 𝑓𝑓 is the location of the imaging plane. (For 
example, 𝑢𝑢3_2 means the total electric field for the 3-layers sample and the image plane is at the center of the 
2nd layer of cylinders.). Fig. S1b demonstrates the error introduced by the Rytov approximation by presenting 
the phase contrast between the total electric field and the incident field for each sample: angle(𝑢𝑢𝑖𝑖_𝑖𝑖/𝑢𝑢𝑖𝑖_𝑖𝑖

(𝑖𝑖𝑖𝑖)) 
when 𝑖𝑖 = 1,2,3. For the single layer case, we can fairly retrieve the information about the sample from the 
measured fields but it becomes harder as the number of layers increases. On the other hand, we can think of the 
total electric field from the 1-layer sample as the incident field on the second layer of the 2-layers sample. 
Therefore, the corrected phase, angle(𝑢𝑢2_2/𝑢𝑢1_2), preserves more information about the sample than the direct 
phase contrast, angle(𝑢𝑢2_2/𝑢𝑢2_2

(𝑖𝑖𝑖𝑖)) as shown in Fig. S1c, which is also the case for the 3-layers sample. 
Therefore, taking into account the wave front distortions introduced by the precedent samples is important to 
achieve full 3D imaging and LT-SSNP gives significant improvements over the conventional Rytov 
approximation.   

 

Fig. S1. Mie simulations for multiple cylinders. (a) 3 different samples. (b) phase contrasts for each sample. (c) 
corrected phase contrasts for each sample. 



Data compression demonstrated on cell phantom using discrete dipole approximation 

In this section, we compare various reconstruction algorithms from compressed measurements of the cell 
phantom generated using DDA. Reconstructions were performed using Rytov, linear tomography1 and LT-SSNP 
using different numbers of projection angles (40, 20, 10 and 5) uniformly spaced in  the range from 0 to 360 
degrees as shown in Fig. S2. In the case of HCT116 cells, Rytov produces fairly good reconstructions with 360 
full measurements, which means samples are not highly scattering. Therefore, combined with the single 
scattering forward model, linear tomography can handle fairly well data compression. However, in this case of 
the cell phantom, we can see that Rytov reconstructions are severely distorted and there is a limitation in 
reconstructing from down-sampled measurements even using the linear tomography. Unlike the linear 
tomography, LT-SSNP, which is the iterative scheme but with the accurate forward model, effectively handles 
the data compression producing consistent results with the ground truth. 

 

Fig. S2. Reconstruction results of the cell phantom using Rytov, linear tomography and LT-SSNP for down-
sampled numbers of scanning angles. 

 

 

 



Split-step non-paraxial method (SSNP) 

In this section, we briefly describe SSNP in 3D2,3 which is the physical forward model used in LT-SSNP. 
Bhattacharya and Sharma4 implemented this method using a matrix formalism for wave propagation in 3D. Here, 
we describe a fast Fourier transform implementation for more efficient use of memory. 

The propagation of a scalar wave 𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧), through a medium 𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝑧𝑧), in 3D can be described as 
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where 𝑘𝑘0 = 2𝜋𝜋/𝜆𝜆 is the free space wavenumber for a given wavelength 𝜆𝜆 in vacuum. Eq. (1) can be written in 
matrix form: 
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By applying the finite difference method for a small step, ∆𝑧𝑧 to solve Eq. (2), we can get the following 
equation, 

 ( , , ) exp( ( , , ) ) ( , , ).+ ∆ = ∆v H vx y z z x y z z x y z  (5) 

When we consider an inhomogeneous sample immersed in a homogeneous medium, 𝑛𝑛0, it is possible to split 𝐇𝐇 
into 𝐇𝐇1 and 𝐇𝐇2 which correspond to diffraction and phase modulation, respectively, 
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Using Eq. (6), we can define 𝐏𝐏 = exp (𝐇𝐇1∆𝑧𝑧) and 𝐐𝐐 = exp (𝐇𝐇2∆𝑧𝑧), then Eq. (5) can be split into two steps, 

 ( , , ) ( , , ).+ ∆ =v QPvx y z z x y z   (7) 

We omit the notation of (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in 𝐏𝐏, 𝐇𝐇1, 𝐐𝐐 and 𝐇𝐇2 for the sake of brevity. Using the Taylor series expansion, 
𝐏𝐏 can be written as 
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𝐐𝐐 can be simplified as follows: 
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since (𝐇𝐇2
𝑚𝑚) is 𝟎𝟎 when 𝑚𝑚 is higher than 1.  

 

Numerical implementation 

We will denote the scalar field at the 𝑘𝑘-th slice by the vector 𝐮𝐮𝑘𝑘 ∈ ℂ𝑀𝑀 and the derivative of the field with 
respect to the optical axis, z, by the vector 𝐮𝐮′k ∈ ℂ𝑀𝑀 . The RI contrast of an inhomogeneous medium in 3D is 
represented by the vector 𝐱𝐱 = 𝐧𝐧 − 𝑛𝑛0 ∈ ℝ𝑁𝑁  and  𝐱𝐱k ∈ ℝ𝑀𝑀 denotes the 𝑘𝑘-th slice of 𝐱𝐱. Derivative operations 
𝐇𝐇1 in Eq. (6) can be implemented by taking the discrete Fourier transform (DFT) of the input signal, followed 
by Fourier kernel, and taking the inverse DFT again. Using Eq. (8) and Eq. (9), we can rewrite a discretized 
version of Eq. (7) for numerical implementation as follows: 
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where 𝑔𝑔(𝐱𝐱𝑘𝑘) = −𝑘𝑘02(2𝑛𝑛0𝐱𝐱𝑘𝑘 + 𝐱𝐱𝑘𝑘°𝐱𝐱𝑘𝑘)∆z, ° signifies the Hadamard product. 𝐅𝐅 ∈ ℂ𝑀𝑀×𝑀𝑀 and 𝐅𝐅𝐻𝐻 ∈ ℂ𝑀𝑀×𝑀𝑀 are the 
DFT and inverse DFT, respectively. 𝐬𝐬 ∈ ℂ𝑀𝑀 denotes the Fourier kernel corresponding derivative operations, 

−( 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ 𝑘𝑘02𝑛𝑛02) , in Eq. (6): 𝐬𝐬 = (𝑘𝑘0𝑛𝑛0)2 − 𝐤𝐤𝐱𝐱2 − 𝐤𝐤𝐲𝐲2  where 𝐤𝐤𝐱𝐱 and 𝐤𝐤𝐲𝐲 describe the Fourier components. 

For numerical stability, 𝐬𝐬 components were multiplied with a mask which is 1 ((𝑘𝑘0𝑛𝑛0 ∗ sin(85°)) − 𝐤𝐤𝐱𝐱𝟐𝟐 −
𝐤𝐤𝐲𝐲𝟐𝟐)>0) or 0 (otherwise). Note that the Eq. (10) consists of diffraction (DFT, Fourier kernel and inverse DFT) 
followed by phase modulation. For the sake of brevity, we can represent Eq. (10) as follows: 
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where 𝐒𝐒𝑘𝑘(𝐱𝐱) = [𝐮𝐮𝑘𝑘𝐻𝐻,𝐮𝐮𝑘𝑘′𝐻𝐻]𝐻𝐻, 𝐆𝐆(𝐱𝐱𝑘𝑘) and 𝐊𝐊 correspond to the phase modulation and diffraction components, 
respectively. 

 

Calculation of the gradient of SSNP 

In previous work5, it has been shown that the gradient of 𝐃𝐃(𝑙𝑙)(𝐱𝐱) can be written as 
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In practice, we are interested in the column vector: 
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Using Eq. (11) and Eq. (12), we can calculate the following: 
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Since 𝜕𝜕𝐒𝐒0
(𝑙𝑙)(𝐱𝐱)
𝜕𝜕𝐱𝐱

= 0, it is possible to calculate the Hermitian of Eq. (16) by recursion. The process is in 
summarized in Algorithm 1. 

Algorithm 1: Gradient calculation 

Input: input field 𝐲𝐲0, output field 𝐲𝐲𝐾𝐾, and current estimate of the RI distribution 𝐱𝐱�. 

Output: �∇𝐃𝐃(𝑙𝑙)(𝐱𝐱�)�
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the gradient.  

Algorithm: 

1) Compute the total field 𝐲𝐲� = 𝑺𝑺(𝐱𝐱�) using the SSNP recursion Eq. (12), keeping all the 
intermediate light-fields 𝐲𝐲�𝑘𝑘 = 𝑺𝑺𝑘𝑘(𝐱𝐱�) in memory. 

2) Compute the residual 𝒓𝒓𝐾𝐾 = 𝐲𝐲�𝐾𝐾 − 𝐲𝐲𝐾𝐾 and set 𝐬𝐬𝐾𝐾 = 𝟎𝟎. 
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We will briefly discuss reflections in SSNP. In reference6, it has been shown that SSNP can be bidirectional 
and therefore it can simulate both forward and backward propagations simultaneously. In other words, 
𝐯𝐯(𝑥𝑥,𝑦𝑦, 𝑧𝑧) contains both forward and backward fields without distinction. We consider an example in which a 
Gaussian beam illuminates a slab with a step change in RI (medium 1: 1, medium 2: 1.067) as shown in Fig. 
S3. In reality, the light field in medium 1 is the summation of the illuminating beam and its reflection at the 
interface, while medium 2 contains only the transmitted beam (Fig. S3a). Interestingly, when we simulate this 
experiment using SSNP without considering the reflection in medium 1, SSNP artificially introduces a 
computational artifact in medium 2 in order to satisfy conservation of energy (Fig. S3b). This artifact takes the 
form of a second beam of light propagating from medium 2 to medium 1 which destructively interferes with 
the reflections, canceling it out (Fig. S3c). 

 

Fig. S3. Simulation of a Gaussian beam illuminating a slab (RI of medium 1: 1, RI of medium 2: 1.067) (a) True 
solution (b) SSNP solution (c) Interpretation of the SSNP artifact in (b) by introducing light going from medium 
2 to medium 1 to cancel out the reflected light in medium 1. 

 

Gradient filtering 

We demonstrate the effect of this computational artifact on the gradient calculation using an example: a single 
9 µm sphere (𝑛𝑛: 1.067) immersed in air (𝑛𝑛0: 1) is illuminated by a planar wave propagating at a 45 degrees. 
The RI of the sphere is reconstructed using the Rytov approximation. The estimated field by SSNP at the 
detector plane contains both forward and backward propagations while measurements contain only forward 
propagations. Since the gradient is calculated by propagating the error between them, the resulting gradient 
produces two different gradients as shown in Fig. S4a; One is from the error between the forward propagation 
of SSNP and measurement, the other is from the error between the backward propagation of SSNP and 
measurement. The first goes through the sample but the later does not and it does not make sense to update the 
RI where no sample is present. The backward propagation is only a computational artifact of the SSNP 
method. Therefore, after calculating the gradient as described in Algorithm 1, we apply a Fourier transform 
followed by low-pass filtering to extract the gradient coming from the residual of transmitted fields as shown 
in Fig. S4b (The gradient after high-pass filtering is shown in Fig. S4c as reference). We use the low-pass 
filtered gradient for reconstruction. Due to the absence of reflected light on the illumination side, the 



reconstructed RI distribution will be slightly underestimated. Therefore, we adjust the reconstruction,  𝐱𝐱𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 
by dividing it by the transmittance with respect to the RI of the medium, 𝑛𝑛0: 
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Fig. S4. Gradient filtering demonstration using an example; Rytov of a single 9 µm sphere (𝑛𝑛=1.067) immersed 
in air (𝑛𝑛0=1) is illuminated by a planar wave propagating at a 45° angle of incidence. (a) Gradient calculated 
from residual containing both forward and backward propagating lights using Algorithm 1. The gradient is low-
pass and high-pass filtered resulting in (b) and (c). Dotted lines represent the location of ground truth. 

 

Evaluation of forward models 

In this section, we evaluate BPM and SSNP using Mie theory for three spheres. Each sphere is 15 µm in 
diameter but has a different RI contrast (1.033, 1.067 and 1.1 immersed in the air) resulting in π, 2π and  3π 
phase contrasts when illuminated with 600 nm wavelength in air. We vary the illumination angle from 0 
degree to 45 degrees and calculate the error in total electric fields: ‖𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹‖2 where  𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹 
represent total electric fields generated using Mie theory and the other forward models (BPM or SSNP). We 
briefly explain BPM for the sake of completeness of this section. 

BPM describes light propagation through an inhomogeneous medium using the envelope of the electric field, 
𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐴𝐴(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 where 𝑘𝑘 is the wavenumber in the background medium. BPM consists of two parts: 
non-paraxial diffraction and phase modulation as followings, 
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where 𝑘𝑘0 is the wavenumber in vacuum, 𝑘𝑘𝑥𝑥 and  𝑘𝑘𝑦𝑦 represents frequency components corresponding to  𝑥𝑥 and 
𝑦𝑦 axes. ∆𝑛𝑛 is the contrast between RI of the sample (𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝑧𝑧)) and RI of the medium (𝑛𝑛0), 𝐹𝐹𝐹𝐹 (𝐹𝐹𝑇𝑇𝐻𝐻) 
represents 2D Fourier transform (inverse 2D Fourier transform). The term 𝑑𝑑𝑑𝑑/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in the phase modulation 
step geometrically corrects for the optical path length for tilted illumination at angle 𝜃𝜃. In this section, we 



tested BPM twice; one with 𝑑𝑑𝑑𝑑 as the step in the phase modulation and the other with 𝑑𝑑𝑑𝑑/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to see the 
impact of correction using 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

As shown in Fig. S5, the accuracy of BPM (without and with the cosine factor) rapidly deteriorates as the 
illumination angle increases. By comparing BPM without/with the cosine factor, the factor improves the 
accuracy of model. However, the gap in accuracy between with and without the cosine factor at higher 
illuminations decreases as the RI contrast increases. It means that there is limitation in geometrically correcting 
the optical path using the cosine factor. By contrast, the accuracy of SSNP stays stable making SSNP more 
accurate than BPM at high illumination angles. High illumination angles are critical in ODT to achieve good 
resolution in the optical axis. As mentioned in the previous section, SSNP is bidirectional and it simulates both 
forward and backward propagations simultaneously. We filtered the backward propagations of SSNP since we 
do not use the backward propagations in the iterative scheme by the gradient filtering 7. In addition, since we 
divide the final reconstruction by reflectance in LT-SSNP, we calculate the reflectance, R = 1 − (x/(x + 2n0)) 
where x is the RI contrast used for Mie simulation and  𝑛𝑛0 is the medium RI. Then, x values multiplied by the 
reflectance serve as samples in SSNP simulations. The multiplication of the reflectance is introduced to 
compensate the missing signals to backward propagations which comes from the bidirectional property of SSNP. 

 

Fig. S5. Evaluation of total electric fields generated by BPM and SSNP using Mie theory as the ground truth for 
three spheres which differ in RI contrast values. The resulting phase delay for each sphere is written on each 
plot. The illumination angle for each sphere is increased from 0 degree to 45 degrees. 

 

Experimental Setup 

The optical system shown below used to acquire the data shown in this study used a diode pumped solid state 
532 nm laser. The laser beam was first spatially filtered using a pinhole spatial filter. A beamsplitter was used 
to separate the input beam into a sample beam and a reference beam. The sample beam was directed onto the 
sample at different angles of incidence using a reflective LCOS spatial light modulator (SLM) (Holoeye) with a 
pixel size of 8 µm  and resolution of 1080 x 1920 pixels. Different illumination angles were obtained by 
projecting blazed gratings on the SLM. In the experiments presented here, a blazed grating with a period of 25 
pixels (200 µm) was circularly rotated with a resolution of 1 projection per degree for total projections. Two 4f 



systems between the SLM and the sample permitted filtering of higher orders reflected from the SLM (due to 
limited fill factor and efficiency of the device) as well as magnification of the SLM projections onto the sample. 
Using a 100X oil immersion objective lens with NA 1.4 (Olympus), the incident angle on the sample 
corresponding to the 200 µm grating was 35°. The magnification of the illumination side was defined by the 4f 
systems we used before the sample. A third 4f system after the sample includes a 100X oil immersion objective 
lens with NA 1.45 (Olympus). The sample and reference beams were collected on a second beamsplitter and 
projected onto a scientific CMOS camera (Neo, Andor) with a pixel size of 6.5 µm and resolution of 2150 x 
2650 pixels. 

 

Fig. S6. Schematic for the experimental setup (M: Mirror, L:Lens, OBJ: Objective lens, BS: Beam splitter). 

 

Sample preparation 

Yeast cells were grown in a solution of agar with a refractive index of 1.338 (a change of 0.00125 for 0.5% 
increase in the Agar concentration). 2 g pure agar powder (AppliChem) was dissolved in 100 mL water, heated 
to 80C, and subsequently cooled, all while stirring with a magnetic stirrer. Once the solution reached 40C, 2 g 
fresh grocer’s yeast was added to the solution. The yeast-agar solution was immediately pipetted onto a #1 
coverslip and covered with a second coverslip and finally allowed to cool to room temperature for complete gel 
formation. 

HCT-116 human colon cancer cells were cultured in McCoy 5A growth medium (Gibco) supplemented with 
10% fetal bovine serum (Gibco). #1 coverslips were treated with a 5 µg/mL solution of fibronectin (Sigma) in 
phosphate-buffered saline (PBS) and air-dried at room temperature. Cells at passage 11 were detached from 
culture flasks using trypsin, seeded directly onto the fibronectin-treated coverslips, and incubated 24 hours in a 
37C/5% CO2 atmosphere until cells adhered and spread on the coverslips. Each sample was fixed for 10 minutes 
at room temperature in 4% paraformaldehyde in PBS, rinsed twice with PBS, and sealed with a second coverslip. 
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