OMTM, Volume 15

Supplemental Information

Role of Regulatory T Cell and Effector

T Cell Exhaustion in Liver-Mediated

Transgene Tolerance in Muscle

Jérôme Poupiot, Helena Costa Verdera, Romain Hardet, Pasqualina Colella, Fanny Collaud, Laurent Bartolo, Jean Davoust, Peggy Sanatine, Federico Mingozzi, Isabelle Richard, and Giuseppe Ronzitti

Supplementary Material

Supplementary Table 1. Inflammatory markers expressed in liver of mice treated as described in Figure 2

	CTRL	IM	IM/IV D0	IM/IV D15	
CD4	49.13 ± 11.91	135.73 ± 19.72	36.61 ± 3.63	42.77 ± 14.01	
CD8	3.45 ± 1.35	2.55 ± 0.59	15.17 ± 5.31	26.36 ± 18.11	
FOX-P3	0.08 ± 0.09	0.06 ± 0.02	0.34 ± 0.13	0.69 ± 0.38	
LAG3	1.73 ± 0.92	1.87 ± 0.70	2.63 ± 0.85	4.95 ± 3.14	
IFNg	0.78 ± 0.16	0.43 ± 0.12	1.31 ± 0.46	2.00 ± 0.64	
PD-1	0.23 ± 0.15	0.15 ± 0.04	2.84 ± 0.93	6.84 ± 5.14	
PD-L1	3.40 ± 0.34	1.84 ± 0.32	6.15 ± 1.20	10.45 ± 2.57	
PD-L2	0.04 ± 0.02	0.33 ± 0.62	0.08 ± 0.02	0.20 ± 0.06	
TIM3	0.94 ± 0.48	0.51 ± 0.02	1.49 ± 0.56	3.05 ± 0.90	
CTLA-4	1.43 ± 1.87	0.44 ± 0.39	0.16 ± 0.07	0.49 ± 0.22	
2B4	0.34 ± 0.17	0.15 ± 0.06	0.47 ± 0.17	0.77 ± 0.12	

Abundancy values $(2-\Delta Ct \ge 10^{-4})$ were expressed as mean \pm standard deviation. Values in red are significantly different from control Group.

Supplementary Table 2. Inflammatory markers expressed in muscle of mice treated as described in Figure 4

	CTRL	Muscle	Liver	Muscle-Liver	
CD4	0.65 ± 0.15	12.95 ± 5.02	0.90 ± 0.24	4.68 ± 0.58	
FOXP3	1.15 ± 0.18	4.83 ± 2.39	1.21 ± 0.10	2.41 ± 0.50	
IL10	0.02 ± 0.01	0.95 ± 0.49	0.05 ± 0.02	0.50 ± 0.33	
IL35	0.29 ± 0.07	0.10 ± 0.01	0.53 ± 0.24	0.28 ± 0.04	
GITR	0.20 ± 0.05	9.39 ± 5.43	0.30 ± 0.06	3.71 ± 1.48	
CTLA-4	0.0013 ± 0.000	5 0.1358 ± 0.1488	0.0021 ± 0.0012	0.0934 ± 0.0770	
AREG	0.0005 ± 0.000	0.0011 ± 0.0007	0.0004 ± 0.0000	0.0178 ± 0.0072	

Abundancy values $(2-\Delta Ct \ge 10^{-3})$ were expressed as mean \pm standard deviation. Values in red are significantly different from control Group.

Supplementary Table 3. Total or Dextramer+ CD8+, CD8+ PD1+, CD8+ PD1+ LAG3+ and CD8+ PD1+ TIM3+ cells measured in liver non-parenchymal cells of mice from the indicated groups.

	CD8+		CD8+ PD1+		CD8+ PD1+ LAG3+		CD8+ PD1+ TIM3+	
Group	Total	Dextramer+	Total	Dextramer+	Total	Dextramer+	Total	Dextramer+
Control	2389 ± 560	44 ± 3	13 ± 10	5 ± 3	1 ± 1	0 ± 0	0 ± 1	0 ± 0
Muscle	3178 ± 1969	527 ± 235	31 ± 16	26 ± 13	2 ± 2	0 ± 0	1 ± 1	0 ± 0
Liver	3538 ± 346	46 ± 14	32 ± 11	6 ± 5	20 ± 6	2 ± 2	17 ± 3	1 ± 1
Muscle-Liver	2860 ± 342	40 ± 6	56 ± 28	9 ± 4	36 ± 22	3 ± 3	30 ± 17	2 ± 1

Absolute counts were reported as mean±standard deviation.

Supplementary Figure 1. (A) hSGCA mRNA measured in liver. (B) anti-hSGCA (green), and DAPI (blue) immunostaining performed in liver of mice treated as described in Figure 1 (Scale bar = 25μ m). White arrow indicates SGCA-expressing hepatocyte. Data were expressed as mean \pm SD. Statistical analysis was performed by t-test (* = p<0.05, as indicated, n=4 per group).

Supplementary Figure 2. (A) Eight-week old C57BL/6J mice received at day 0 an intramuscular injection (IM, *Tibialis Anterior*, TA) of 2.5 x10⁹ vg/mouse of AAV6-SPc5.12-

hSGCA vector. Mice were sacrificed and tissues collected at day 0 (D0), day 5 (D5) and day 30 (D30) after vector injection. PBS-injected mice sacrificed 30 days after vector injection were used as controls (Control). (**B**) Hematoxylin phloxine saffron staining (HPS, upper panel, scale bar = 100µm) and anti-hSGCA (green), CD8 (red) and DAPI (blue) immunostaining (lower panel, scale bar = 20µm) performed in TA. White arrows indicate CD8 cells. (**C**, **D**) CD8 and IFN γ mRNA measured in TA. (**E**) Vector genome copy number (VGCN) per diploid genome measured in TA. (**F**) Vector genome copy number (VGCN) per diploid genome measured in liver. Data were expressed as mean ± SD. Statistical analyses were performed by ANOVA (* = p<0.05, † = p <0.05 as indicated, n=4 per group).

Supplementary Figure 3. Identification of peptide epitopes binding to class I murine MHC in hSGCA protein. Epitopes of hSGCA with the highest probability of presentation by H-2Kb MHC class I molecules were identified by Immune Epitope Database (www.iedb.org). Five peptides with the highest score were synthesized by GeneCust and used to stimulate splenocytes obtained from C57BL/6J mice intramuscularly injected with PBS (Control), AAV6 expressing hSGCA under the control of SPc5.12 promoter (AAV6-hSGCA) or AAV1 expressing hSGCA-SIINFEKL transgene under the control of SPc5.12 promoter (AAV6-hSGCA) or AAV1-hSGCA-SIIN). Splenocytes were stimulated in parallel with hSGCA recombinant protein or with the SIINFEKL peptide. Data were expressed as mean \pm SD.

Supplementary Figure 4. (A,B) Flow cytometry dot plots representing CD8+CD44+Dextramer+ cells gated on CD8+ cells in splenocytes. The histogram shows the

quantification of the dot plots. (C) Absolute counts of CD8+ PD1+ cells (in gray) and CD8+ PD1+ DEX+ (in red) measured in liver. (D) Absolute counts of CD8+ PD1+ LAG3+ cells (in gray) and CD8+ PD1+ LAG3+ DEX+ (in red) measured in liver. (E) Absolute counts of CD8+ PD1+ TIM3+ cells (in gray) and CD8+ PD1+ TIM3+ DEX+ (in red) measured in liver. (F,G) Flow cytometry dot plots representing CD4+ Foxp3+ cells gated on CD4+ cells in splenocytes. The histogram shows the quantification of the dot plots. (H) Flow cytometry dot plots representing CD8+ PD1+ TIM3+ cells in splenocytes. (I) Flow cytometry dot plots representing the CD8+ PD1+ TIM3+ cells gated on CD8+ cells in splenocytes. Data were expressed as mean \pm SD. Statistical analyses were performed by ANOVA (* = p<0.05, n=3 per group).

Supplementary Figure 5. (**A**,**B**) Flow cytometry dot plots representing CD8+CD44+Dextramer+ cells gated on CD8+ cells in splenocytes. The histogram shows the

quantification of the dot plots. (C-E) CD8, IFN γ and FoxP3 mRNA measured in *Tibialis anterior* (TA) muscle. (F) Vector genome copy number (VGCN) per diploid genome measured in TA muscle. (G) Anti-hSGCA IgG titers measured by ELISA using recombinant hSGCA protein. (H-L) CD8, IFN γ and Foxp3 mRNA measured in liver. Data were expressed as mean \pm SD. Statistical analyses were performed by ANOVA in all panels except for panel G where a Kruskal-Wallis test was used (* = p<0.05, n=4 per group).

Supplementary Figure 6. (A) Immunostaining anti-hSGCA (green), CD8 (red) performed in liver (scale bar = 50 μ m). White arrow indicates CD8 cell. (B) Flow cytometry dot plots representing liver non-parenchymal CD8+CD44+Dextramer+ cells gated on CD8+ cells. (C, D) CD8 and IFN γ mRNA measured in *tibialis anterior*. (E) Anti-hSGCA IgG titers measured by ELISA using recombinant hSGCA protein. Data were expressed as mean ± SD. Statistical analyses were performed by ANOVA in all panels except for panel E where a Kruskal-Wallis test was used (* = p<0.05, n=4 per group).

Supplementary Figure 7. (A) After intramuscular AAV-mediated delivery of a transgene, antigen presentation occurs directly in muscle or in lymph nodes. Circulating activated T cells

Supplementary FIGURE 7

home to the liver with little effect on their activation state. (**B**) In case of simultaneous liver and muscle transduction, activated T cells home to the liver and do not participate in the ongoing immune response in muscle. (**C**) When Tregs depletion is combined with anti PD1/PDL1 and LAG3 inhibition, a partial rescue of the immune response in muscle is observed.