1	SUPPLEMENTAL INFORMATION
2	
3	
4	Robust suppression of lipopolysaccharide deficiency in Acinetobacter baumannii by
5	growth in minimal medium
6	
7	Emma Nagy ¹ , Richard Losick ¹ , Daniel Kahne ^{1,2,3} #
8	
9	¹ Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
10	² Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA,
11	USA
12	³ Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical
13	School, Boston, MA, USA
14	
15	#Address correspondence to Daniel Kahne: kahne@chemistry.harvard.edu
16	
17	
18	
19	
20	
21	
22	
23	

24 SUPPLEMENTAL INFORMATION

- 25
- 26
- 27 Figure S1. Passaging results in restoration of wild type growth profiles. Growth of
- 28 passaged replicates at the indicated number of days after initiation in LB at 25°C.
- Panels 1 and 2 are replicates of $\Delta lpxC$ and panel 3 is a replicate of $\Delta mlaA \Delta lpxC$. Wild
- 30 type is shown for comparison. The replicates shown are representative of the types of
- 31 growth improvement seen over the course of the experiment.
- 32
- 33

46 Figure S2. Mutations in both *mla* and *pldA* are required for growth improvement

in an LPS deficient strain. Strains are grown in LB at 37°C.

Table S1. Strains and plasmids used in this study.

	Strain or Plasmid	Genotype	Reference or Source
	A. baumannii ATCC 19606	Wild type	ATCC
	A. baumannii lpxC mutant	∆ <i>lpxC</i> ::kan	Moison et al., 2016 (1)
	A. baumannii mlaA lpxC mutant	∆ <i>lpxC</i> ::apr ∆ <i>mlaA</i> ::kan	This study
	A. baumannii pldA lpxC mutant	∆ <i>lpxC</i> ::apr ∆ <i>pldA</i> ::kan	This study
	A. baumannii mlaA pldA lpxC mutant	∆ <i>pldA ∆lpxC</i> ::apr ∆ <i>mla</i> A::kan	This study
	pEX18ApGW	Vector for gene replacement	Hoang et. Al, 1998 (2)
	pEX18ApGW- <i>pldA</i>	Deletion vector for <i>pldA</i>	This study
66			
67			
68			
69			
70			
71			
72			
73			
74			
75			

Table S2. Mutations found in suppressor screen. The first set of replicates were

- $\Delta lpxC$ at the start of the screen and the second set listed below were $\Delta m laA \Delta lpxC$.
- 80 Only assigned mutations are listed, with a few exceptions. The references for the genes listed
- 81 are as follows: *pldA* (DJ41_RS17655), Peptidase M16 (DJ41_RS17650), *mlaA*
- 82 (DJ41_RS06905), *mlaD* (DJ41_RS11945), *mlaF* (DJ41_RS11935), *adeJ* (DJ41_RS13520), and
- *adeR* (DJ41_RS18535).

Replicate	Gene/Reference	Mutation	Position	Result
1	pldA	Insertion with target site duplication (5bp)	1091	Disruption
	mlaA	Deletion (Δ 708bp)	*	Disruption
	pldA	(A) _{7→6}	238	Truncation
2	mlaA	Deletion (Δ 693bp)	*	Disruption
3	DJ41_RS17650	Insertion with target site duplication (4bp)	2937	Disruption
	DJ41_RS10490	Insertion with target site duplication (5bp)	453	Disruption
4	DJ41_RS17650	Insertion with target site duplication (5bp)	386	Disruption
	mlaA	Insertion with target site duplication (4bp)	448	Disruption
_	pIdA	$G \rightarrow A$	1022	W341*
5	mlaA	Deletion (Δ 709bp)	*	Disruption
6	DJ41_RS17650	Insertion with target site duplication (4bp)	278	Disruption
	mlaA	T→G	457	N152K
	pldA	Deletion (∆3bp)	1023	∆W341 A342C
/	mlaA	Deletion (Δ 730bp)	*	Disruption
	DJ41_RS17650	Deletion (∆92bp)	5	Disruption

8	mlaD	Insertion with target site duplication (5bp)	e 296	Disruption
9	DJ41_RS17650	Insertion with target site duplication (5bp)	e 1757	Disruption
	mlaA	Deletion (Δ 1770bp)	*	Disruption
10	DJ41_RS17650	Insertion with target site duplication (4bp)	e 2932	Disruption
	mlaA	Insertion with target site duplication (4bp)	e 451	Disruption
	DJ41_RS17650	Deletion (Δ 2193bp)	548	Disruption
11	mlaA	Deletion (Δ 2820)	*	Disruption
12	DJ41_RS17650	Insertion with target site duplication (5bp)	e 1730	Disruption
	mlaA	Insertion with target site duplication (5bp)	e 454	Disruption
10	pldA	(A) _{7→6}	238	Truncation
13	DJ41_RS10490	Insertion with target site duplication (4bp)	e 452	Disruption
14	DJ41_RS17650	Insertion with target site duplication (4bp) (Unassigned)	e 2937	Disruption
	mlaF	New junction with repea region (Unassigned)	t 87	Disruption
45	pldA	Deletion (Δ 19bp)	1078	Truncation
15	mlaA	Deletion (Δ 1529bp)	*	Disruption
Replicate	Gene/Reference	Mutation	Position	Result
1	pldA	Deletion (Δ 1bp)	895	Truncation
2	pldA	Insertion with target site duplication (4bp)	340	Disruption
3	DJ41_RS17650	T→A	140	L47*
4	pldA	(A) _{7→6}	238	Truncation
5	pldA	Deletion (Δ 3bp)	1023	Δ W341 A342C
6	pldA	Insertion with target site duplication (5bp)	536	Disruption
	DJ41_RS17650	Insertion with target	2815	DJ41_RS17650
/	adeJ	site duplication (4bp) Insertion with target site duplication (4bp)	2385	Disruption

	8	DJ41_RS17650	Insertion with target site duplication (4bp)	294	Disruption
	-	DJ41_RS13530	Insertion with target site duplication (5bp)	600	Disruption
	9	DJ41_RS17650	Insertion with target site duplication (4bp)	2926	Disruption
	10	pldA	New junction with repeat region (Unassigned)	400/887	Disruption
		adeR	Insertion with target site duplication (5bp) (Unassigned)	423	Disruption
	11	pldA	Insertion with target site duplication (5bp)	524	Disruption
		adeR	Insertion with target site duplication (4bp) (Unassigned)	186	Disruption
	12	DJ41_RS17650	Insertion with target site duplication (4bp)	646	Disruption
		adeJ	Deletion (Δ 13bp)	1961	Truncation
85					
86					
87					
88					
89					
90					
91					
92					
93					
94					
95					
96					
97					

Table S3. Primers used in this study. Underlined regions represent areas of overlap.

Primer	Sequence (5' - 3')	Application				
Strain Construction						
<i>mlaA</i> _up_F	GGTGCCAATTCTGGCTCATCAATTAC					
<i>mlaA</i> _up_R	<u>CGAATTCGCGGCCGCTTCTA</u> TCCGAACTAGCGGCAGATTCTT	Amplification of upstream and downstream regions				
<i>mlaA</i> _down_F	<u>GAGCTCGCTTGGACTCCTGT</u> GCGTTCCAGATTGCCGAGAA	of <i>mlaA</i> for <i>mlaA</i> -kanR linear construct				
<i>mlaA_</i> down_R	GTACCAGTCGCCTGATAAATAGGCA					
<i>mlaA</i> _seq_F	GTAGGTCTTTACACCTCAGCCC	Verification of <i>mlaA</i> gene				
<i>mlaA</i> _seq_R	CTTCTGGTACATCTTCAGATTCGTCATC	knock out				
<i>lpxC</i> _up_F	CATTACTGGTGGCGATGACATCAC					
<i>lpxC</i> _up_R	<u>GCGTAATCTGCTGCTTGCAA</u> CTCCATCCACGGTATGTGGAATG	Amplification of upstream				
<i>lpxC</i> _down_F	<u>GCGGAGAACGAGATGACGTT</u> CAGCTATTACGCAATGTTCAAAGCGA	of <i>lpxC</i> for <i>lpxC</i> -aprR				
<i>lpxC_</i> down_R	AGGAAACCTTACGTTTCTAACAACGC					
<i>lpxC_</i> seq_F	CACACTCACGTATGGAATTGGACAG	Verification of InvC gene				
<i>lpxC</i> _seq_R	AGCGAGTGGAATAGGTCTTCATAGC	knock out				
<i>pldA</i> _up_F	GGTATTGGCAGCTTACTTGCGTAATG					
<i>pldA</i> _up_R	CGAATTCGCGGCCGCTTCTA GGCTAAGGTGTCGGCATATGC	Amplification of upstream				
<i>pldA</i> _down_F		of <i>pldA</i> for <i>pldA</i> -kanR				
<i>pldA</i> _down_R	GATGCTACTCATGTTCATCGGTGG	linear construct				
<i>pldA</i> _seq_F	TTTACAGCTAAGTATGGGAACCCTG					
<i>pldA</i> _seq_R	CCGGCATAAGTTGCACGATG	Verification of <i>pldA</i> gene knock out				

	Kan_F	TAGAAGCGGCCGCGAATTCG	Amplification of KanP
	Kan_R	ACAGGAGTCCAAGCGAGCTC	cassette
	Apr_F	TTGCAAGCAGCAGATTACGC	
	Apr_R	AACGTCATCTCGTTCTCCGC	Amplification of AprR cassette
	<i>pldA</i> _up_pEX _F <i>pldA</i> _up_pEX _R	TTCCCAGTCACGACGTTGTAAAACGACG GCCAGTGCCA GCAGCAACGTAAGACACGCT CATAACCATTAAATAATTGGAAGTGTCCG CGCAG GGCTAAGGTGTCGGCATATGC	Amplification of upstream region of <i>pldA</i> with 5' overlap to pEX18ApGW and 3' overlap to the downstream region of <i>pldA</i>
	<i>pldA</i> _down_p EX_F <i>pldA</i> _down_p EX_R	ATGTGCGTCGGTGGCATATGCCGACACC TTAGCC CTGCGCGGACACTTCCAATTAT AGGAAACAGCTATGACCATGATTACGAAT TCGAGCTCG TATGGCTTTGCTCGGGGGACT	Amplification of downstream region of <i>pldA</i> with 5' overlap to the upstream region of <i>pldA</i> and 3' overlap to pEX18ApGW
	pEX_ <i>pldA</i> _F	CGAGCTCGAATTCGTAATCATGGTCA	
	pEX_ <i>pldA</i> _R	TGGCACTGGCCGTCGTTTTA	Amplification of pEX18ApGW
	pldA_pEX_se q_F pldA_pEX_se q_R	GGGTGCTTCGTTACGCAGTAAG GGCCTTAAACAGCAAATGATGGCT	To verify pEX18ApGW integration at <i>pldA</i> site
101	٩		
102			
103			
104			
105			
106			
107			

REFERENCES

- Moison E, Xie R, Zhang G, Lebar MD, Meredith TC, Kahne D. 2017. A Fluorescent Probe
 Distinguishes between Inhibition of Early and Late Steps of Lipopolysaccharide
 Biogenesis in Whole Cells. ACS Chem Biol 12:928-932.
- Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. 1998. A broad-host-range
 Flp-FRT recombination system for site-specific excision of chromosomally-located DNA
 sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants.
 Gene 212:77-86.