SUPPORTING INFORMATION

Manuscript title:

Phylogenetic comparative methods improve the selection of characters for generic delimitations in a hyperdiverse Neotropical orchid lineage

Authors:

Diego Bogarín^{1,2,3,*}, Oscar A. Pérez-Escobar^{4,5}, Adam P. Karremans^{1,3}, Melania Fernandez^{1,6}, Jaco Kruizinga⁷, Franco Pupulin^{1,8}, Erik Smets^{3,10,11}, and Barbara Gravendeel^{3,9,10}

¹Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
²Herbarium UCH, Universidad Autónoma de Chiriquí, Chiriquí, Panama
³Naturalis Biodiversity Center, Endless Forms group, Leiden, The Netherlands
⁴Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
⁵Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
⁶ Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, U.S.A.
⁷Hortus botanicus, Leiden University, Leiden, The Netherlands
⁸ Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, U.S.A.; Marie Selby Botanical Gardens, 811 South Palm Avenue, Sarasota, Florida 34236, U.S.A.
⁹University of Applied Sciences Leiden, Faculty of Science and Technology, Leiden, The Netherlands
¹⁰Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
¹¹KU Leuven, Ecology, Evolution and Biodiversity Conservation, Leuven, Belgium
*Corresponding author. E-mail: diego.bogarin@ucr.ac.cr

Appendix S1-S15:

Appendix S1. Species, length of sequences in matrices, voucher information, Genbank

accession numbers, references and incongruent terminals of the individuals analyzed.

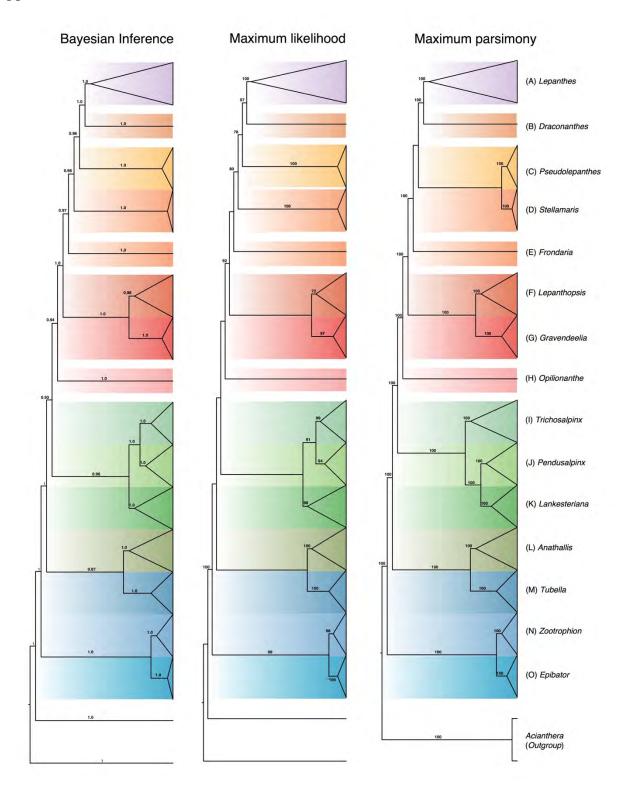
Taxon	Terminal name	Total length (bp)	ITS length (bp)	MATK length (bp)	Voucher	Genbank (ITS)	Genbank (matK)	Incongruent terminal (ML)	Incongru ent terminal (BI)
Acianthera cogniauxiana (Schltr.) Pridgeon & M.W.Chase	Acianthera_cogni auxiana_AK5879	1433	756	677	AK5879	KR816545	KR816554		
Acianthera fenestrata (Barb.Rodr.) Pridgeon & M.W.Chase	Acianthera_fenest rata_JLOrchids_s n	1564	798	766	JLOrchids sn	AF262857	AF265468		
Anathallis burzlaffiana (Luer & Sijm) Luer	Anathallis_burzlaf fiana_AK4857	1564	798	766	AK4857	KC425727	KC425857		

						1		Т	
Anathallis lewisiae (Ames) Solano &	Anathallis_lewisia e_DB1056	1564	798	766	DB1056	KC425733	KC425858		
Soto Arenas	A (1.11) 11 1	1564	700		1112226	1.52(20(0	1 50 65 170		_
Anathallis linearifolia (Cogn.) Pridgeon & M.W.Chase	Anathallis_lineari folia_JH2336	1564	798	766	JH2336	AF262869	AF265473		
Anathallis pabstii (Garay) Pridgeon & M.W.Chase	Anathallis_pabstii _AK4821	1564	798	766	AK4821	KC425737	KC425859		
Anathallis peroupavae (Hoehne & Brade) F.Barros	Anathallis_peroup avae_AK5759	1492	797	695	AK5759	KF747837	MK306408		
Anathallis rabei (Foldats) Luer (1)	Anathallis_rabei_ AK4794	1564	798	766	AK4794	KC425738	KC425860		
Anathallis rabei (Foldats) Luer (2)	Anathallis_rabei_ DB12050	1558	797	761	DB12050	MK306359	MK306409		
Draconanthes aberrans (Schltr.) Luer	Draconanthes_abe rrans_AK5978	1487	797	690	AK5978	KY988810	KY988630	X	X
Frondaria caulescens (Lindl.) Luer	Frondaria_caulesc ens_CL18778	1562	796	766	CL18778	AF262896	AF265471	X	
<i>Gravendeelia</i> <i>chamaelepanthes</i> (Rchb.f.) Bogarín & Karremans (1)	Gravendeelia_cha maelepanthes_AK 4815	797	797	-	AK5786	MK306362	-		
Gravendeelia chamaelepanthes (Rchb.f.) Bogarín & Karremans (2)	Gravendeelia_cha maelepanthes_AP 127	1564	798	766	AP127	MK306363	MK306410	X	X
Gravendeelia chamaelepanthes (Rchb.f.) Bogarín & Karremans (3)	Gravendeelia_cha maelepanthes_DB 11881	797	797	-	DB11881	MK306364	-		
Gravendeelia chamaelepanthes (Rchb.f.) Bogarín & Karremans (4)	Gravendeelia_cha maelepanthes_PL 459a	797	797	-	PL459a	MK306365	-		
Lankesteriana barbulata (Lindl.) Karremans (1)	Lankesteriana_bar bulata_AK5187	797	797	-	AK5187	MK306366	-		
Lankesteriana barbulata (Lindl.) Karremans (2)	Lankesteriana_bar bulata_AK5447	797	797	-	AK5447	MK306367	-		
Lankesteriana barbulata (Lindl.) Karremans (3)	Lankesteriana_bar bulata_AK5750	797	797	-	AK5750	KF747834	-		
Lankesteriana barbulata (Lindl.) Karremans (4)	Lankesteriana_bar bulata_DB8606	797	797	-	DB8606	KC425726	-		
Lankesteriana casualis (Ames) Karremans	Lankesteriana_cas ualis_AK6190	1515	797	718	AK6190	KY988821	KY988638		
<i>Lankesteriana</i> <i>cuspidata</i> (Luer) Karremans	Lankesteriana_cus pidata_DB9619	797	797	-	DB9619	KF747835	-		
Lankesteriana duplooyi Luer & Sayers) Karremans	Lankesteriana_du plooyi_AK4888	797	797	-	AK4888	KF747836	-		

Lankesteriana fractiflexa (Ames &	Lankesteriana_fra ctiflexa DB8988	797	797	-	DB8988	KC425729	-		
C.Schweinf.) Karremans									
<i>Lepanthes ankistra</i> Luer & Dressler	Lepanthes_ankistr a AK6147	1564	798	766	AK6147	KY988822	KY988639		
<i>Lepanthes atrata</i> Endres ex Luer	Lepanthes_atrata_ DB11053	1564	798	766	DB11053	KY988823	KY988640	Х	Х
Lepanthes blephariglossa Schltr.	Lepanthes_blepha riglossa_DB9604	1564	798	766	DB9604	KY988824	KY988641	X	X
Lepanthes blepharistes Rchb.f.	Lepanthes_blepha ristes_FP8720	1549	783	766	FP8720	KY988829	KY988646		
<i>Lepanthes bradei</i> Schltr.	Lepanthes_bradei _AK5267	1564	798	766	AK5267	KY988830	KY988647		
Lepanthes brunnescens Luer	Lepanthes_brunne scens_DB2994	1564	798	766	DB2994	KY988831	KY988648		
<i>Lepanthes calliope</i> Luer & Hirtz	Lepanthes_calliop e_DB11873	1564	798	766	DB11873	KY988832	KY988649		
Lepanthes calodyction Hook.	Lepanthes_calody ction_DB11872	1564	798	766	DB11872	KY988833	KY988650		
<i>Lepanthes candida</i> Endres ex Luer	Lepanthes_candid a DB11656	1564	798	766	DB11656	KY988834	KY988651		
Lepanthes caprimulgus Luer	Lepanthes_caprim ulgus_DB11874	1564	798	766	DB11874	KY988835	KY988652		
Lepanthes cascajalensis Ames	Lepanthes_cascaj alensis_DB4836	1564	798	766	DB4836	KY988836	KY988653	X	Х
<i>Lepanthes cloesii</i> Luer	Lepanthes_cloesii DB11877	1564	798	766	DB11877	KY988837	KY988654	Х	X
Lepanthes confusa Ames & C.Schweinf.	Lepanthes_confus a_DB3087	1550	784	766	DB3087	KY988838	KY988655	X	X
<i>Lepanthes cribii</i> Pupulin	Lepanthes_cribii_ FP8711	1564	798	766	FP8711	KY988839	KY988656		
Lepanthes cuspidata Luer	Lepanthes_cuspid ata AK6239	1564	798	766	AK6239	KY988840	KY988657		
<i>Lepanthes demissa</i> Luer	Lepanthes_demiss a_DB2981	1545	779	766	DB2981	KY988842	KY988659		
Lepanthes dikoensis Bogarín & C.M.Sm.	Lepanthes_dikoen sis_DB1625	1564	798	766	DB1625	KY988843	KY988660	Х	Х
Lepanthes disticha (A.Rich.& Galeotti) Garay & R.E.Schult	Lepanthes_distich a_AK4589	1564	798	766	AK4589	KY988845	KY988661		X
Lepanthes dolabriformis Luer	Lepanthes_dolabri formis DB10375	1564	798	766	DB10375	KY988846	KY988662		
Lepanthes droseroides Luer	Lepanthes_droser oides_MF945	1564	798	766	MF945	KY988848	KY988664		
<i>Lepanthes elata</i> Rchb.f.	Lepanthes_elata_ DB10554	1564	798	766	DB10554	KY988850	KY988666		
<i>Lepanthes elegans</i> Luer	Lepanthes_elegan s_DB7606	1564	798	766	DB7606	KY988853	KY988669	X	Х
<i>Lepanthes eximia</i> Ames	Lepanthes_eximia _DB9600	1564	798	766	DB9600	KY988854	KY988670		
<i>Lepanthes ferrelliae</i> Luer	Lepanthes_ferrelli ae_FP8806	1564	798	766	FP8806	KY988855	KY988671		Х
Lepanthes gargantua Rchb.f.	Lepanthes_gargan tua_DB11868	1564	798	766	DB11868	KY988856	KY988672	Х	Х
Lepanthes glicensteinii Luer	Lepanthes_glicens teinii_AK5818	1512	761	751	AK5818	KY988857	KY988673		

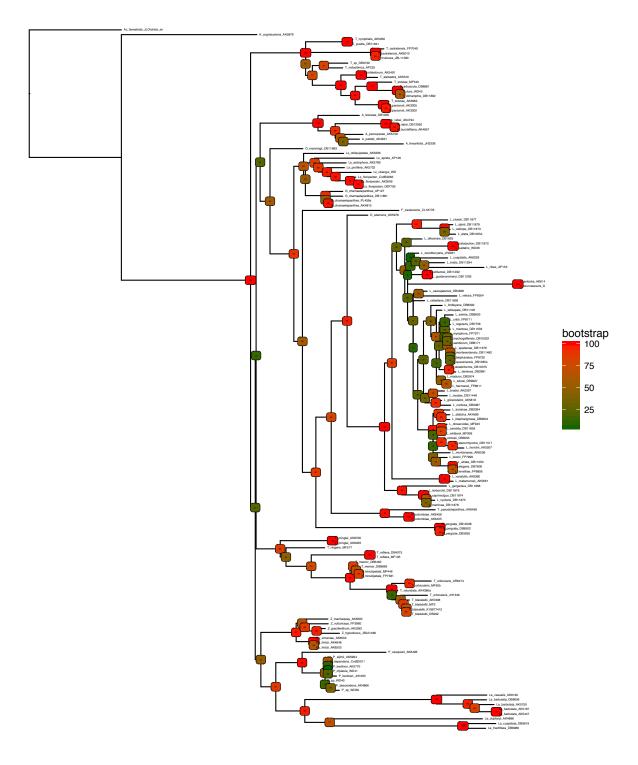
Lepanthes gustavo- romeroi Archila	Lepanthes_gustav oromeroi_DB112	1564	798	766	DB11293	KY988859	KY988675		Х
Lepanthes	93 Lepanthes_herma	1564	798	766	FP8611	KY988860	KY988676	Х	
hermansii Luer Lepanthes horichii Luer	nsii_FP8611 Lepanthes_horichi i AK5507	1564	798	766	AK5507	KY988861	KY988677	Х	X
<i>Lepanthes kleinii</i> Bogarín & Pupulin	Lepanthes_kleinii FP7999	1564	798	766	FP7999	KY988862	KY988678	Х	Х
Lepanthes latisepala Ames & C.Schweinf.	Lepanthes_latisep ala_DB11102	1564	798	766	DB11102	KY988863	KY988679		
Lepanthes lindleyana Oerst.& Rchb.f.	Lepanthes_lindley ana_DB8392	1564	798	766	DB8392	KY988865	KY988681		X
Lepanthes machogaffensis Pupulin & D.Jiménez	Lepanthes_macho gaffensis_DB105 22	1564	798	766	DB10522	KY988867	KY988683		
<i>Lepanthes maduroi</i> Luer	Lepanthes_madur oi DB2974	1564	798	766	DB2974	KY988868	KY988684		
Lepanthes martineae Luer & Cloes	Lepanthes_martin ae_DB11878	1564	798	766	DB11878	KY988869	KY988685		
Lepanthes matamorosii Pupulin & Bogarín	Lepanthes_matam orosii_AK5661	1564	798	766	AK5661	KY988870	KY988686		
Lepanthes mentosa Luer	Lepanthes_mento sa DB11533	1556	790	766	DB11533	KY988871	KY988687		Х
Lepanthes monteverdensis Luer & R.Escobar	Lepanthes_monte verdensis_DB114 82	1564	798	766	DB11482	KY988872	KY988688		
<i>Lepanthes montis- narae</i> Pupulin, Bogarín & C.M.Sm.	Lepanthes_montis narae_AK6536	1564	798	766	AK6536	KY988873	KY988689	Х	Х
Lepanthes myiophora Luer	Lepanthes_myiop hora FP7971	1564	798	766	FP7971	KY988874	KY988690		Х
<i>Lepanthes mystax</i> Luer & R.Escobar	Lepanthes_mysta x DB11446	1564	798	766	DB11446	KY988875	KY988691		Х
Lepanthes nycteris Luer & R.Vásquez	Lepanthes_nycteri s DB11875	1564	798	766	DB11875	KY988876	KY988692		
<i>Lepanthes olmosii</i> Bogarín	Lepanthes_olmosi i DB3005	1564	798	766	DB3005	KY988877	KY988693	Х	Х
Lepanthes queveriensis Bogarín & Pupulin	Lepanthes_quever iensis_DB10854	1564	798	766	DB10854	KY988879	KY988695		
Lepanthes rafaeliana Pupulin	Lepanthes_rafaeli ana DB11658	1564	798	766	DB11658	KY988880	KY988696		Х
Lepanthes regularis Luer	Lepanthes_regular is DB7756	1564	798	766	DB7756	KY988881	KY988697		
Lepanthes ribes Luer	Lepanthes_ribes_ AP153	1526	769	757	AP153	KY988882	KY988698	Х	Х
<i>Lepanthes saltatrix</i> Luer & Hirtz	Lepanthes_saltatri x_HBL26	1564	798	766	HBL_26	KY988883	KY988699		
Lepanthes sandiorum Bogarín & Karremans	Lepanthes_sandio rum_DB8171	1564	798	766	DB8171	KY988884	KY988700		
<i>Lepanthes siboei</i> Bogarín & D.Jiménez	Lepanthes_siboei _DB9927	1564	798	766	DB9927	KY988885	KY988701		Х

<i>Lepanthes sijmii</i> Luer & Sijm	Lepanthes_sijmii_ DB11879	1564	798	766	DB11879	KY988886	KY988702		X
Lepanthes spadariae Pupulin	Lepanthes_spadar iae DB11676	1564	798	766	DB11676	KY988887	KY988703		
Lepanthes stenorhyncha Luer	Lepanthes_stenorr hyncha DB11517	1564	798	766	DB11517	KY988888	KY988704		
<i>Lepanthes</i> <i>terborchii</i> Luer & Sijim	Lepanthes_terborc hii_DB11876	1564	798	766	DB11876	KY988889	KY988705		
<i>Lepanthes tristis</i> Bogarín & Pupulin	Lepanthes_tristis_ DB11294	1564	798	766	DB11294	KY988890	KY988706	Х	Х
<i>Lepanthes turialvae</i> Rchb.f.	Lepanthes_turialv ae_DB2394	1564	798	766	DB2394	KY988891	KY988707	X	Х
<i>Lepanthes variabilis</i> C.M.Sm., Pupulin & D.Jiménez	Lepanthes_variabi lis_AK6380	1564	798	766	AK6380	KY988892	KY988708		
<i>Lepanthes velosa</i> Luer & Hirtz	Lepanthes_velosa FP6504	1564	798	766	FP6504	KY988893	KY988709		
<i>Lepanthes whittenii</i> Pupulin & Bogarín	Lepanthes_whitte nii_MF909	1564	798	766	MF909	KY988895	KY988711		
<i>Lepanthes</i> <i>williamsii</i> Salazar & Soto Arenas	Lepanthes_willia msii_DB11292	1564	798	766	DB11292	KY988896	KY988712	X	X
Lepanthes woodburyana Stimson	Lepanthes_woodb uryana_JH2931	1564	798	766	JH2931	AF262890	AF265472	Х	X
<i>Lepanthopsis apoda</i> (Garay & Dunst.) Luer	Lepanthopsis_apo da_AP126	1564	798	766	AP126	KF747841	MK306411	Х	X
Lepanthopsis astrophora Garay (1)	Lepanthopsis_astr ophora_AK5766	1505	797	708	AK5766	MK306368	MK306412		
<i>Lepanthopsis</i> <i>floripecten</i> (Rchb.f.) Ames (1)	Lepanthopsis_flor ipecten_AK3006	1564	798	766	DB7795	KY988898	MK306413		
Lepanthopsis floripecten (Rchb.f.) Ames (2)	Lepanthopsis_flor ipecten_CvdB206 3	1548	797	751	AK3006	KY988897	KY988713		
Lepanthopsis floripecten (Rchb.f.) Ames (3)	Lepanthopsis_flor ipecten_DB7795	773	773	-	CvdB2063	JQ306336	-		
Lepanthopsis obliquipetala (Ames & C.Schweinf.) Luer	Lepanthopsis_obli quipetala_AK562 6	1564	798	766	AK5626	MK306369	MK306414		
Lepanthopsis prolifera Garay	Lepanthopsis_prol ifera AK5722	797	797	-	AK5722	MK306370	-		
Lepanthopsis ubanguii Luer	Lepanthopsis_uba ngui HBL	797	797	-	HBL_sn	MK306371	-		
<i>Opilionanthe</i> <i>manningii</i> (Luer) Karremans & Bogarín	Opilionanthe_man ningii_DB11883	1564	798	766	DB11883	MK306372	MK306415	X	X
Pendusalpinx berlineri (Luer) Karremans & Mel.Fernández (1)	Pendusalpinx_berl ineri_AK5770	1518	797	721	AK5770	KY988984	KY988792		
Pendusalpinx berlineri (Luer) Karremans & Mel.Fernández (1)	Pendusalpinx_berl ineri_JH1605	1561	795	766	JH1605	AF262900	AF265475		

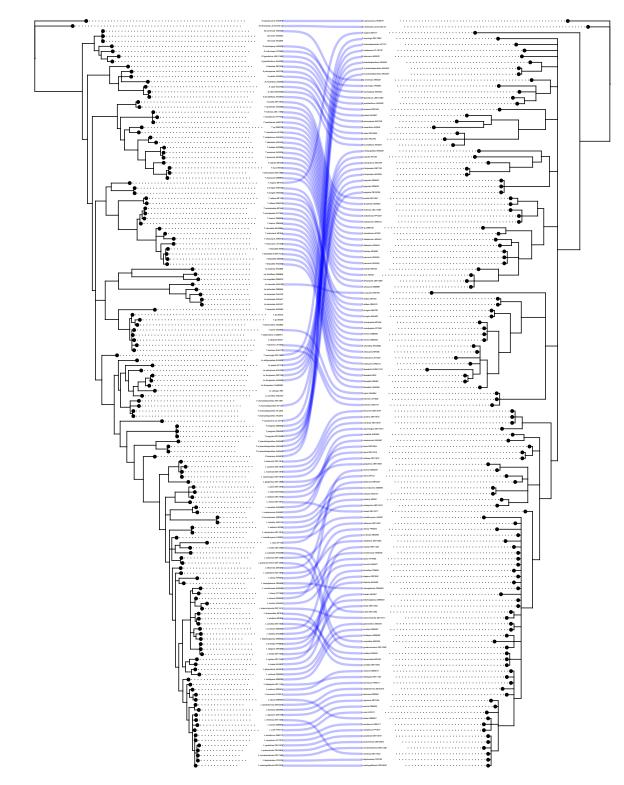

Pendusalpinx	Pendusalpinx dep	797	797		CvdB2011	JQ306456		
dependens (Luer)	endens CvdB201	191	191	-	CVuB2011	10200420	-	
Karremans &	1							
Mel.Fernández (1)	-							
Pendusalpinx	Pendusalpinx dep	797	797	-	AK4866	MK306373	-	
dependens (Luer)	endens_AK4866							
Karremans &	_							
Mel.Fernández (2)								
Pendusalpinx patula	Pendusalpinx_pat	797	797	-	HBL_41	MK306374	-	
(Luer) Karremans &	ula_HBL41							
Mel.Fernández								
Pendusalpinx sijmii	Pendusalpinx_siji	1540	797	743	AK5994	KY988993	KY988801	
(Luer) Karremans &	mii_AK5994							
Mel.Fernández	D 1 1 .	202	202			10000075		
Pendusalpinx sp.	Pendusalpinx_sp_	797	797	-	HBL_39	MK306375	-	
	HBL39	707	707		LIDI 40	NIZ 20(27(
Pendusalpinx sp.	Pendusalpinx_sp_	797	797	-	HBL_40	MK306376	-	
Don dug almi	HBL40	707	707		AVC 40C	MIX 204277		
Pendusalpinx	Pendusalpinx_vas quezii AK6496	797	797	-	AK6496	MK306377	-	
<i>vasquezii</i> (Luer) Karremans &	quezii_AK0490							
Mel.Fernández								
Pseudolepanthes	Pseudolepanthes	1552	797	755	AK6455	MK306378	MK306416	
colombiae Archila	colombiae_AK64	1552	171	155	1110733	1111200070	10112300410	
(1)	55							
Pseudolepanthes	Pseudolepanthes	1564	798	766	AK6456	MK306379	MK306417	
colombiae Archila	colombiae AK64							
(2)	56							
Pseudolepanthes	Pseudolepanthes	1564	798	766	AK6458	MK306380	MK306418	
colombiae Archila	colombiae_AK64							
(3)	58 -							
Stellmaris pergrata	Stellamaris_pergr	1551	797	754	DB12038	MK306381	MK306419	
(Ames)	ata_DB12038							
Mel.Fernández &								
Bogarín (1)								
Stellmaris pergrata	Stellamaris_pergr	1564	798	766	DB5635	MK306382	MK306420	
(Ames)	ata_DB5635							
Mel.Fernández &								
Bogarín (2)	Q. 11 .	1			DDCCCC			
Stellmaris pergrata	Stellamaris_pergr	1564	798	766	DB6502	MK306383	MK306421	
(Ames) Mal Farrándaz &	ata_DB6502							
Mel.Fernández & Bogarín (3)								
Trichosalpinx	Trichosalpinx bla	1547	781	766	AK5308	MK306384	MK306422	
blaisdellii	isdellii AK5308	134/	/01	/00	AK3300	1/11/200304	WIX300422	
(S.Watson) Luer (1)								
Trichosalpinx	Trichosalpinx bla	1564	798	766	DB292	MK306385	MK306423	1
blaisdellii	isdellii DB292	1207	, 70	,00	00272	1112300303	11112300723	
(S.Watson) Luer (2)								
Trichosalpinx	Trichosalpinx bla	1564	798	766	K1997741	MK306386	MK306424	
blaisdellii	isdellii K1997741				2			
(S.Watson) Luer (3)	2							
Trichosalpinx	Trichosalpinx bla	1564	798	766	MF2	MK306387	MK306425	
blaisdellii	isdellii_MF2							
(S.Watson) Luer (4)	_							
Trichosalpinx	Trichosalpinx_me	1564	798	766	DB6462	MK306388	MK306426	
memor (Rchb.f.)	mor_DB6462							
Luer (1)								-
Trichosalpinx	Trichosalpinx_me	1564	798	766	DB8696	KY988987	KY988795	
<i>memor</i> (Rchb.f.)	mor_DB8696							
Luer (2)								

<i>Trichosalpinx</i> <i>minutipetala</i> (Ames & C.Schweinf.) Luer (1)	Trichosalpinx_mi nutipetala_FP758 1	1564	798	766	FP7581	MK306389	MK306427		
Trichosalpinx minutipetala (Ames & C.Schweinf.) Luer (2)	Trichosalpinx_mi nutipetala_MF446	1522	797	725	MF446	MK306390	MK306428		
Trichosalpinx orbicularis (Lindl.) Luer (1)	Trichosalpinx_orb icularis_AR6474	1564	798	766	AR6474	KY988989	KY988797		
Trichosalpinx orbicularis (Lindl.) Luer (2)	Trichosalpinx_orb icularis_JH1349	1564	798	766	JH1349	AF262886	AF265476		
Trichosalpinx orbicularis (Lindl.) Luer (3)	Trichosalpinx_orb icularis_MF65b	1564	798	766	MF65b	MK306391	MK306429		
<i>Trichosalpinx</i> <i>pringlei</i> (Schltr.) Luer (1)	Trichosalpinx_pri nglei_AK6463	1564	798	766	AK6463	MK306392	MK306430		
Trichosalpinx pringlei (Schltr.) Luer (2)	Trichosalpinx_pri nglei_AK6706	1564	798	766	AK6706	MK306393	MK306431		
<i>Trichosalpinx</i> <i>reflexa</i> Mel.Fernández & Bogarín (1)	Trichosalpinx_refl exa_DB4075	1564	798	766	DB4075	KY988991	KY988799		
<i>Trichosalpinx</i> <i>reflexa</i> Mel.Fernández & Bogarín (2)	Trichosalpinx_refl exa_MF195	1564	798	766	MF195	KY988992	KY988800		
Trichosalpinx ringens Luer	Trichosalpinx_rin gens MF577	1564	798	766	MF577	MK306394	MK306432	Х	Х
<i>Trichosalpinx</i> <i>rotundata</i> (C.Schweinf.) Dressler	Trichosalpinx_rot undata_AK4386a	1564	798	766	AK4386a	MK306395	MK306433		
<i>Tubella alabastra</i> (Luer & R.Escobar) Archila	Tubella_alabastra _AK5540	1564	798	766	AK5540	MK306396	MK306434		
Tubella arbuscula (Lindl.) Archila	Tubella_arbuscula DB8881	1508	797	711	DB8881	MK306397	MK306435		
Tubella cedralensis (Ames) Archila (1)	Tubella_cedralens is_AK6010	1564	798	766	AK6010	KY988985	KY988793		
Tubella cedralensis (Ames) Archila (2)	Tubella_cedralens is_FP7049	1564	798	766	FP7049	MK306398	MK306436		
Tubella dirhamphis (Luer) Archila	Tubella_dirhamph is_DB11882	1564	798	766	DB11882	MK306399	MK306437		
Tubella dura (Lindl.) Archila	Tubella_dura_HB L42	1549	797	752	HBL_42	MK306400	MK306438		
Tubella fruticosa (Luer) Archila	Tubella_fruticosa JBL11580	1564	798	766	JBL11580	KY988986	KY988794		
<i>Tubella notosibirica</i> (T.Hashim.) Archila	Tubella_notosibiri ca_AP225	1530	797	733	AP225	MK306401	MK306439		
Tubella nymphalis (Luer) Archila	Tubella_nymphali s_AK5950	1557	791	766	AK5950	KY988988	KY988796		
<i>Tubella parsonsii</i> (Luer & Dod) Archila (1)	Tubella_parsonsii _AK3302	1551	797	754	AK3302	MK306402	MK306440		

<i>Tubella parsonsii</i> (Luer & Dod) Archila (2)	Tubella_parsonsii _AK3305	1564	798	766	AK3305	MK306403	MK306441	
Tubella pusilla (Kunth) Archila	Tubella_pusilla_D B11841	1564	798	766	DB11841	KY988990	KY988798	
<i>Tubella robledorum</i> (Luer) Archila	Tubella_robledoru m AK5491	1564	798	766	AK5491	MK306404	MK306442	
<i>Tubella</i> sp.	Tubella_sp_DB97 39	1564	798	766	DB9739	MK306405	MK306443	
<i>Tubella todziae</i> (Luer) Archila (1)	Tubella_todziae_ AK3983	1532	790	742	AK3983	MK306406	MK306444	
<i>Tubella todziae</i> (Luer) Archila (2)	Tubella_todziae_ MF540	1564	798	766	MF540	MK306407	MK306445	
Zootrophion gracilentum (Rchb.f.) Luer	Zootrophion_grac illenthum_AK528 2	1559	797	762	AK5282	KY988995	MK306446	
Zootrophion hirtzii Luer (1)	Zootrophion _hirtzii_AK4848	797	797	-	AK4848	MK306360	-	
Zootrophion hirtzii Luer (2)	Zootrophion _hirtzii_AK6503	797	797	-	AK6503	MK306361	-	
Zootrophion hypodiscus (Rchb.f.) Luer	Zootrophion_hyp odiscus_JBL0148 0	1564	798	766	JBL01480	KY988997	MK306447	
Zootrophion machaqway A.Doucette & J.Portilla	Zootrophion_mac haqway_AK6505	1524	797	727	AK6505	KY988998	KY988803	
Zootrophion vulturiceps (Luer) Luer	Zootrophion_vult uriceps_FP3960	1549	783	766	FP3960	KY989000	KY988804	
Zootrophion ximenae (Luer & Hirtz) Pfahl	Zootrophion _ximeniae_AK65 02	1521	797	724	AK6502	KY989001	KY988805	


Appendix S2. Summary of matrix statistics and parsimony information, for the nrITS, *mat*K and combined datasets. MT=missing taxa compared to concatenated matrix, %IS = identical sites (percentage) in matrix, %PI = percentage of pairwise identity in matrix, % MC = percentage of missing characters in matrix, % gaps = percentage gap characters of the sequences in matrix, %GC = percentage of GC content in matrix, Model = models selected with AIC according to jModelTest2 v2.1.7, PIC=Parsimony informative characters, CI=consistency index, RI=retention index.

Matrix	Specie s	Termina ls	Lengt h (bp)	M T	IS (%)	PI %	% MC	% gap s	%GC	Model	PI C	CI	RI
matK	111	127	766	13	65.8	97.4	0	0.2	31.5	TVM+I+ G	158	0.632	0.848
ITS										GTR+I+ G			
ITS+mat K	122	148	1564	-	54.6	93.5	7.7	4.1	45.3	-	469	0.468	0.846

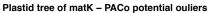

Appendix S3. Consensus trees inferred from concatenated datasets with BI, ML and MP.

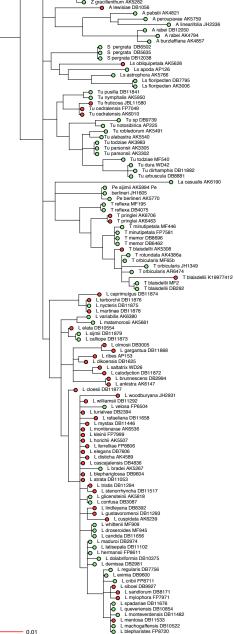
Appendix S4. Consensus ML tree inferred from A. ITS dataset B. matK dataset.

A. ITS-ML concensus tree

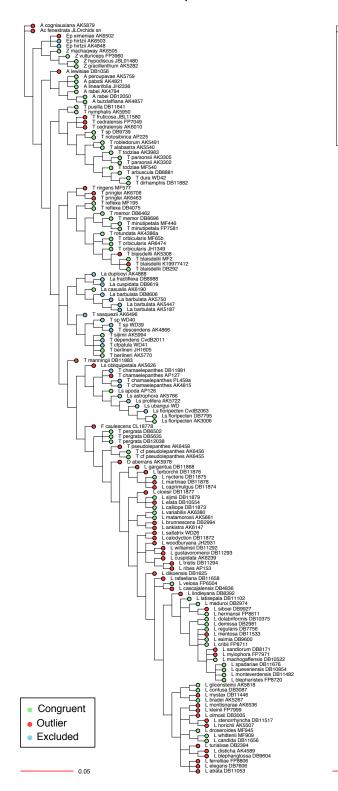
Appendix S5. Co-phylogenetic plot of the topologies of the ML consensus trees inferred from A. ITS dataset B. *mat*K dataset with function *cophylo* of phytools.

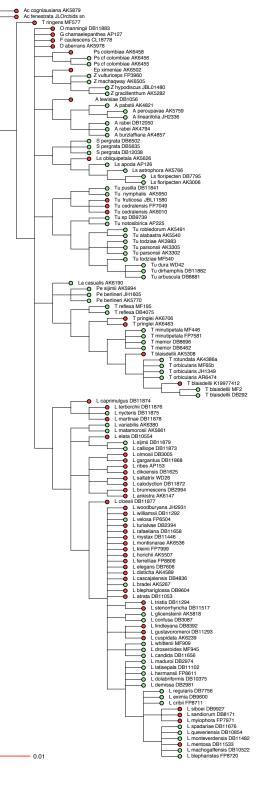
A. ITS

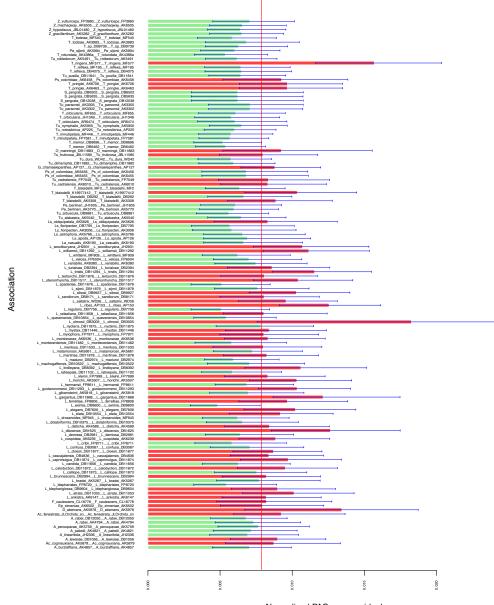

Appendix S6. Support values of consensus trees retrieved from the 15 clades recognized as genera belonging to the *Lepanthes* clade and the relationships among them. Values are shown for analyses removing potential outliers identified with PACo and original matrices. Not applicable (N/A) indicates that a clade is represented by only one accession. Not retrieved (NR), indicates clades not obtained in consensus trees.


Genera	Clades		esian 1ce (PP)	Maxi Likelihoo	d (MLB)		,
		PACo	No PACo	PACo	No PACo	PACo	No PACo
Lepanthes	А	1.00	1.00	100	100	100	101
Draconanthes	B	N/A	N/A	N/A	N/A	N/A	N/A
Pseudolepanthes	C B	1.00	1.00	100	100	100	100
Stellamaris	D	1.00	1.00	100	100	100	100
Frondaria	E	N/A	N/A	N/A	N/A	N/A	N/A
Lepanthopsis	F	0.98	1.00	72	75	100	100
Gravendeelia	G	1.00	1.00	97	98	100	100
<i>Opilionanthe</i>	H	N/A	N/A	N/A	N/A	N/A	N/A
Pendusalpinx	I	1.00	1.00	99	99	100	100
Lankesteriana	I J	1.00	1.00	99 94	99 94	100	100
Trichosalpinx	у К	1.00	1.00	94 98	61	100	100
Tubella	K L	1.00	1.00	100	100	100	100
Anathallis	L M	1.00	1.00	100	100	100	100
Zootrophion	N	1.00	1.00	100	100	100	100
Relashionships among genera	11	1.00	1.00	100	100	100	100
Lepanthes + Draconanthes	1	1.00	1.00	100	88	100	100
Pseudolepanthes + Clade 1	2	0.96	0.96	78	75	NR	NR
Stellamaris + Clade 2	2 3	0.98	0.90	78 80	73	NR	NR
Frondaria + Clade 3	4	0.98	0.99	56	59	100	100
Clade 4 + Clade 6	4 5	1.00	1.00	92	<i>89</i>	100	100
Lepanthopsis + Gravendeelia	6	1.00	1.00	92 64	75	100	100
<i>Opilionanthe</i> + Clade 5	0 7	0.94	0.94	58	47	100	NR
Clade 9 + Clade 7	8	0.94	NR	38	47 NR	100	NR
Trichosalpinx + Lankesteriana +	0	0.95	INIX	52	INK	100	INK
Pendusalpinx	9	0.96	NR	54	NR	100	NR
Lankesteriana + Pendusalpinx	10	1.00	1.00	91	91	100	100
Clade 8 + Clade 12	11	1.00	NR	54	NR	100	NR
Anathallis + Tubella	12	0.87	0.68	30	29	100	NR
Clade 11 + Clade 14	13	1.00	1.00	100	NR	100	NR
Zootrophion	14	1.00	1.00	99	99	100	100

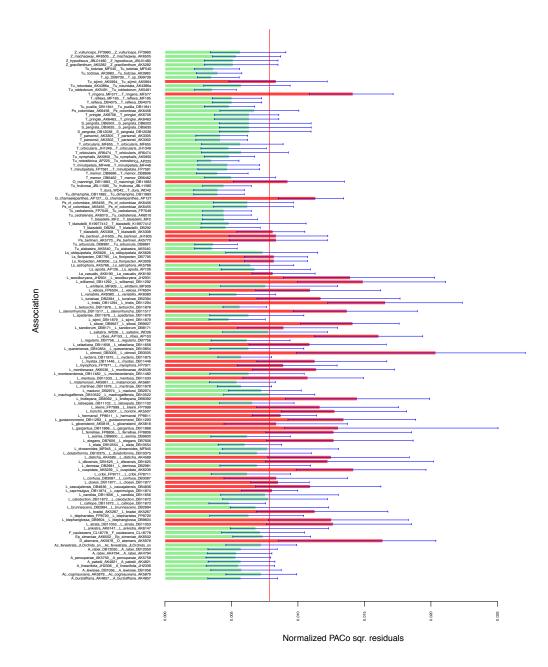
Appendix S7. Potential conflicting terminals between nuclear and plastid derived phylogenies from BI and ML respectively as inferred by PACo.

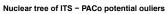

0.05

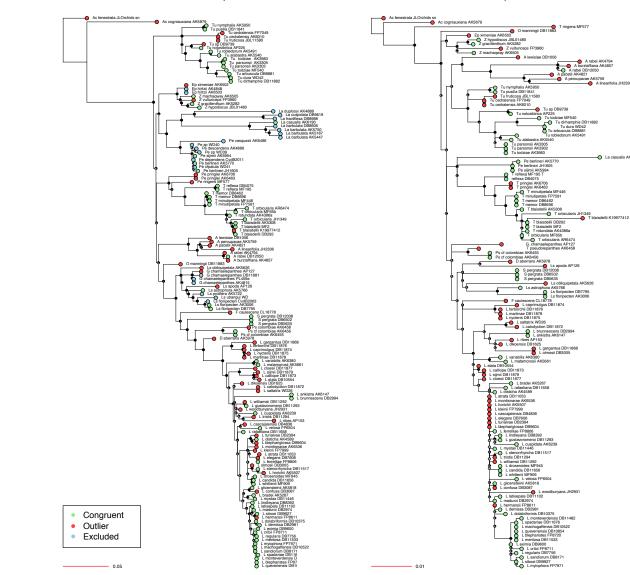



Nuclear tree of ITS – PACo potential ouliers

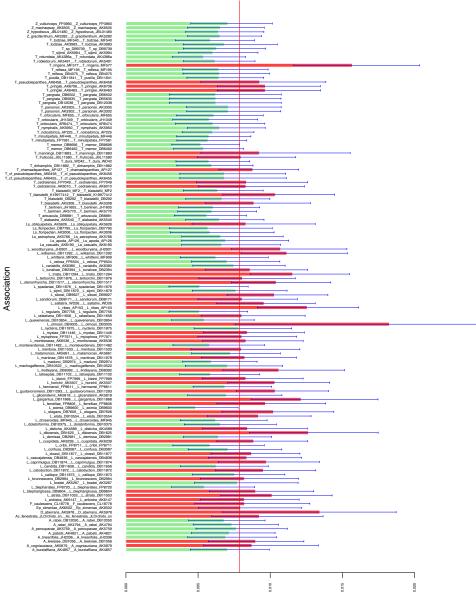
Plastid tree of matK - PACo potential ouliers



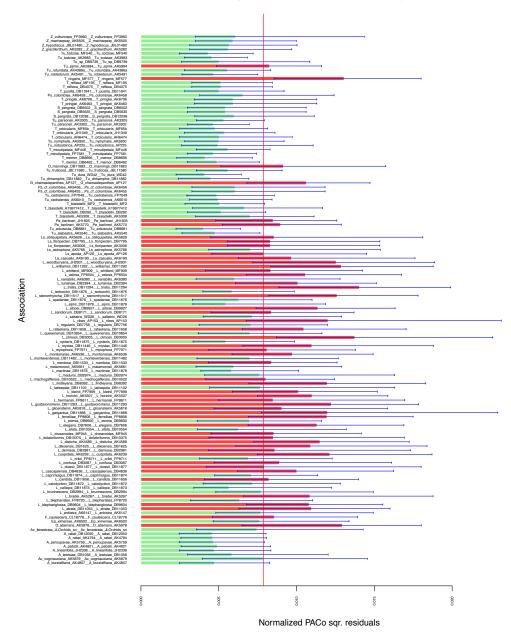

PACo squared residuals – additive trees


Normalized PACo sqr. residuals

PACo squared residuals – unit branch length trees



0.01



PACo squared residuals – additive trees

Normalized PACo sqr. residuals

PACo squared residuals – unit branch length trees

Appendix S8. Log-likelihoods from the ER, SYM and ARD models inferred from ultrametric trees using the re-rooting method. * probability was significantly different <0.01 favoring the more complex model.

Trait	ER	SYM	ARD	ER vs. SYM	ER vs. ARD	SYM vs. ARD	p-val ER vs. SYM	p-val ER vs. ARD	p-val SYM vs. ARD
Habit	-25.56	-25.56	-24.31	0.00	2.50	2.50	1.00	0.11	0.11
Ramicauls	-16.47	-16.47	-16.01	0.00	0.93	0.93	1.00	0.33	0.33
Bracts of ramicauls	-21.89	-20.80	-16.41	2.18	10.97	8.78	0.54	0.05	0.01
Inflorescence	-22.09	-22.09	-18.67	0.00	6.84	6.84	1.00	0.01	0.01
Inflorescence length	-27.88	-27.88	-24.47	0.00	6.83	6.83	1.00	0.01	0.01
Flowers Dorsal sepal	-5.47	-5.47	-5.43	0.00	0.08	0.08	1.00	0.78	0.78
concavity	-24.55	-24.55	-24.45	0.00	0.19	0.19	1.00	0.66	0.66
Synsepal	-20.93	-20.93	-19.90	0.00	2.08	2.08	1.00	0.15	0.15
Sepal shape	-37.48	-36.75	-35.60	1.46	3.77	2.31	0.69	0.58	0.31
Petals shape	-5.34	-5.34	-5.22	0.00	0.23	0.23	1.00	0.63	0.63
Lip shape	-16.42	-16.42	-16.11	0.00	0.63	0.63	1.00	0.43	0.43
Lip mobility	-13.41	-13.41	-12.67	0.00	1.47	1.47	1.00	0.23	0.23
Glenion of the lip	-7.73	-7.73	-7.70	0.00	0.07	0.07	1.00	0.79	0.79
Appendix of the lip	-7.57	-7.57	-7.32	0.00	0.49	0.49	1.00	0.48	0.48
Column foot	-13.58	-13.58	-12.90	0.00	1.36	1.36	1.00	0.24	0.24
Sigma shape	-7.73	-7.73	-7.70	0.00	0.07	0.07	1.00	0.79	0.79
Anther position	-13.58	-13.58	-12.90	0.00	1.36	1.36	1.00	0.24	0.24
Pollinarium shape	-13.41	-13.41	-12.67	0.00	1.47	1.47	1.00	0.23	0.23

Appendix S9. Log-likelihoods from the ER, SYM and ARD models inferred from ultrametric trees using the ACE function of APE. * probability was significantly different <0.01 favoring the more complex model.

Trait	ER	SYM	ARD	ER vs. SYM	ER vs. ARD	SYM vs. ARD	p-val ER vs. SYM	p-val ER vs. ARD	p-val SYM vs. ARD
Habit	-24.87	-24.87	-23.62	0.00	2.50	2.50	1.00	0.11	0.11
Ramicauls	-15.78	-15.78	-19.10	0.00	6.63	6.63	1.00	0.01	0.01
Bracts of ramicauls	-20.79	-19.70	-15.31	2.18	10.97	8.78	0.54	0.05	0.01
Inflorescence	-21.40	-21.40	-17.98	0.00	6.84	6.84	1.00	0.01	0.01
Inflorescence length	-27.19	-27.19	-23.77	0.00	6.83	6.83	1.00	0.01	0.01
Flowers Dorsal sepal	-4.78	-4.78	-4.74	0.00	0.08	0.08	1.00	0.78	0.78
concavity	-23.85	-23.85	-27.44	0.00	7.18	7.18	1.00	0.01	0.01
Synsepal	-20.24	-20.24	-17.39	0.00	5.70	5.70	1.00	0.02	0.02
Sepal shape	-36.38	-35.65	-32.47	1.46	7.82	6.36	0.69	0.17	0.04
Petals shape	-4.65	-4.65	-4.53	0.00	0.23	0.23	1.00	0.63	0.63
Lip shape	-15.73	-15.73	-15.41	0.00	0.63	0.63	1.00	0.43	0.43
Lip mobility	-12.71	-12.71	-11.98	0.00	1.47	1.47	1.00	0.23	0.23
Glenion of the lip	-7.04	-7.04	-7.00	0.00	0.07	0.07	1.00	0.79	0.79
Appendix of the lip	-6.88	-6.88	-6.63	0.00	0.49	0.49	1.00	0.48	0.48
Column foot	-12.89	-12.89	-12.20	0.00	1.36	1.36	1.00	0.24	0.24
Sigma shape	-7.04	-7.04	-7.00	0.00	0.07	0.07	1.00	0.79	0.79
Anther position	-12.89	-12.89	-12.20	0.00	1.36	1.36	1.00	0.24	0.24
Pollinarium shape	-12.71	-12.71	-11.98	0.00	1.47	1.47	1.00	0.23	0.23

Trait	ER	SYM	ARD	ER vs. SYM	ERvsARD	SYMvsAR D	p-val SYM vs. ARD	p-val ER vs. SYM	p-val ER vs. ARD
Habit	-28.48	-28.48	-23.50	0.00	9.96	9.96	0.02	1.00	0.08
Ramicauls	-18.95	-18.95	-18.60	0.00	0.70	0.70	0.87	1.00	0.98
Bracts of ramicauls	-22.12	-21.11	-19.60	2.01	5.03	3.01	0.39	0.37	0.41
Inflorescence	-23.36	-23.36	-18.82	0.00	9.07	9.07	0.03	1.00	0.11
Inflorescence length	-29.33	-29.33	-27.13	0.00	4.39	4.39	0.22	1.00	0.49
Flowers	-07.22	-07.22	-07.21	0.00	0.03	0.03	1.00	1.00	1.00
Dorsal sepal concavity	-22.99	-22.99	-22.67	0.00	0.64	0.64	0.89	1.00	0.99
Synsepal	-22.78	-22.78	-19.93	0.00	5.70	5.70	0.13	1.00	0.34
Sepal shape	-42.36	-41.62	-40.86	1.48	3.01	1.53	0.68	0.48	0.70
Petals shape	-06.26	-06.26	-05.51	0.00	1.50	1.50	0.68	1.00	0.91
Lip shape	-07.63	-07.63	-07.30	0.00	0.64	0.64	0.89	1.00	0.99
Lip mobility	-13.72	-13.72	-12.83	0.00	1.77	1.77	0.62	1.00	0.88
Glenion of the lip	-08.13	-8.13	-08.07	0.00	0.12	0.12	0.99	1.00	1.00
Appendix of the lip	-07.11	-07.11	-06.80	0.00	0.61	0.61	0.89	1.00	0.99
Column foot	-13.63	-13.63	-12.79	0.00	1.67	1.67	0.64	1.00	0.89
Sigma shape	-08.13	-08.13	-08.07	0.00	0.12	0.12	0.99	1.00	1.00
Anther position	-13.63	-13.63	-12.79	0.00	1.67	1.67	0.64	1.00	0.89
Pollinarium shape	-13.72	-13.72	-12.83	0.00	1.77	1.77	0.62	1.00	0.88

Appendix S10. Log-likelihood ratio test estimated from the ARD, ER and SYM models inferred from phylograms using re-rooting method. * probability was significantly different <0.01 favoring the more complex model.

Appendix S11. Bayes factors (BF) of support tree model testing for dating analysis. MLE= Marginal likelihood estimation, SS=stepping stone sampler, CV=coefficient of variation, Y=Yule, BD=Birth Death-Process, BDIS=Birth-Death-Incomplete Sampling.

Speciation model	MLE (SS)	CV	Y	BD	BDIS
Y	-13860.10	0.53	0	-	-
BD	-13850.61	0.52	18.97	0	-
BDIS	-13852.43	0.52	15.33	-3.65	0

Appendix S12. Summary results of the top five best fitting models from the Reversible-Jump MCMC approach with BayesTraitsV3 showing rate classes, frequency of model strings, proportion of zero bin (Z%), posterior distributions of rate classes and standard deviations.

Habit: (0) cespitose ; (1) repent						
Model	q01	q10	Frequency	Proportion		
1	0	0	24861	0.80		
2	Z	0	4983	0.00		
3	0	Ζ	74	0.20		
4	0	1	73	0.00		
5	1	0	9	0.00		
Frequency (Z)	9	4983				
Proportion zero bin (Z%)	0.03	16.61				
Posterior distribution (mean)	0.015	0.012				
Standard deviation	0.006	0.008				

Ramicauls: (0) non-prolific ; (1) prolific							
Model	q01	q10	Frequency	Proportion			
1	0	0	21718	0.72			
2	0	Ζ	8201	0.27			
3	0	1	44	0.00			
4	1	0	36	0.00			
5	Ζ	0	1	0.00			
Frequency (Z)	1	8201					

Proportion zero bin (Z%)	0	27.34
Posterior distribution (mean)	0.009	0.007
Standard deviation	0.005	0.006

Bracts of ramicauls: (0) unornamented ; (1) ornamented; (2) foliaceous

Model	q01	q02	q10	q12	q20	q21	Frequency	Proportion
1	0	Z	Z	0	Z	0	3801	0.13
2	0	Z	Z	0	0	0	3613	0.12
3	0	Ζ	0	0	Z	0	1936	0.06
4	0	Ζ	0	0	0	0	1870	0.06
5	0	Ζ	0	0	Ζ	Ζ	1870	0.06
Frequency (Z)	5898	17122	15117	5034	13805	8161		
Proportion zero bin (Z%)	19.66	57.07	50.39	16.78	46.02	27.2		
Posterior distribution (mean)	0.011	0.009	0.005	0.010	0.066	0.133		
Standard deviation	0.012	0.038	0.006	0.019	0.832	1.313		

Inflorescence: (0) simultaneous ; (1) successive

Inflorescence: (0) simultaneous; (1) successive							
Model	q01	q10	Frequency	Proportion			
1	0	Ζ	24225	0.81			
2	0	0	5270	0.18			
3	Ζ	0	365	0.01			
4	1	0	72	0.00			
5	0	1	68	0.00			
Frequency (Z)	365	24225					
Proportion zero bin (Z%)	1.22	80.75					
Posterior distribution (mean)	0.020	0.003					
Standard deviation	0.010	0.007					

Inflorescence length: (0) shorte	r than leaves; (1) longer than leaves	
----------------------------------	---------------------------------------	--

Model	q01	q10	Frequency	Proportion
1	Z	0	25007	0.83
2	0	0	4763	0.16
3	1	0	116	0.00
4	0	1	102	0.00
5	0	Ζ	12	0.00
Frequency (Z)	25007	12		
Proportion zero bin (Z%)	83.36	0.04		
Posterior distribution (mean)	0.004	0.035		
Standard deviation	0.010	0.013		

Flowers: (0) fully opening; (1) bud-like

Model	q01	q10	Frequency	Proportion
1	0	0	23904	0.80
2	0	Z	6027	0.20
3	Ζ	0	34	0.00
4	0	1	23	0.00
5	1	0	12	0.00
Frequency (Z)	34	6027		
Proportion zero bin (Z%)	0.11	20.09		
Posterior distribution (mean)	0.002	0.002		
Standard deviation	0.002	0.002		

Dorsal sepal concavity: (0) concave; (1) flattened

Model	q01	q10	Frequency	Proportion
1	0	0	23944	0.80
2	0	Ζ	6025	0.20
3	1	0	18	0.00
4	0	1	13	0.00
Frequency (Z)	11	29		
Proportion zero bin (Z%)	0.04	0.1		
Posterior distribution (mean)	0.013	0.013		
Standard deviation	0.006	0.006		

Synsepal: (0) absent ; (1) present

Synsepal: (0) absent ; (1) present				
Model	q01	q10	Frequency	Proportion
1	0	0	13682	0.46
2	0	Z	13583	0.45
3	Z	0	2558	0.09
4	1	0	101	0.00
5	0	1	76	0.00
Frequency (Z)	2558	13583		
Proportion zero bin (Z%)	8.53	45.28		
Posterior distribution (mean)	0.018	0.007		
Standard deviation	0.014	0.008		

Sepals shape: (0) unornamented ; (1) ornamented; (2) foliaceous

Model	q01	q02	q10	q12	q20	q21	Frequency	Proportion
1	0	0	0	Z	Z	Ζ	4720	0.16
2	0	0	Z	0	Ζ	Ζ	2917	0.10
3	0	Ζ	Z	Z	0	0	2280	0.08

4	Ζ	0	Z	Ζ	0	0	2054	0.07
5	Ζ	Ζ	0	Z	0	0	1711	0.06
Frequency (Z)	9442	10113	15152	17531	9929	13132		
Proportion zero bin (Z%)	31.47	33.71	50.51	58.44	33.1	43.77		
Posterior distribution (mean)	0.027	0.030	0.022	0.014	0.013	0.010		
Standard deviation	0.030	0.034	0.034	0.022	0.012	0.010		

Petals shape: (0) subsimilar ; (1) disimilar

Model	q01	q10	Frequency	Proportion
1	0	0	23944	0.80
2	0	Z	6025	0.20
3	1	0	18	0.00
4	0	1	13	0.00
Frequency (Z)	0	6025		
Proportion zero bin (Z%)	0	20.08		
Posterior distribution (mean)	0.018	0.007		
Standard deviation	0.014	0.008		

Lip shape: (0) laminar ; (1) bilobed

Model	q01	q10	Frequency	Proportion
1	0	0	23944	0.80
2	0	Ζ	6025	0.20
3	1	0	18	0.00
4	0	1	13	0.00
Frequency (Z)	0	7033		
Proportion zero bin (Z%)	0	23.44		
Posterior distribution (mean)	0.002	0.002		
Standard deviation	0.002	0.002		

Lip mobility: (0) motile ; (1) sessile

Model	q01	q10	Frequency	Proportion
1	0	0	20653	20653.00
2	0	Z	9285	9285.00
3	0	1	34	34.00
4	1	0	28	28.00
Frequency (Z)	0	9185		
Proportion zero bin (Z%)	0	30.95		
Posterior distribution (mean)	0.005	0.003		
Standard deviation	0.003	0.003		

Glenion of the lip: (0) abscent ; (1) present

Model	q01	q10	Frequency	Proportion
1	0	0	23833	0.79
2	0	Z	6141	0.20
3	1	0	15	0.00
4	0	1	11	0.00
Frequency (Z)	0	6141		
Proportion zero bin (Z%)	0	20.47		
Posterior distribution (mean)	0.002	0.002		
Standard deviation	0.002	0.002		

Appendix of the lip: (0) absent ; (1) present

Model	q01	q10	Frequency	Proportion
1	0	0	20751	0.69
2	0	Ζ	9185	0.00
3	1	0	34	0.00
4	0	1	30	0.31
Frequency (Z)	0	7820		
Proportion zero bin (Z%)	0.11	20.09		
Posterior distribution (mean)	0.004	0.003		
Standard deviation	0.003	0.003		

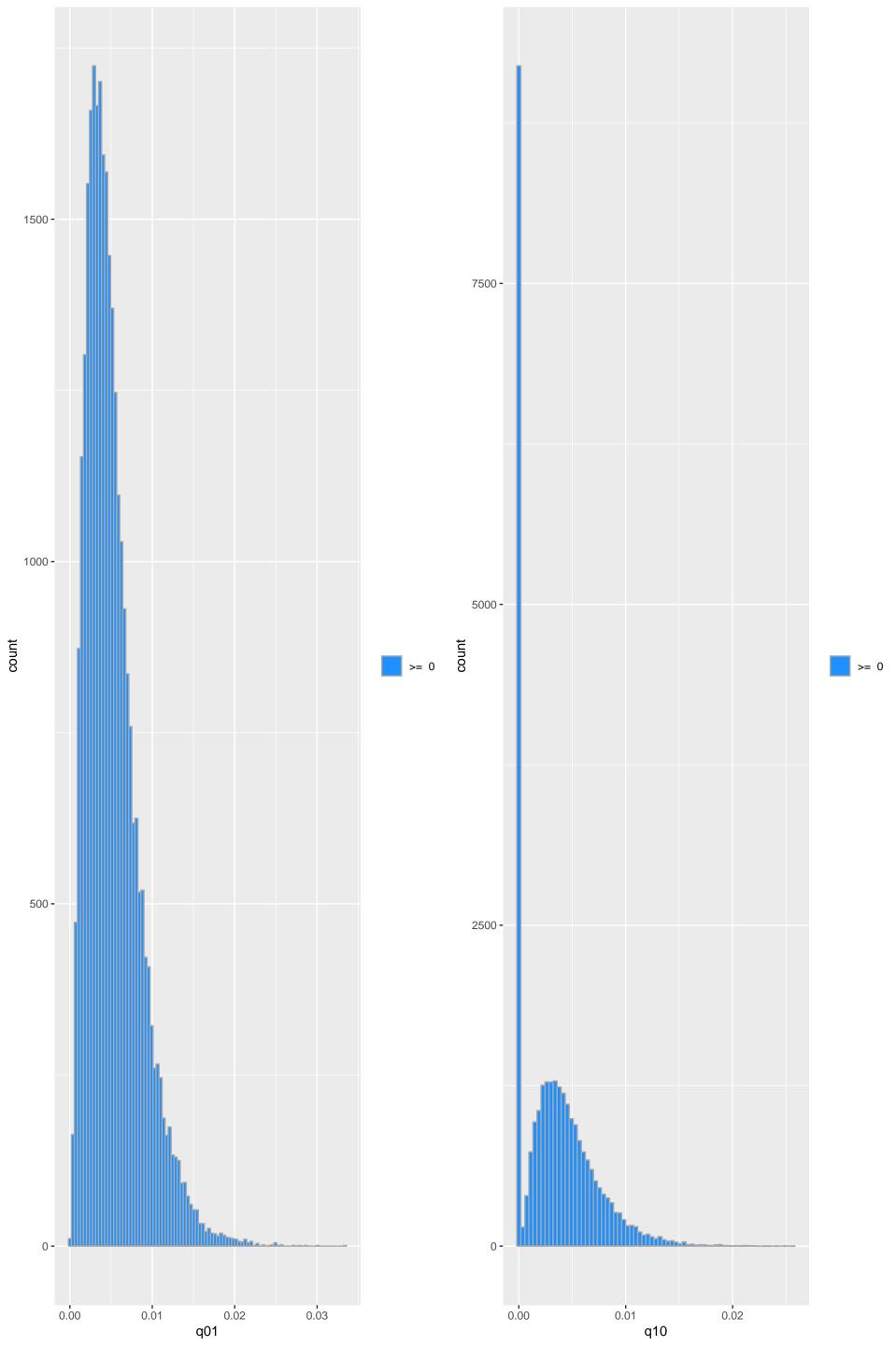
Column foot: (0) absent ; (1) present

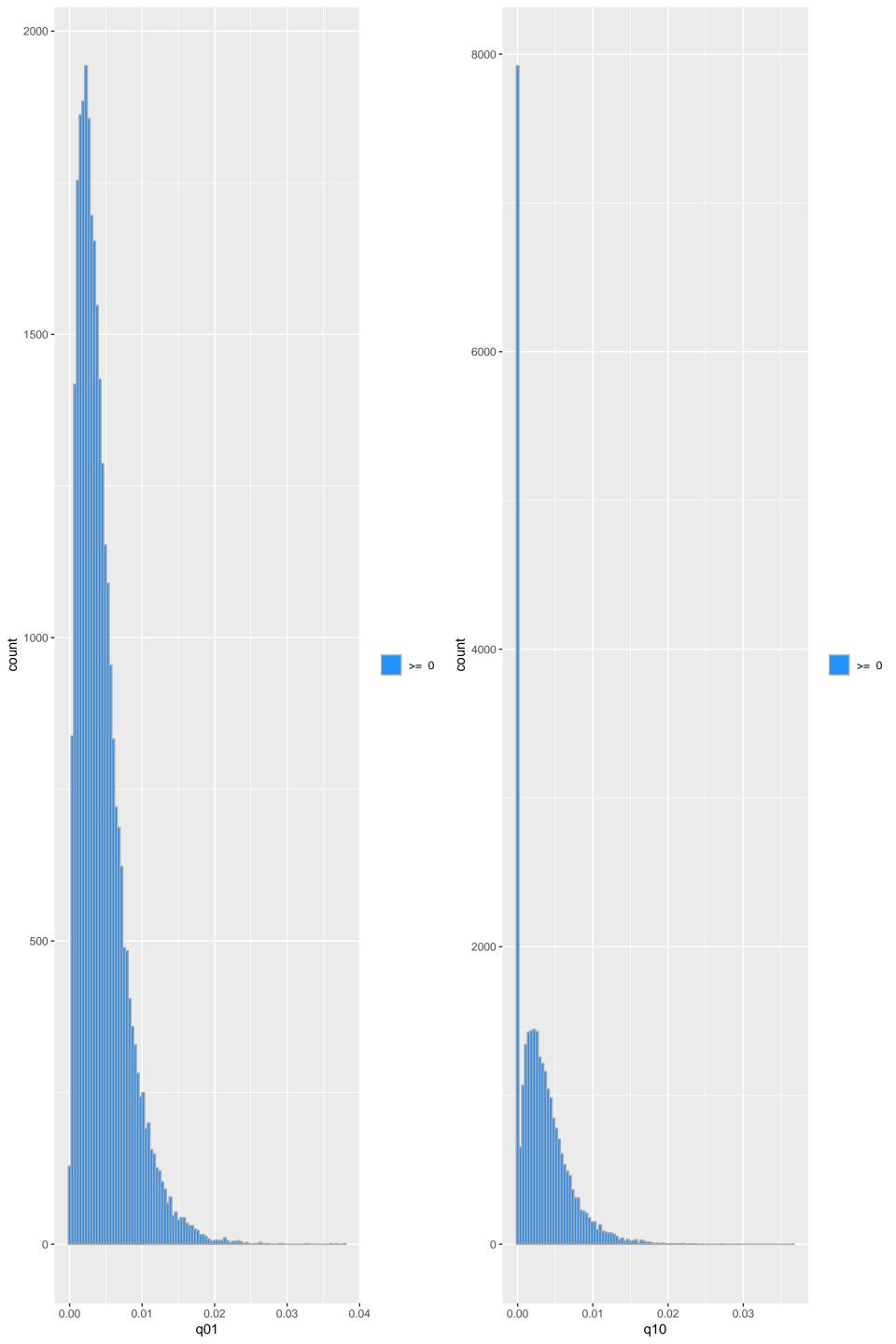
Model	q01	q10	Frequency	Proportion
1	0	0	20688	0.69
2	Ζ	0	9249	0.31
3	1	0	36	0.00
4	0	1	27	0.00
Frequency (Z)	9249	0		
Proportion zero bin (Z%)	30.83	0		
Posterior distribution (mean)	0.003	0.005		
Standard deviation	0.003	0.003		

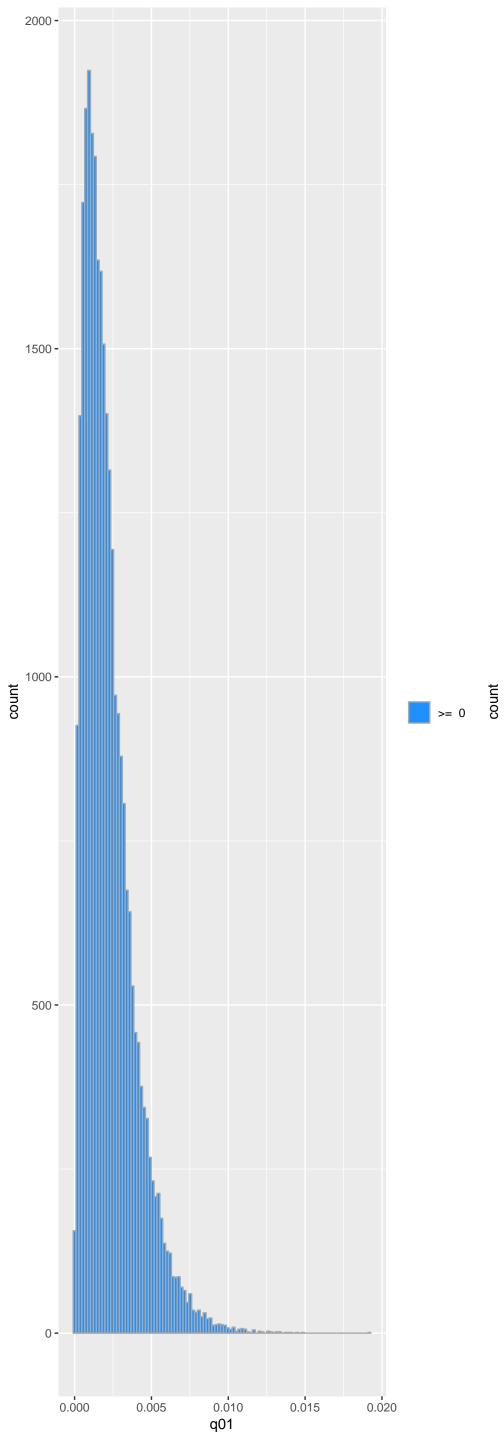
Sigma shape: (0) entire ; (1) bilobed

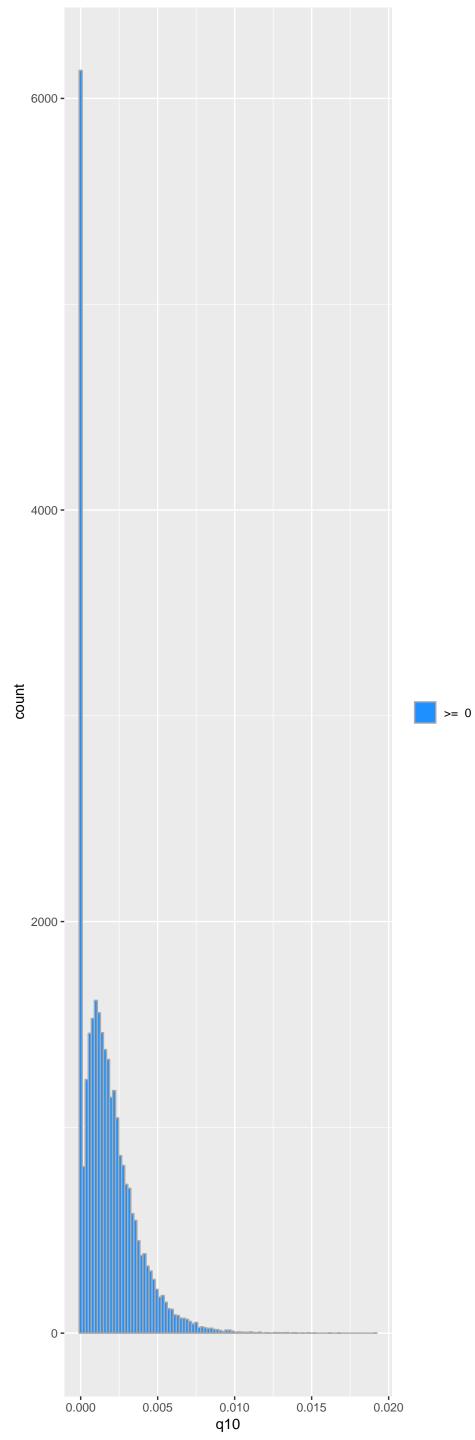
Model	q01	q10	Frequency	Proportion
1	0	0	23772	0.79
2	0	Z	6199	0.21
3	0	1	16	0.00
4	1	0	13	0.00
Frequency (Z)	0	9185		

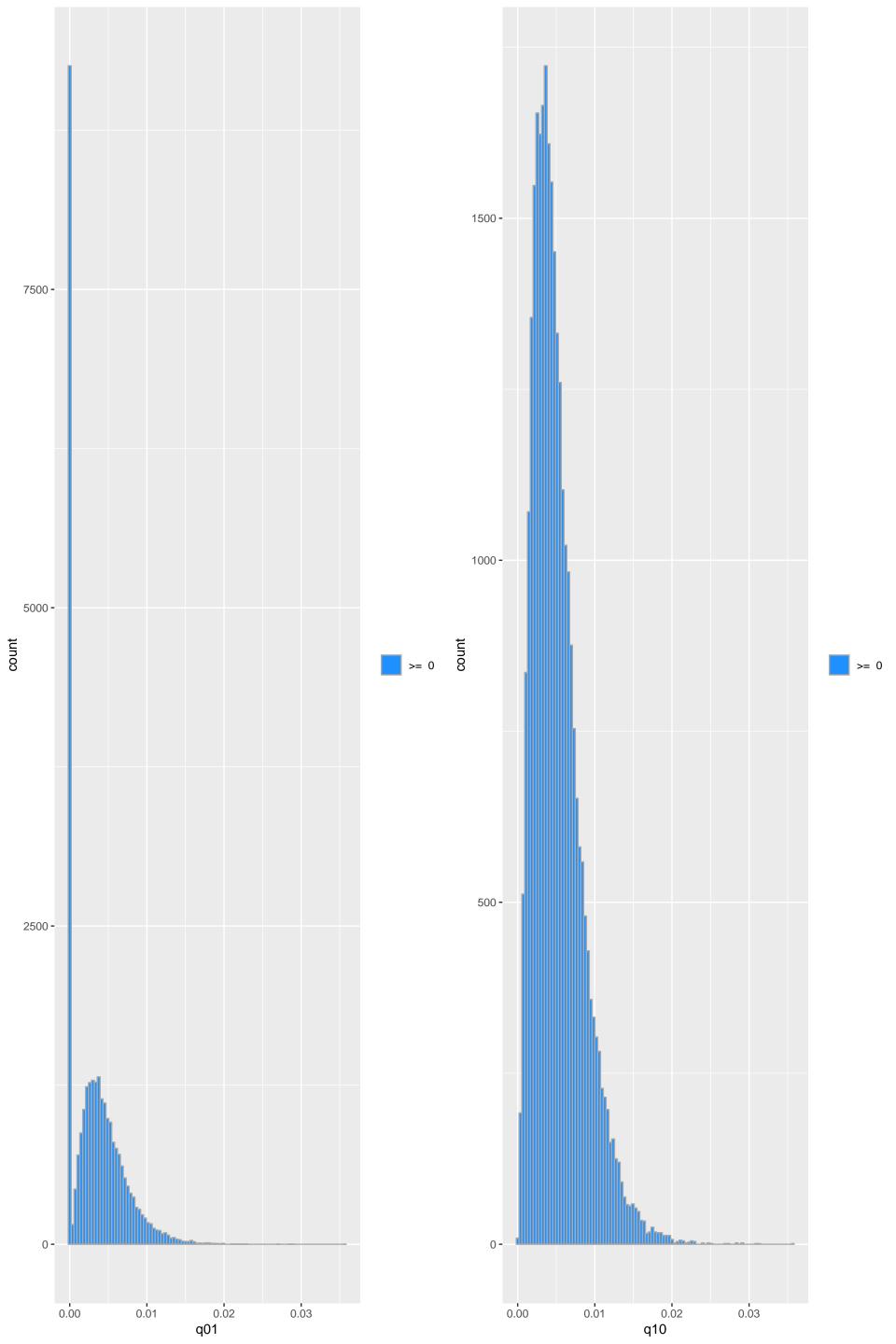
Posterior distribution (mean) 0.002 0.002 Standard deviation 0.002 0.002	Proportion zero bin (Z%)	0	20.66
Standard deviation 0.002 0.002	Posterior distribution (mean)	0.002	0.002
	Standard deviation	0.002	0.002

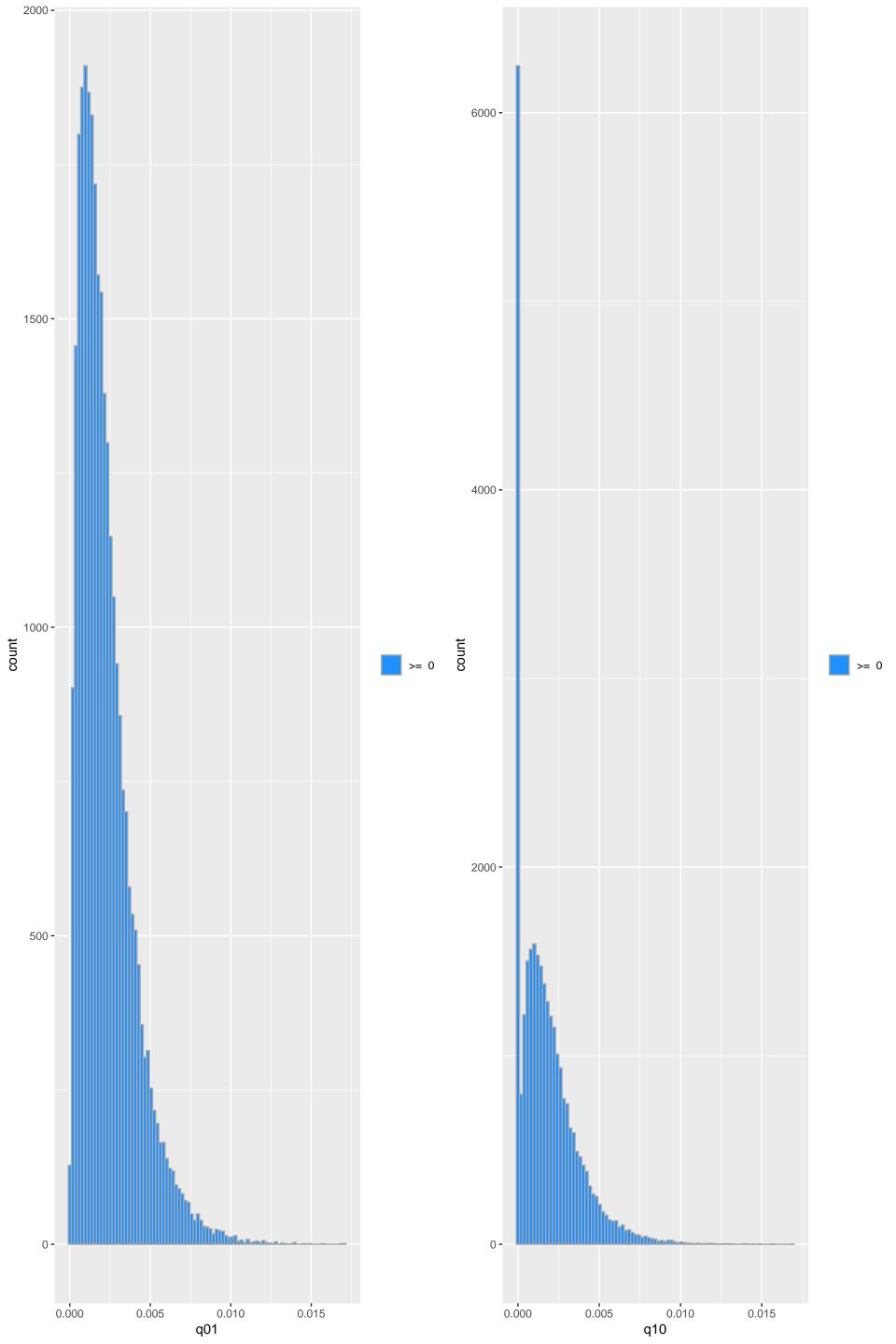

Anther position: (0) ventral; (1) dorsal

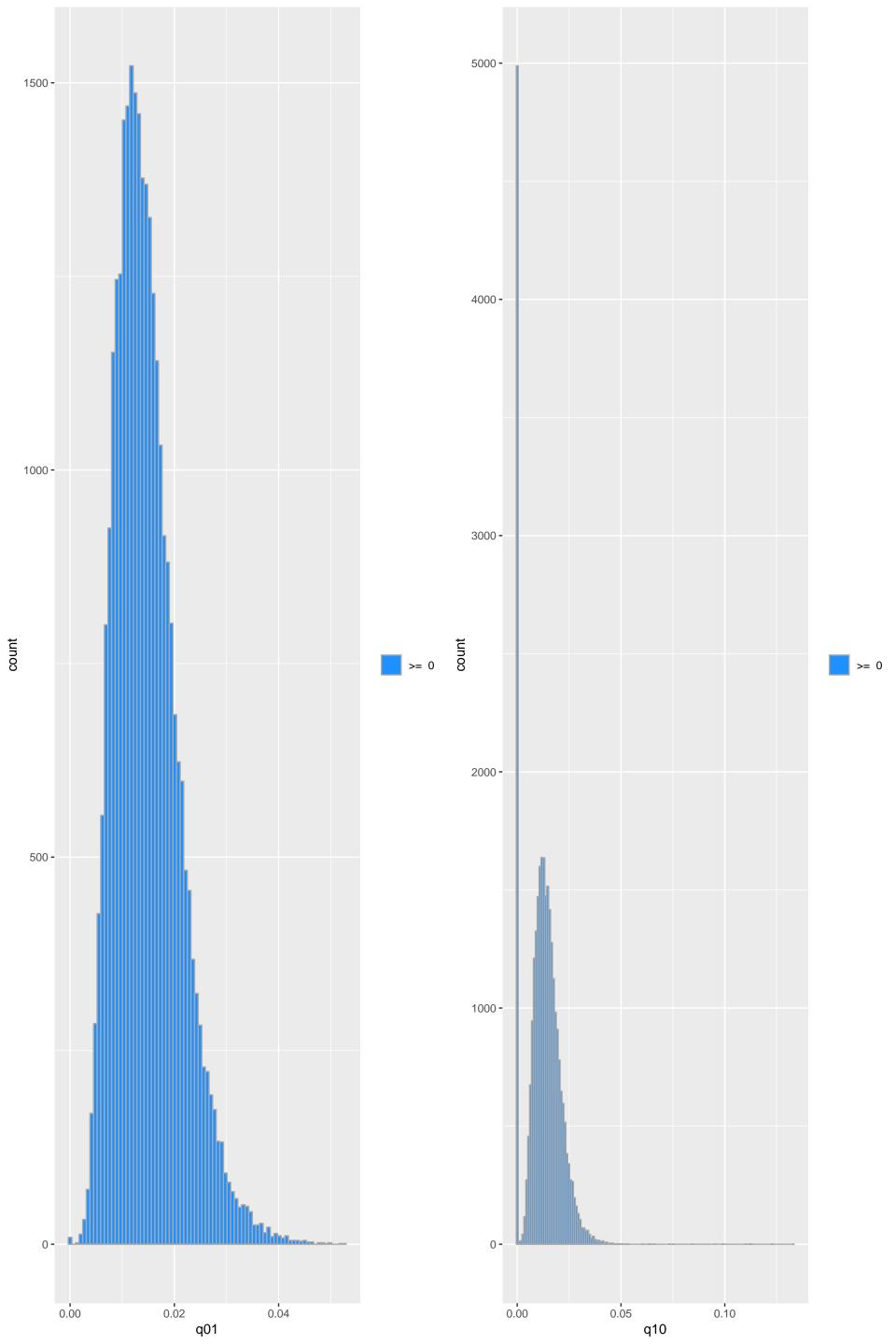

Model	q01	q10	Frequency (model)	Proportion
1	0	0	20751	0.69
2	0	Z	9185	0.31
3	1	0	34	0.00
4	0	1	30	0.00
Frequency (Z)	0	9185		
Proportion zero bin (Z%)	0.000	30.620		
Posterior distribution (mean)	0.005	0.003		
Standard deviation	0.003	0.003		

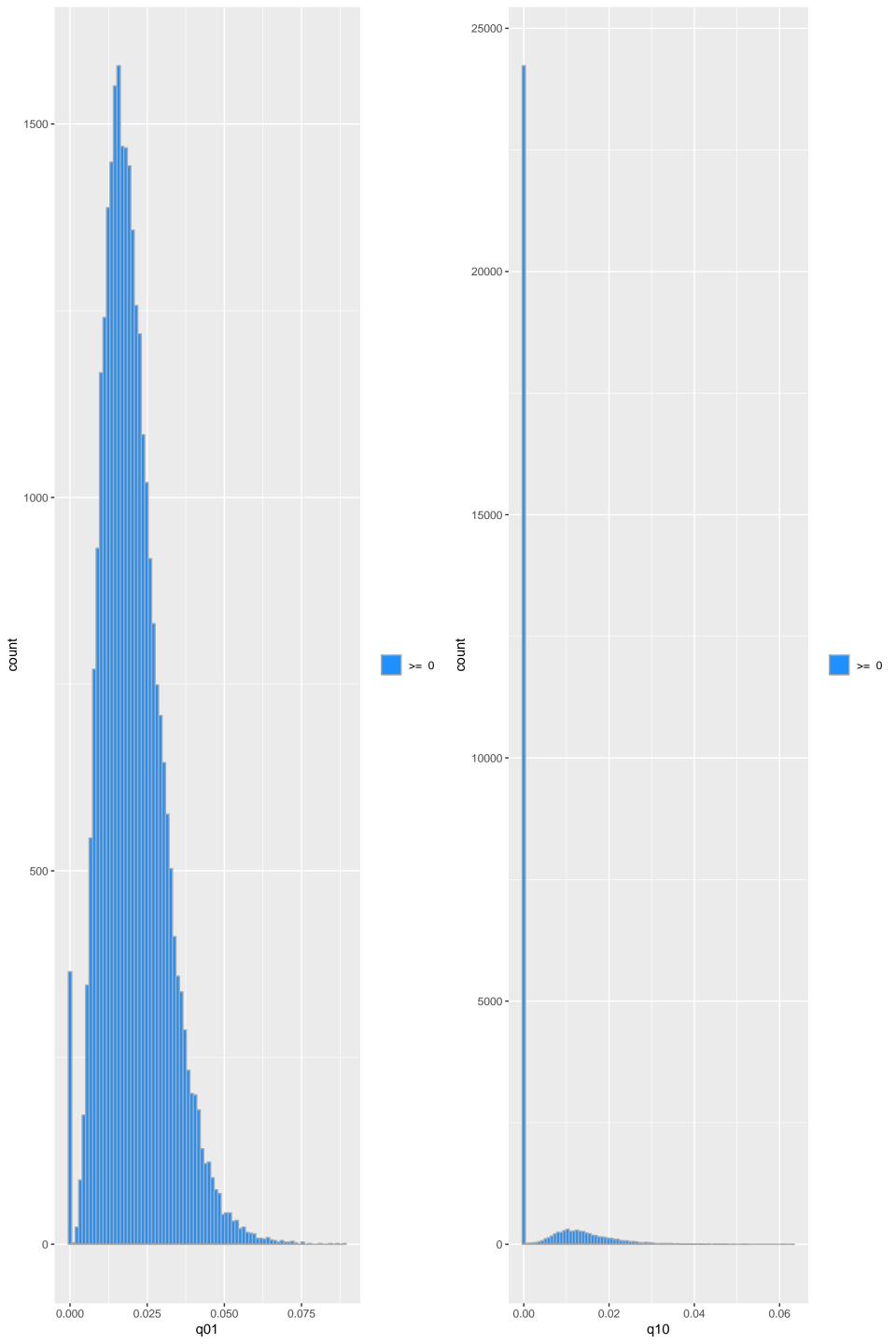

Pollinarium: (0) with caudicles; (1) with caudicles+viscidium

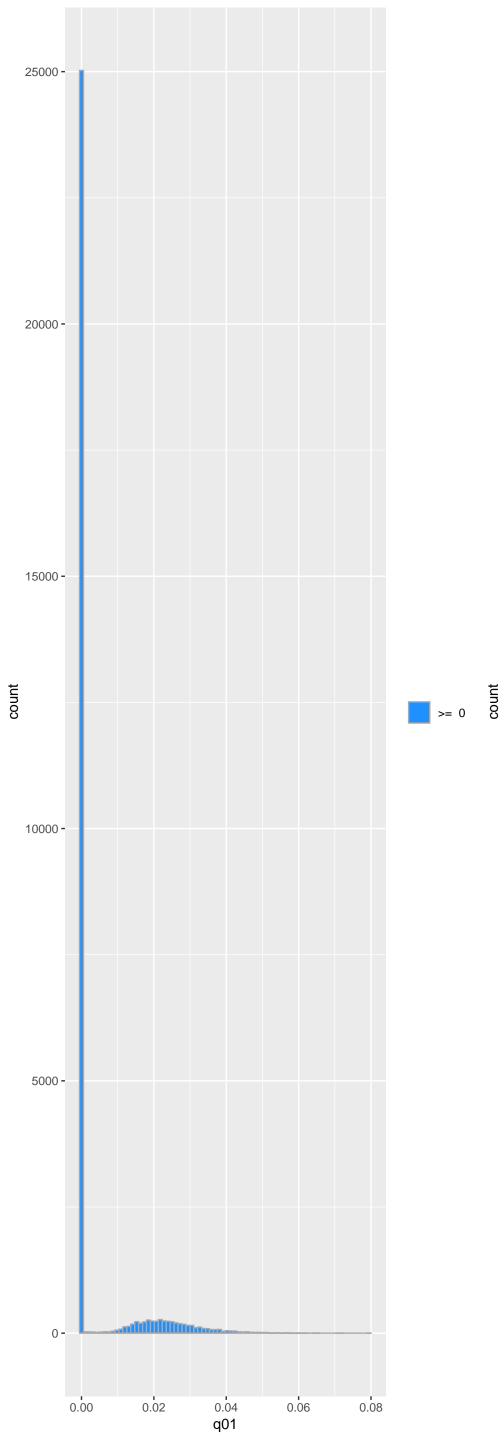

Model	q01	q10	Frequency	Proportion
1	0	0	20541	20541.00
2	0	Z	9404	9404.00
3	1	0	28	28.00
4	0	1	27	27.00
Frequency (Z)	0	9185		
Proportion zero bin (Z%)	0	31.35		
Posterior distribution (mean)	0.005	0.003		
Standard deviation	0.003	0.003		

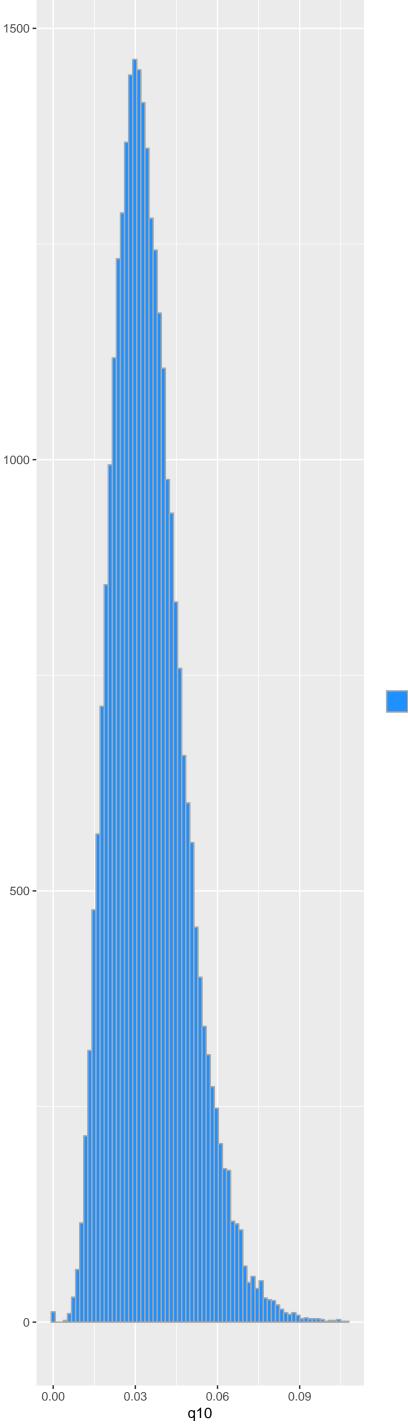

Appendix S13. Posterior distributions of the rate coefficients based on Reversible-Jump approach of BayesTraitsV3.

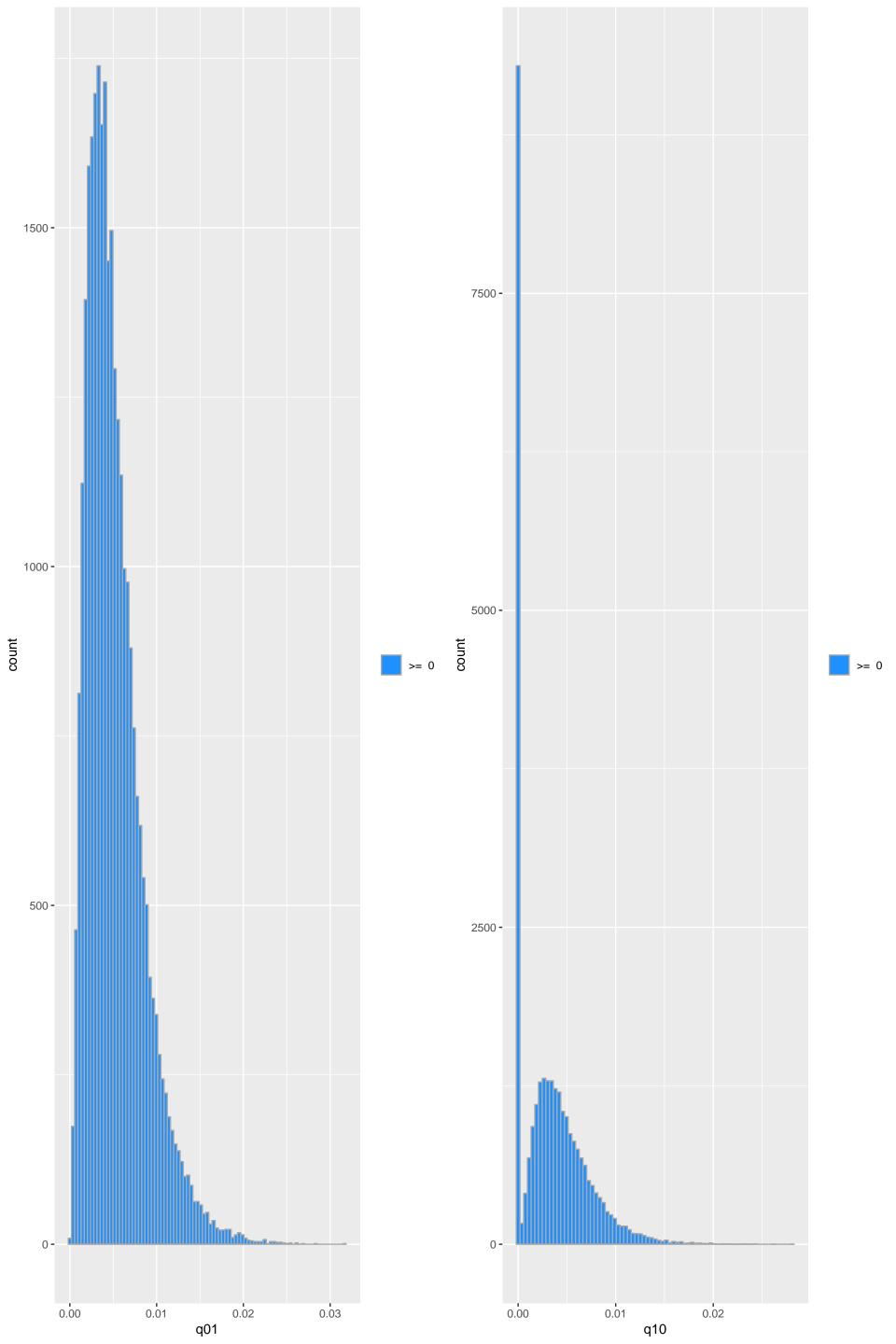


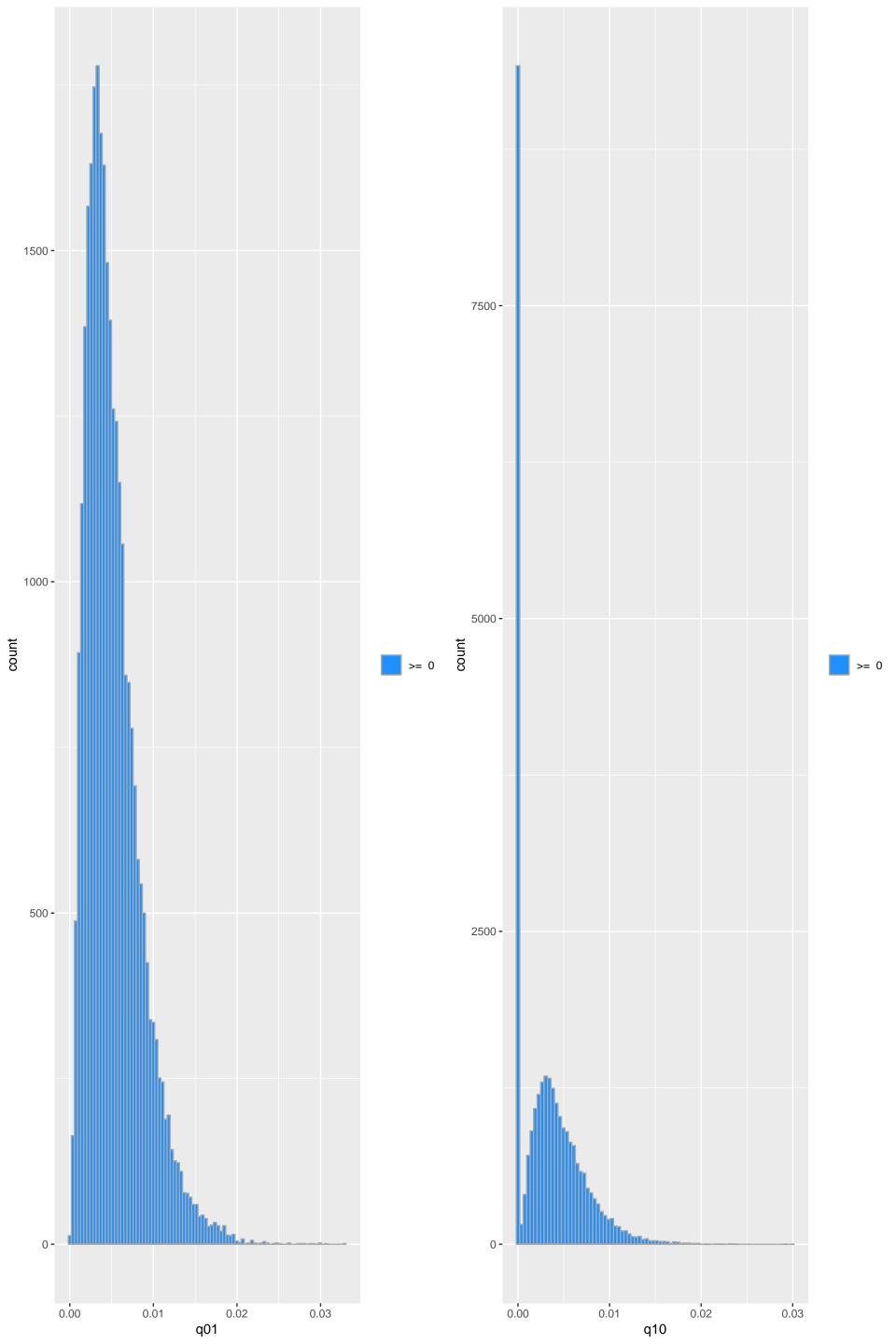


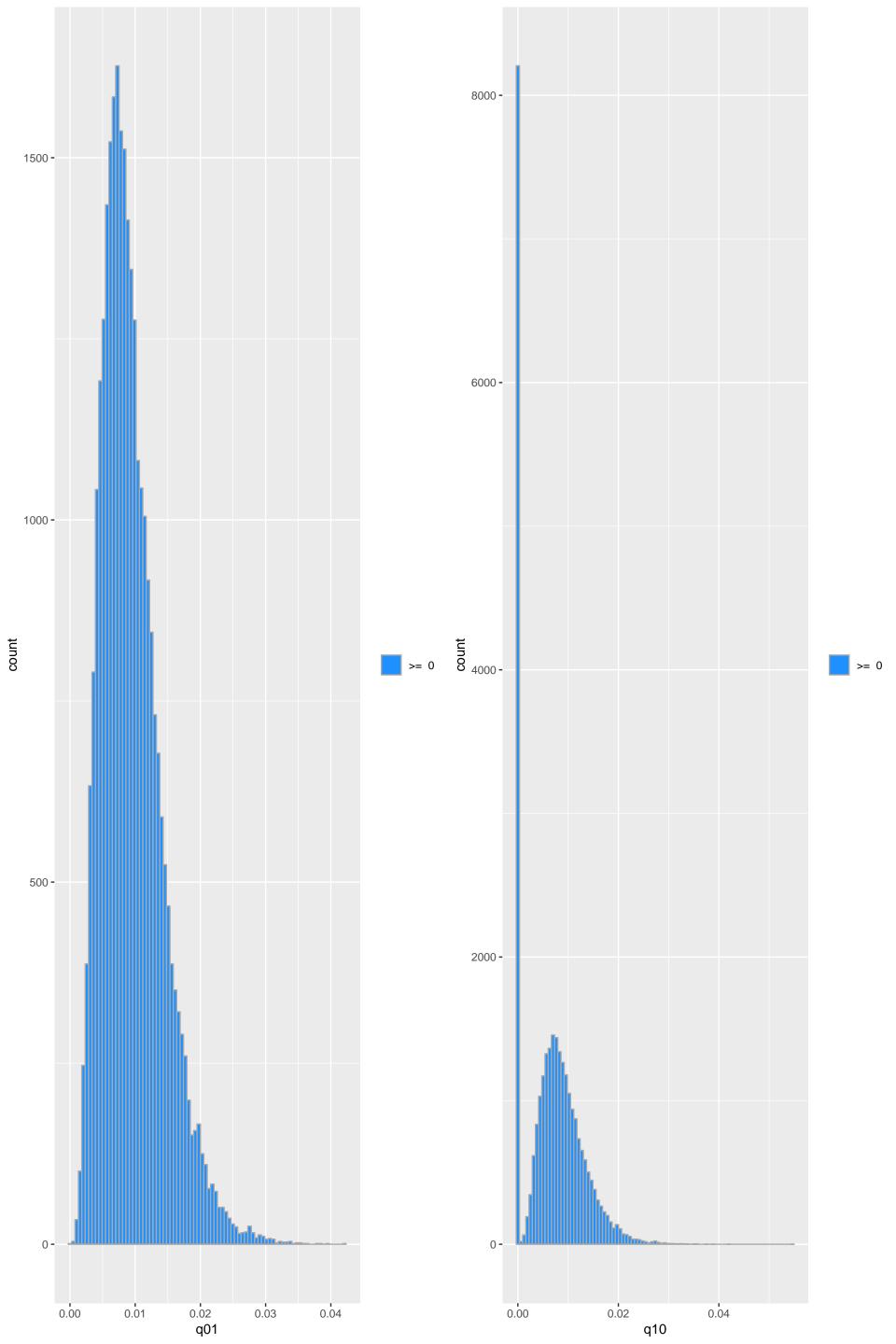


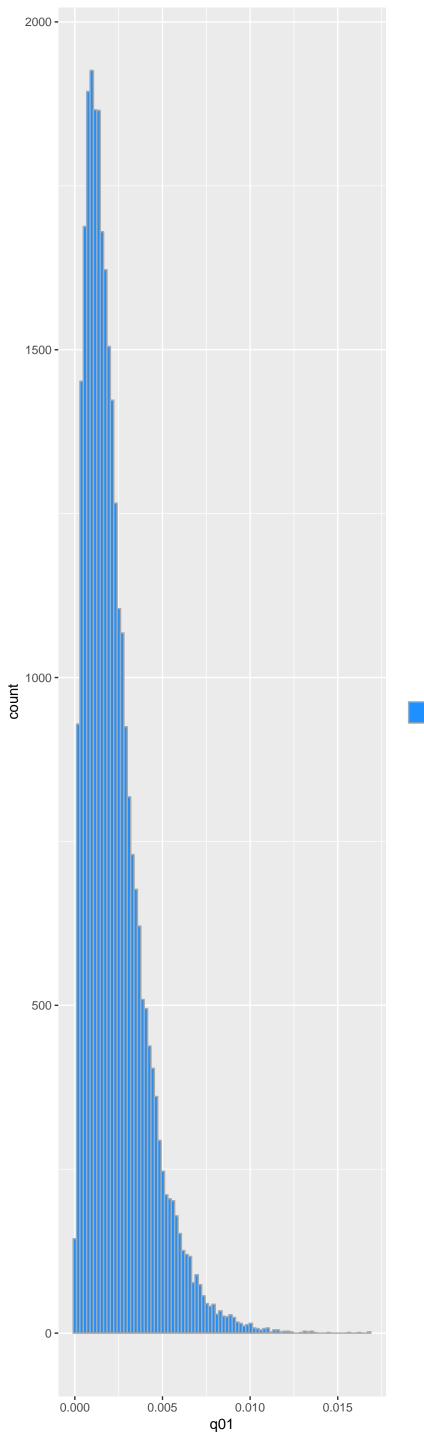


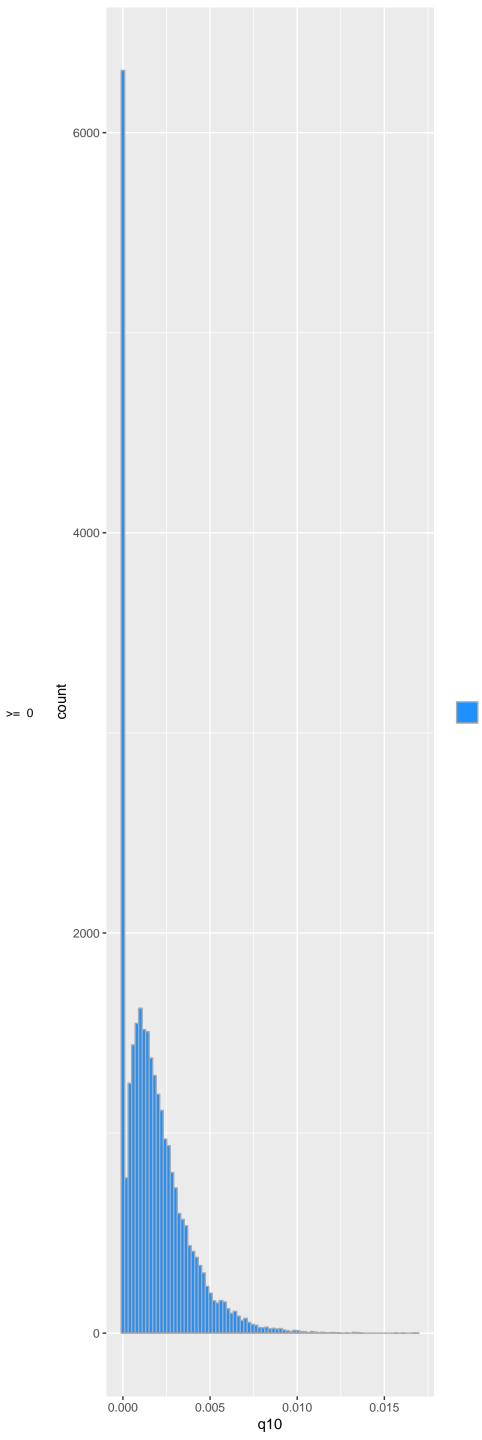


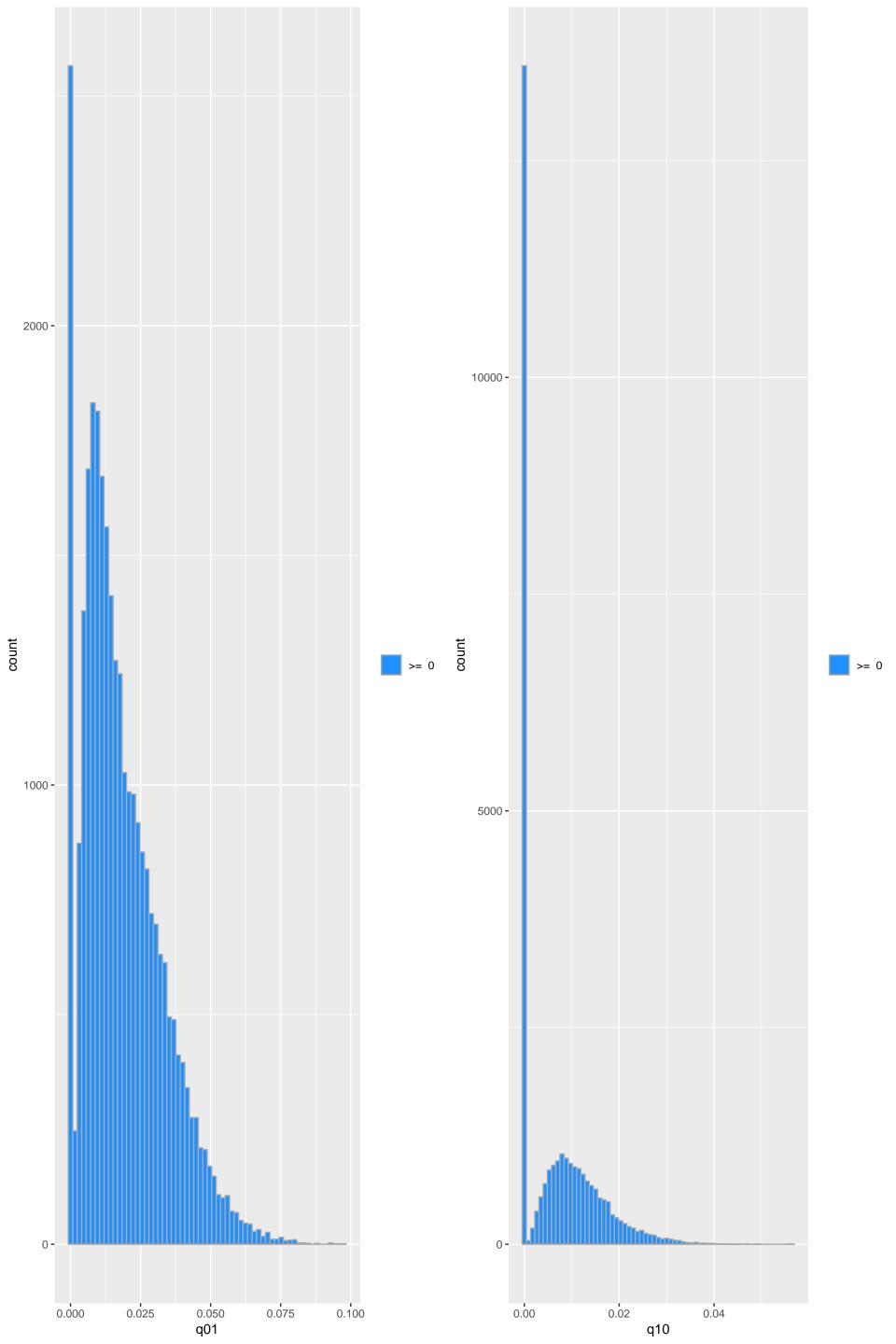


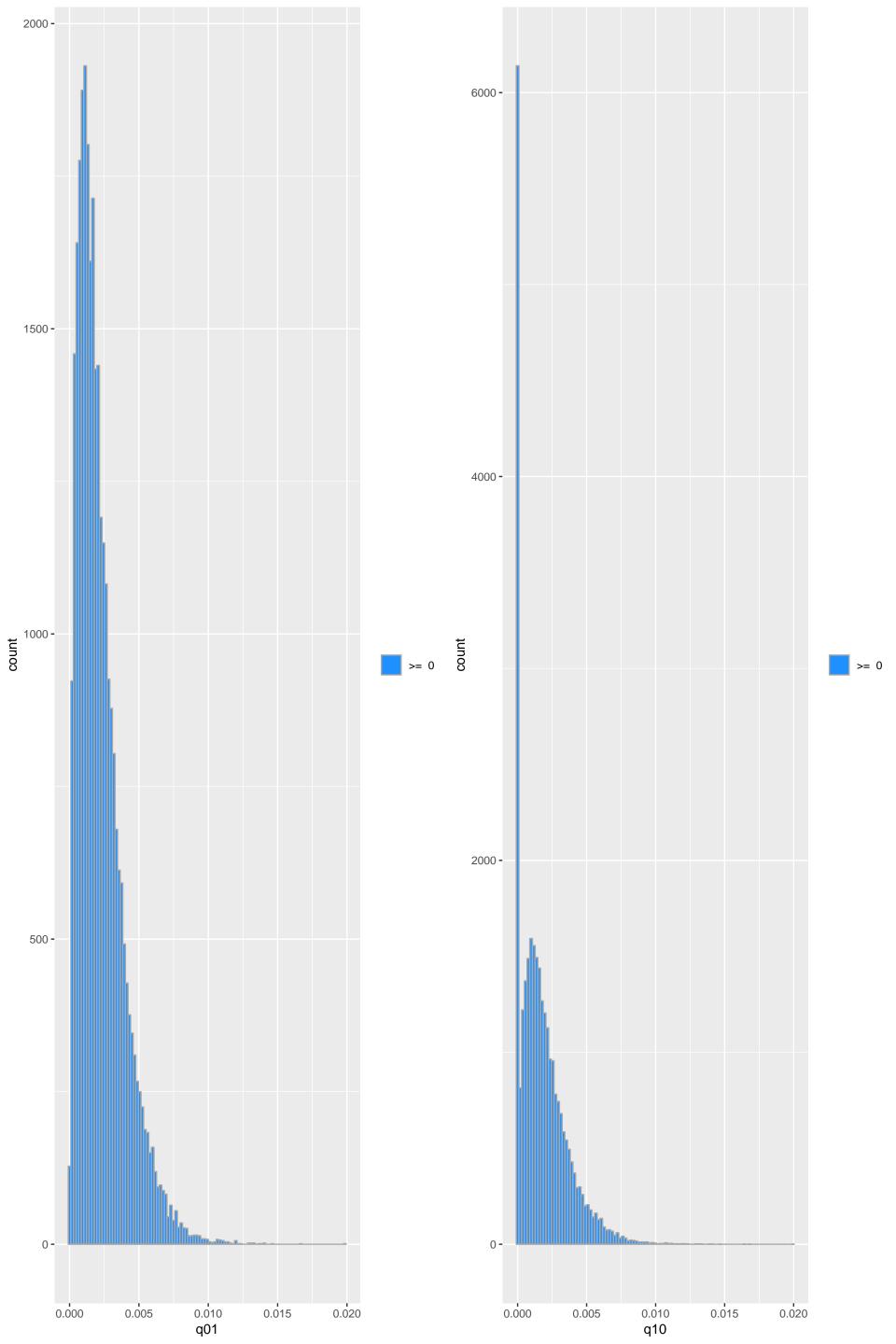


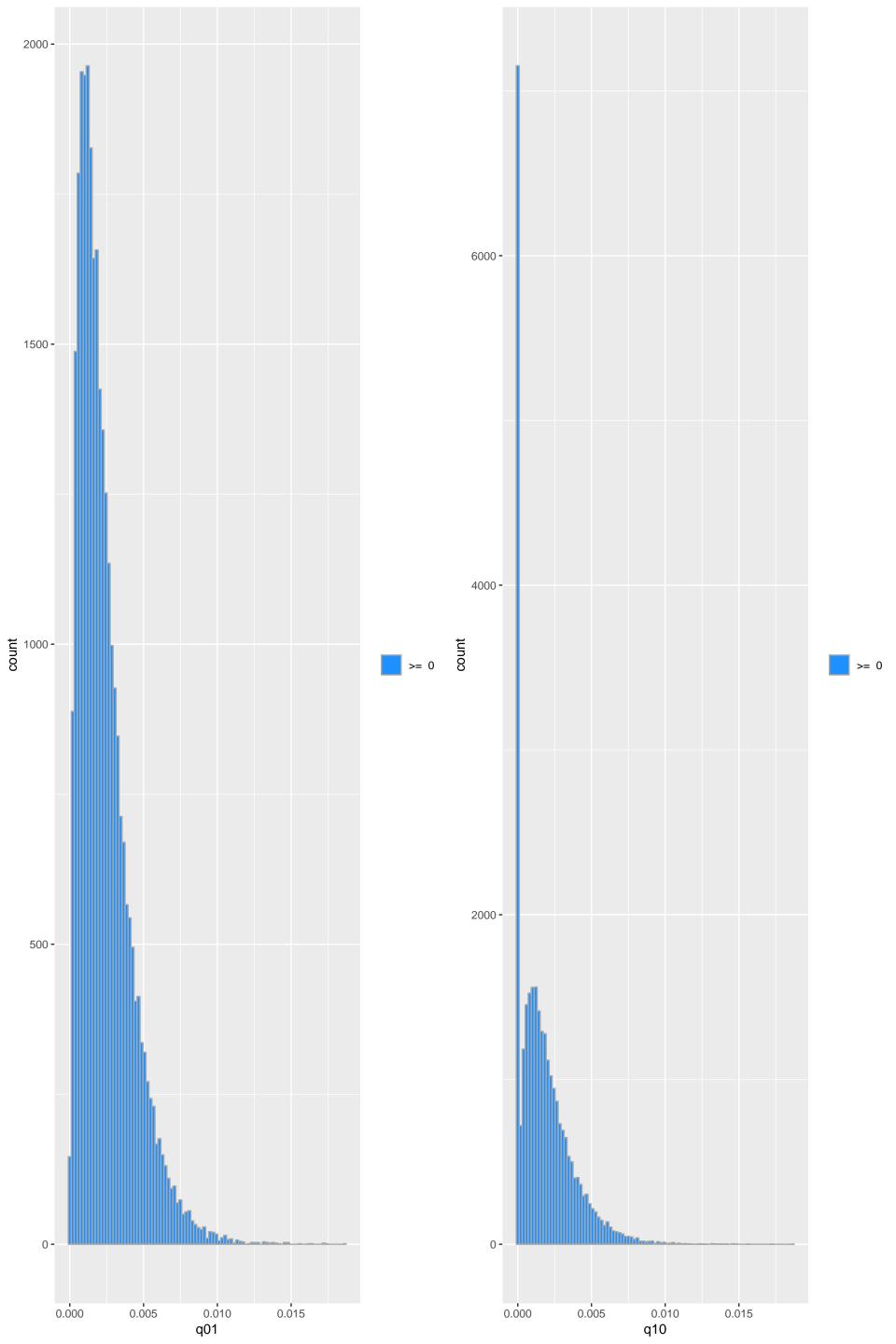


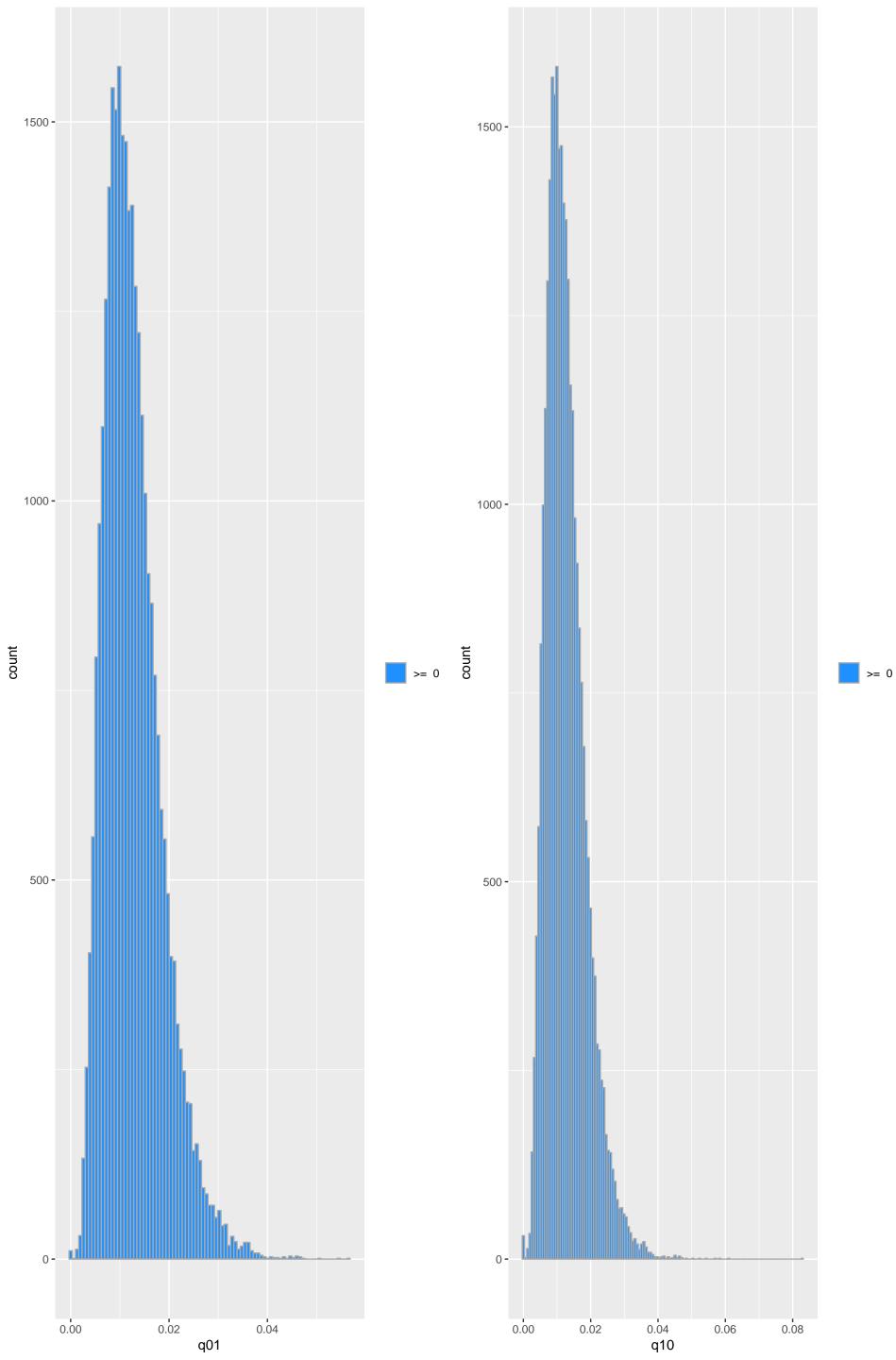


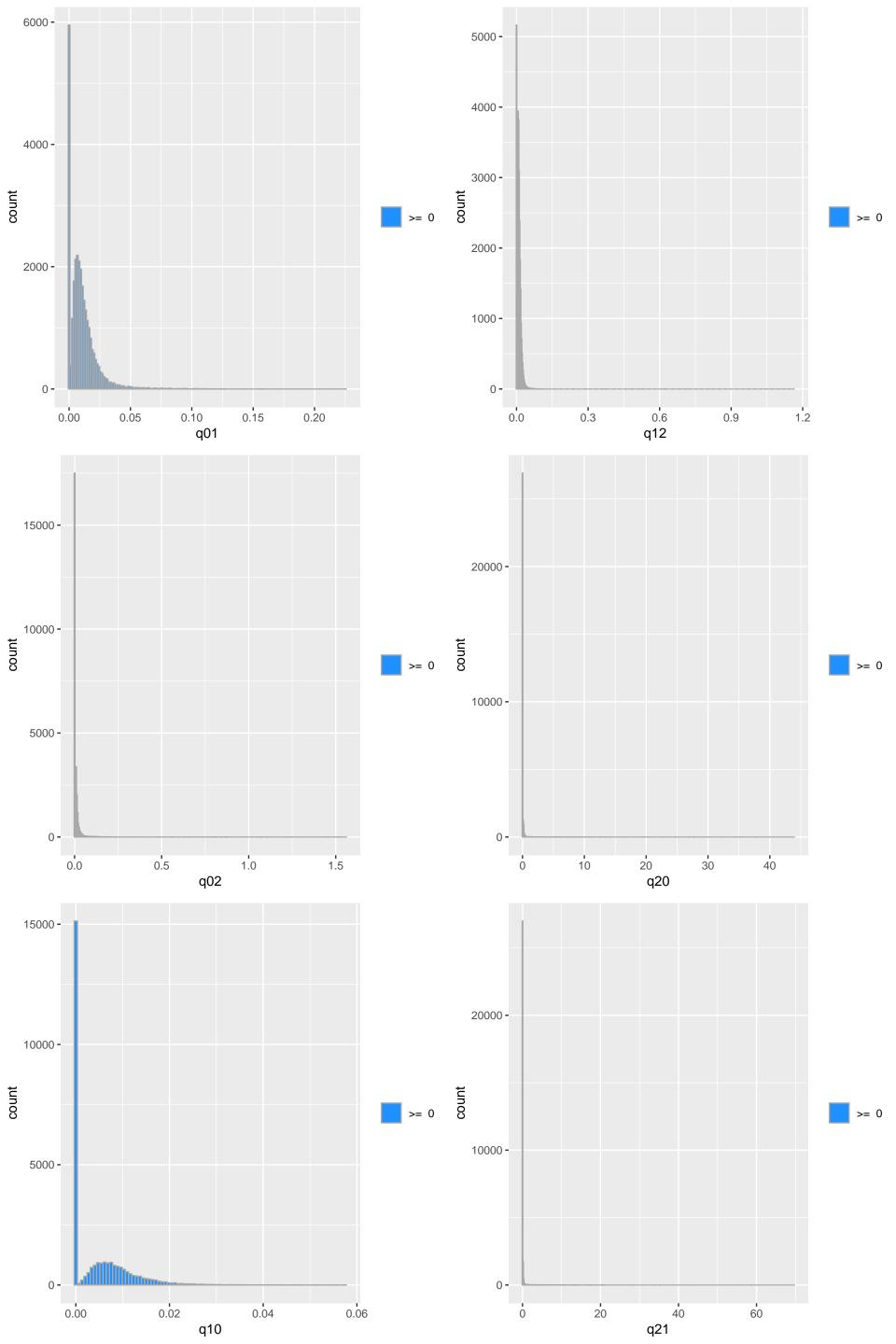

>= 0

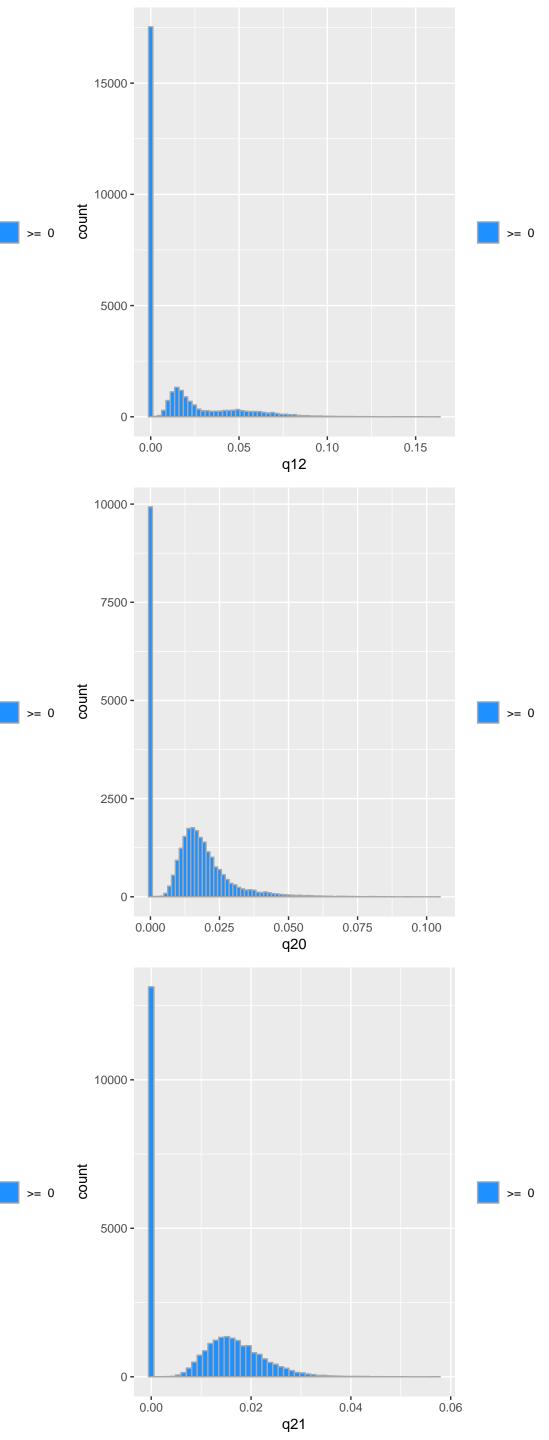


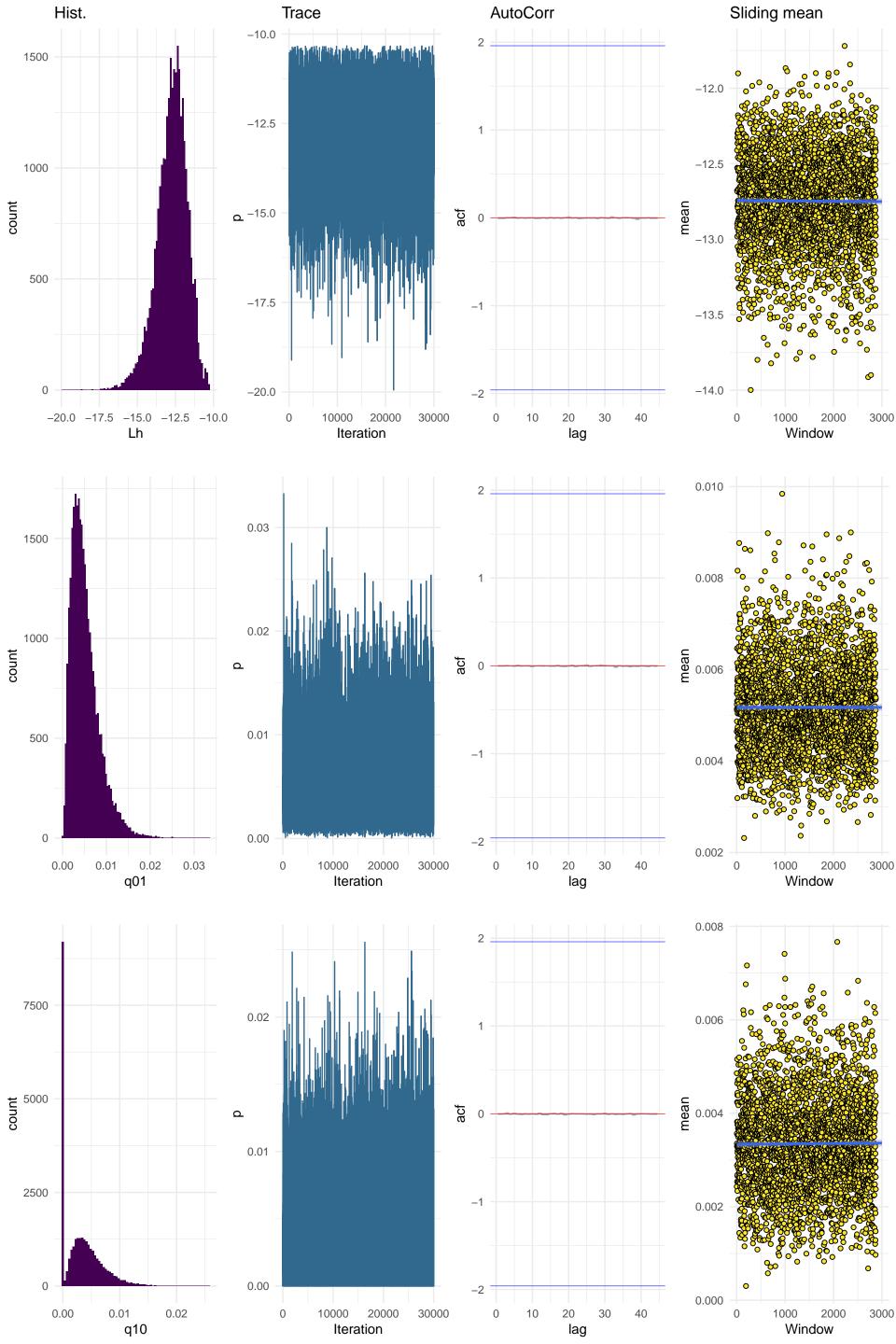


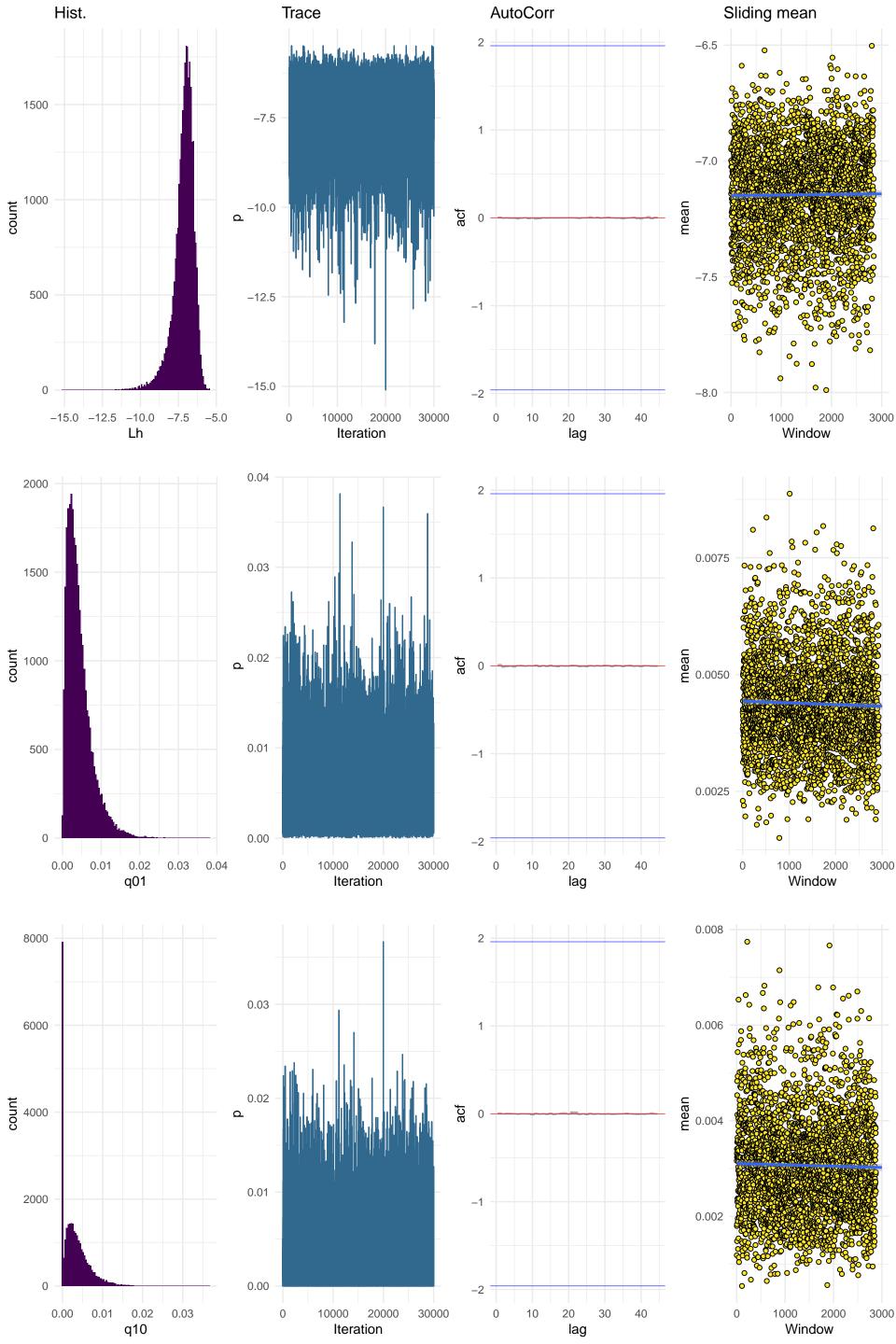


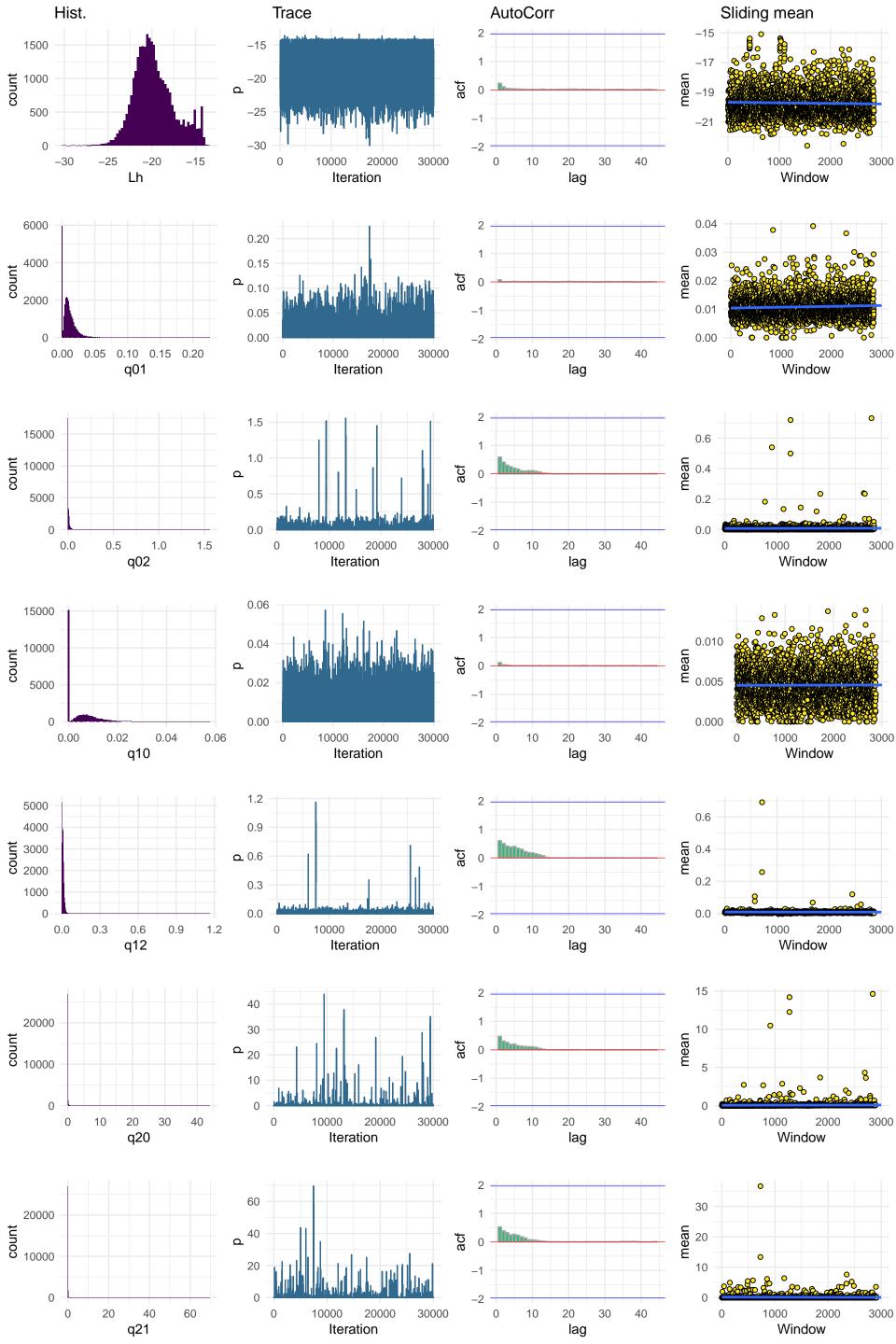


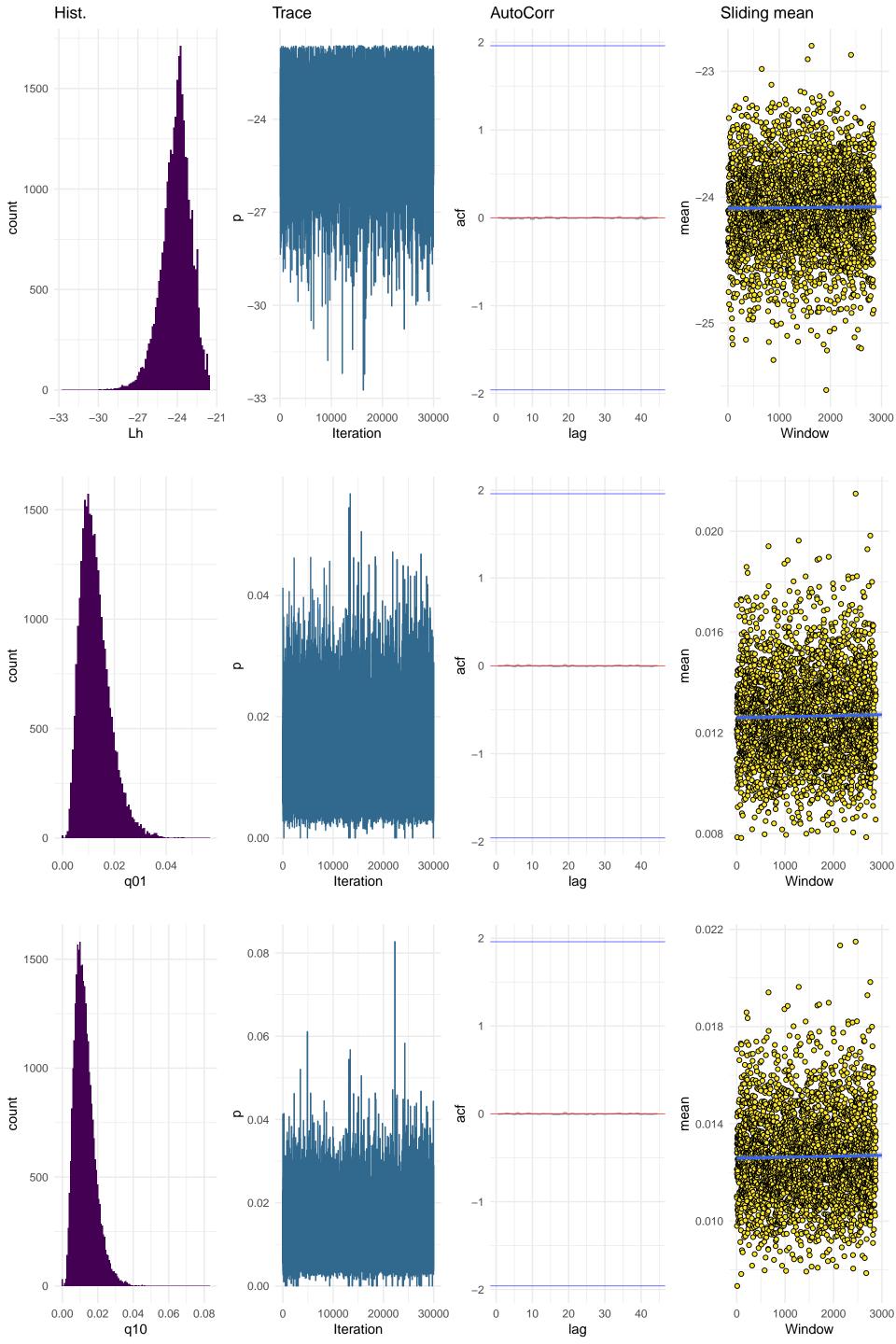

>= 0

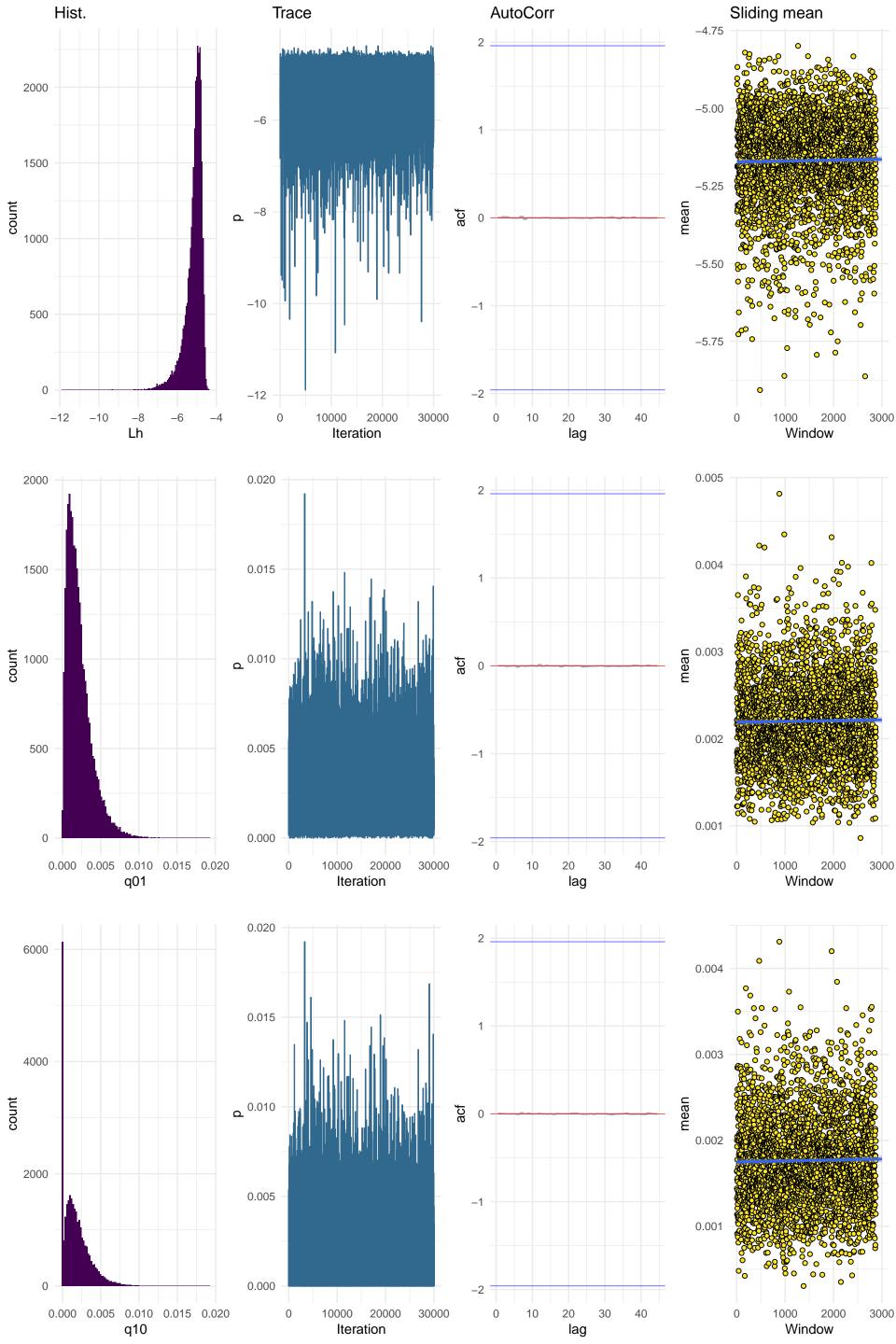


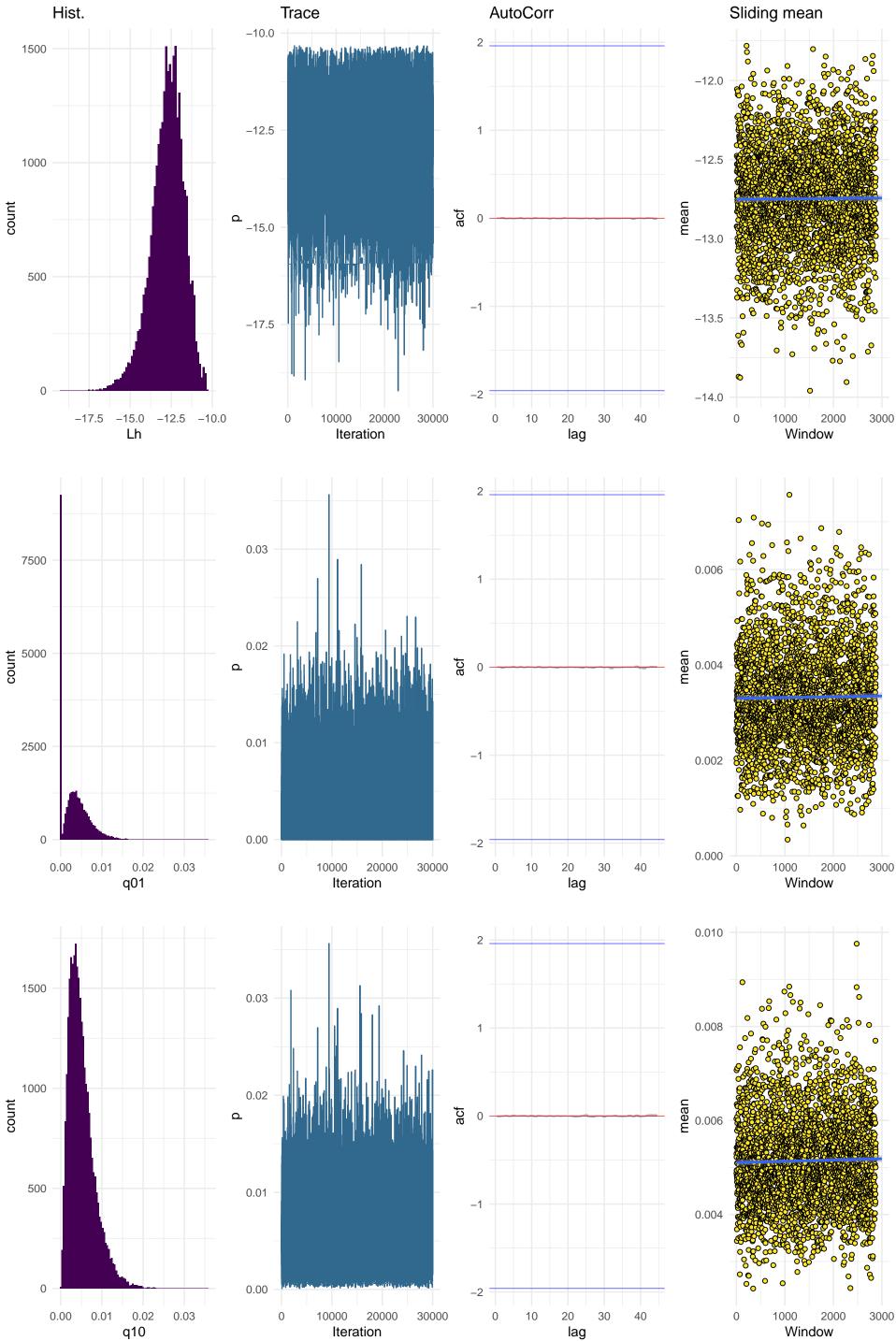


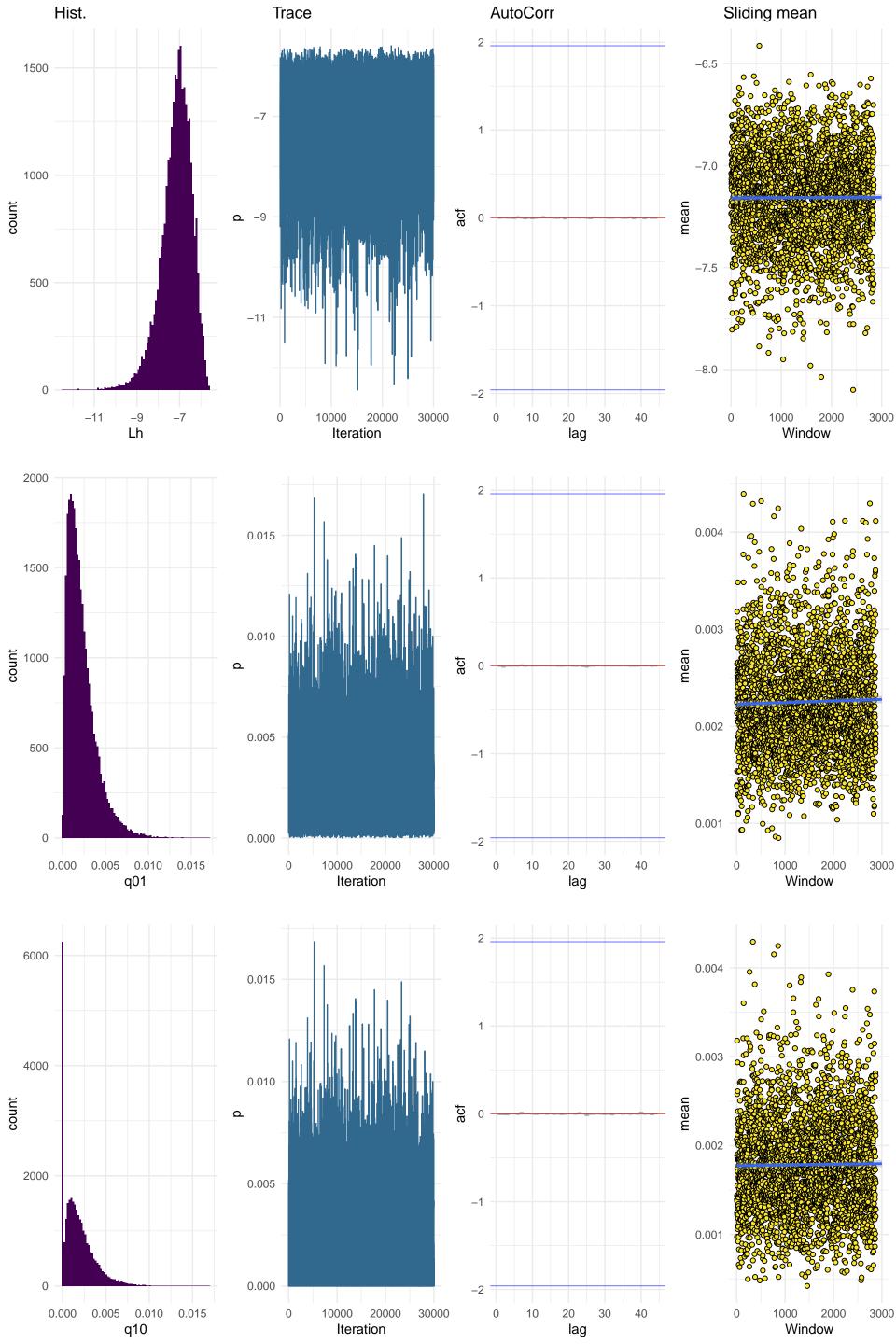


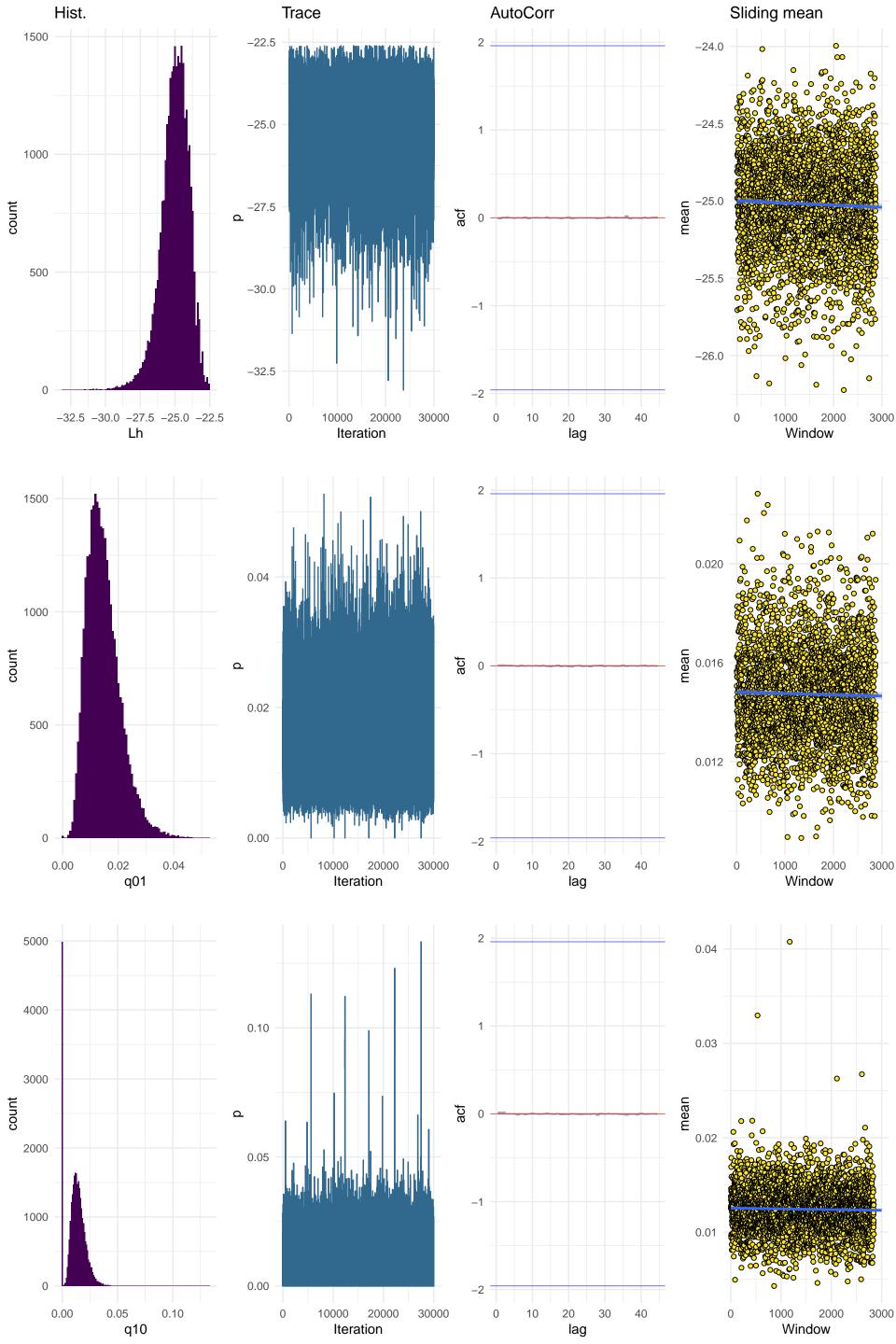


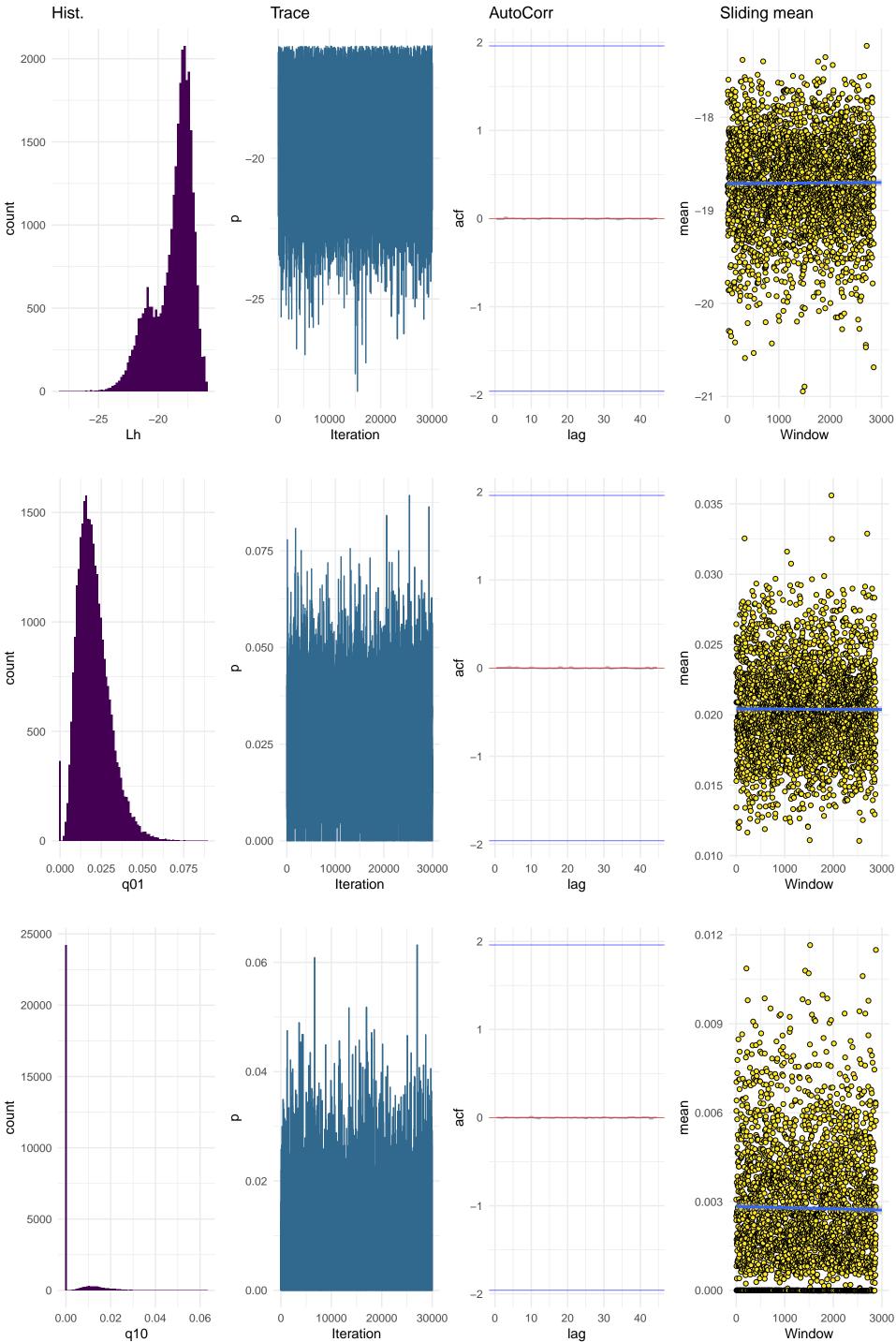



Appendix S14. Assessment of the MCMC chain from the Reversible-Jump analysis plotted with the function *mcmcPlots* showing the rate coefficients, autocorrelation plot and sliding mean plot.



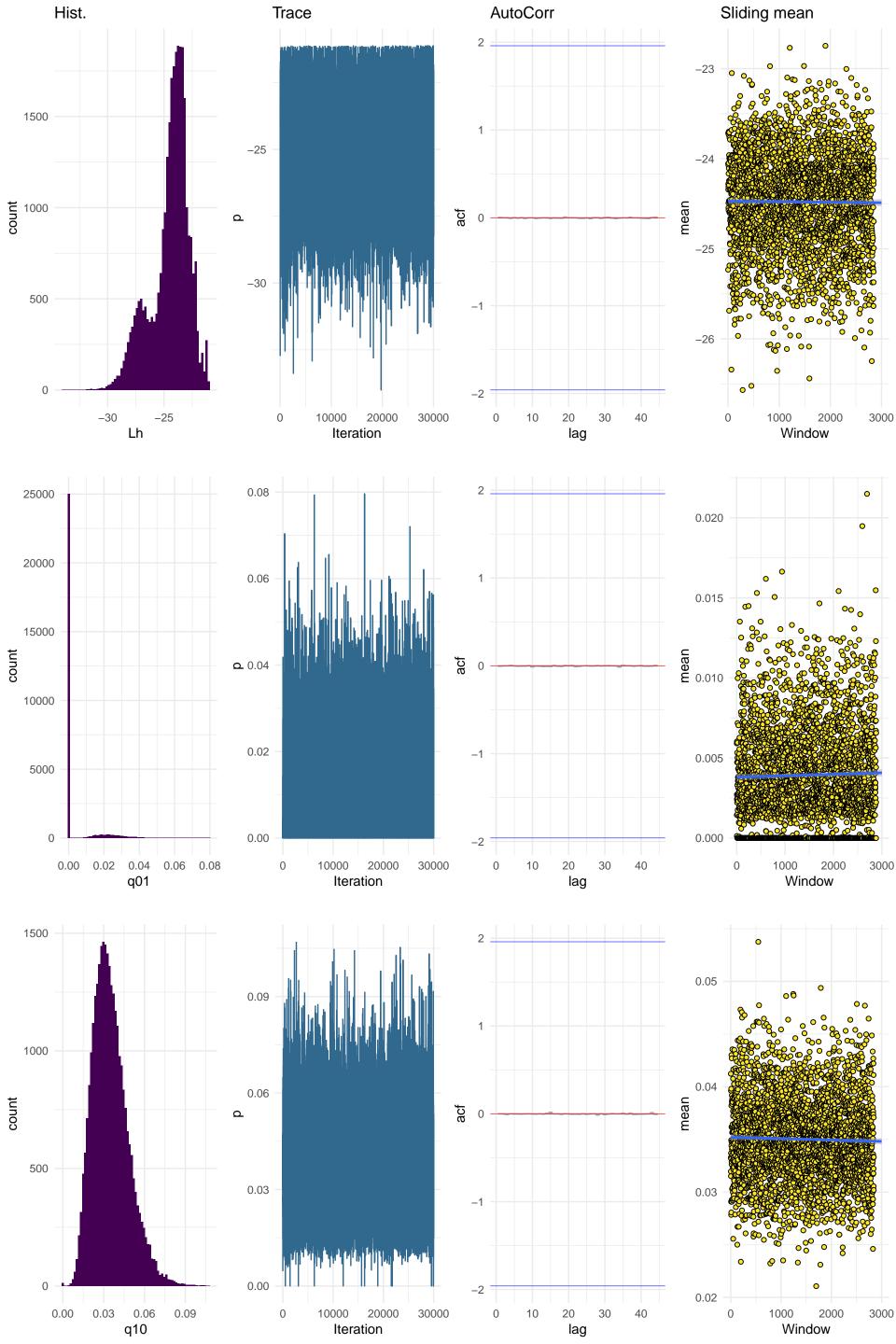


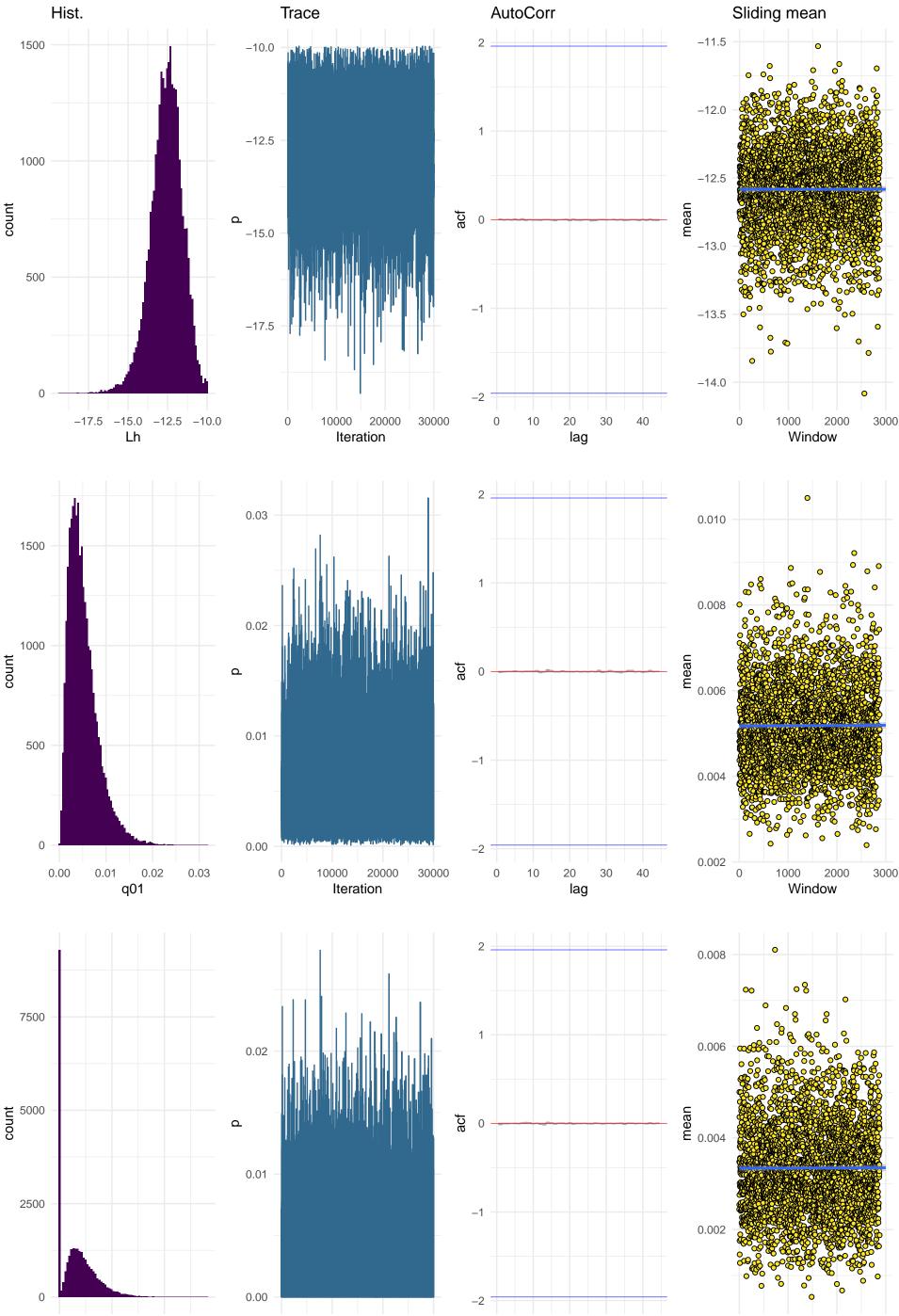


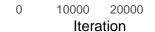

q10

Iteration

Window

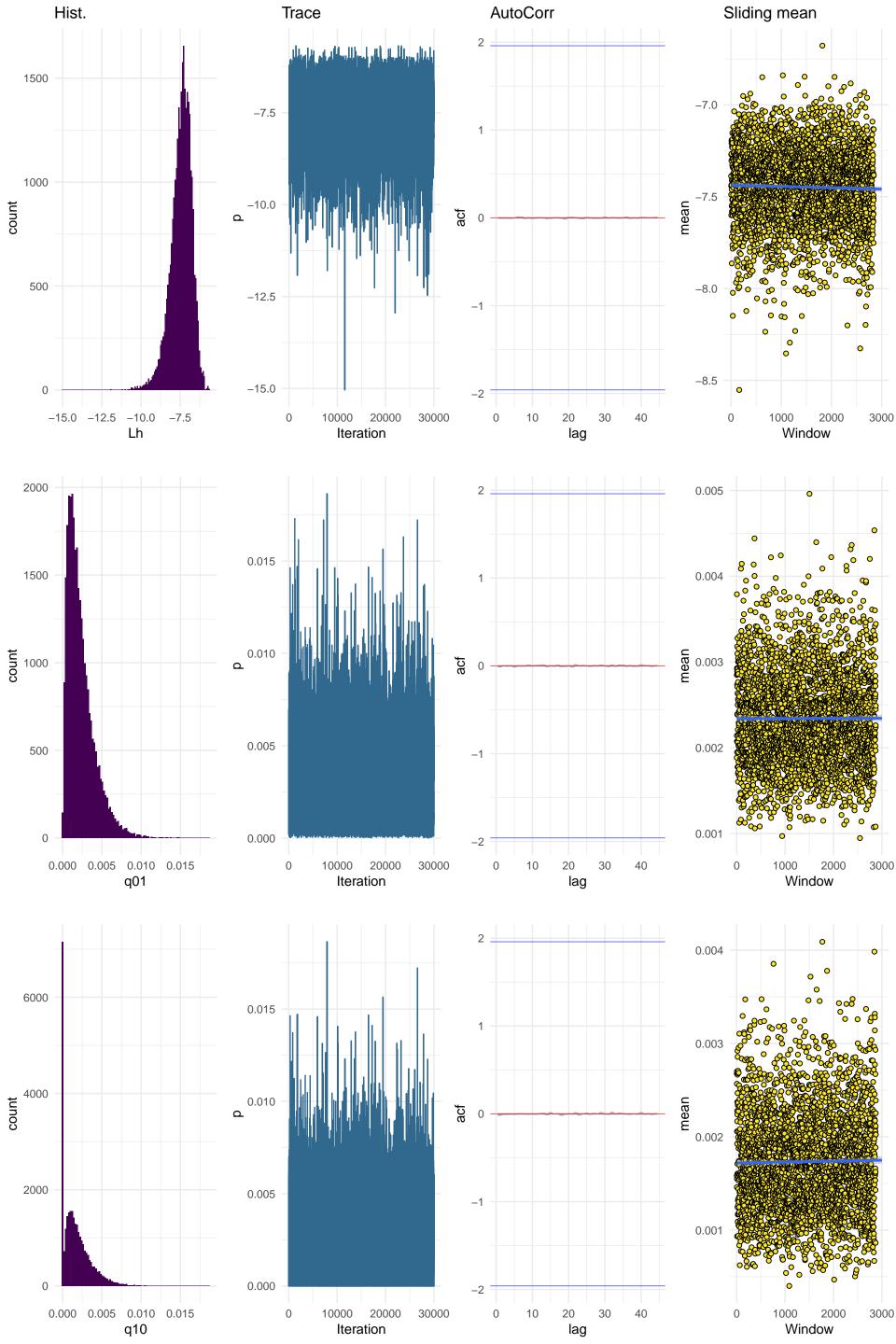


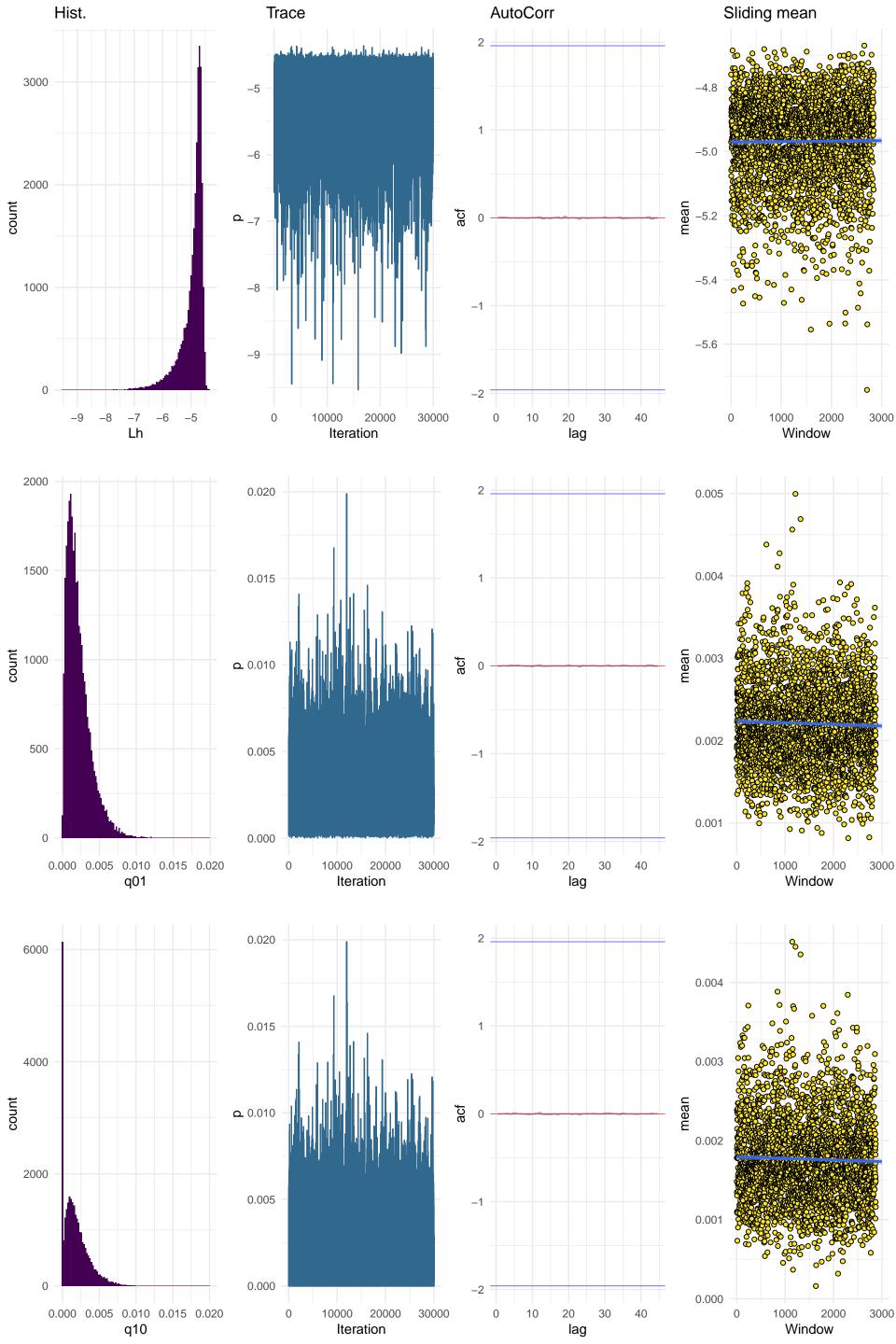


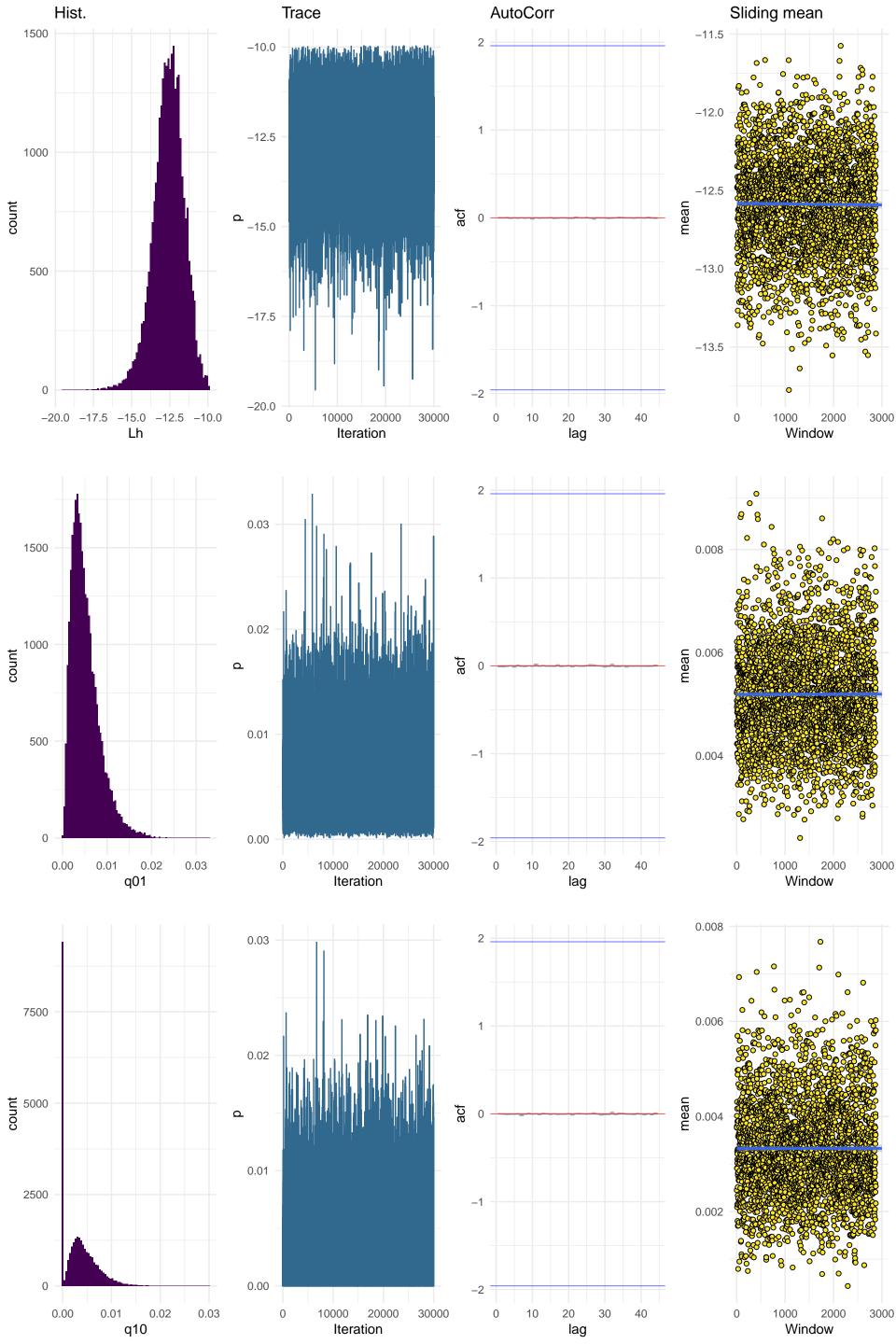

q10

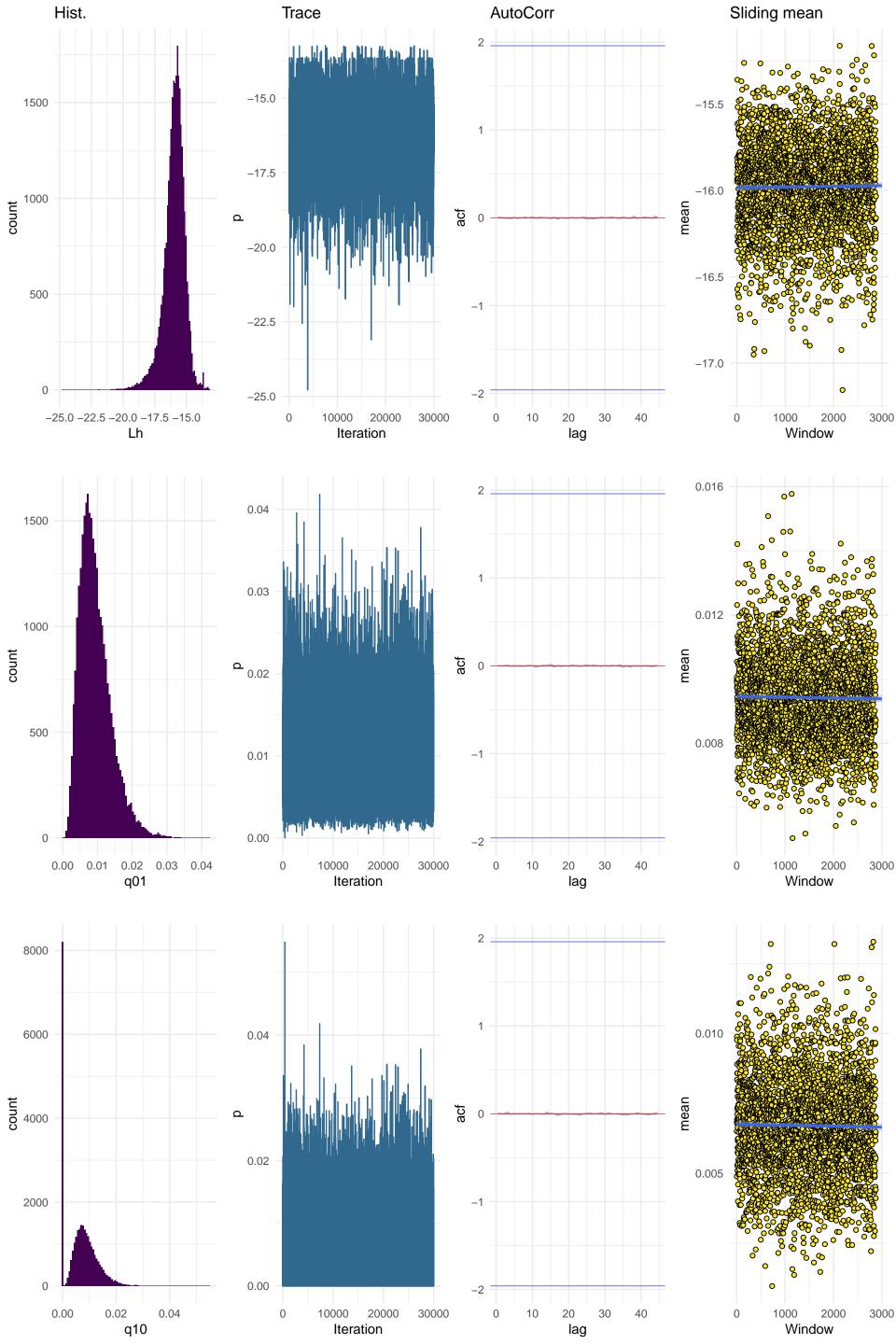
Iteration

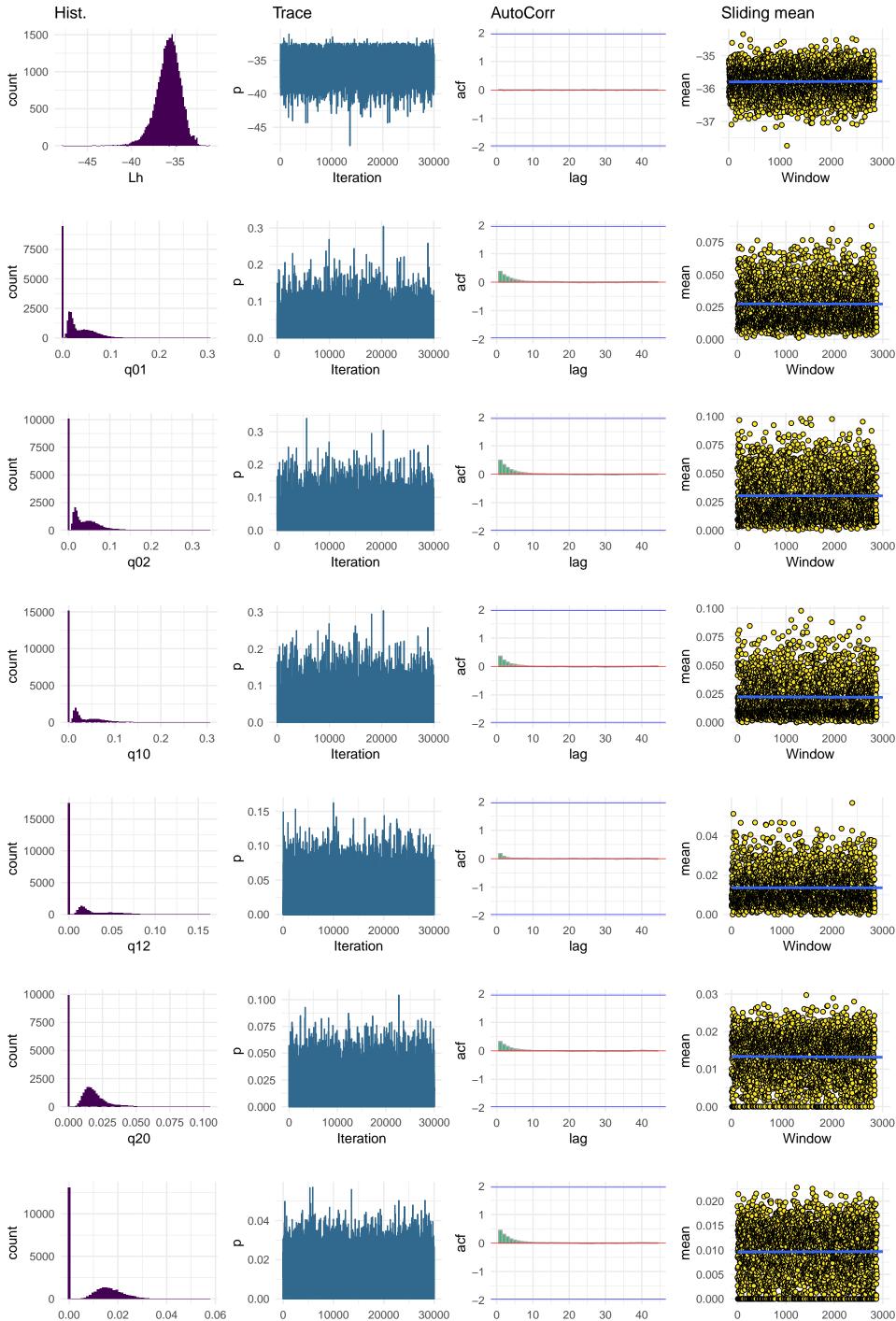
0.00 0.01 0.02 q10

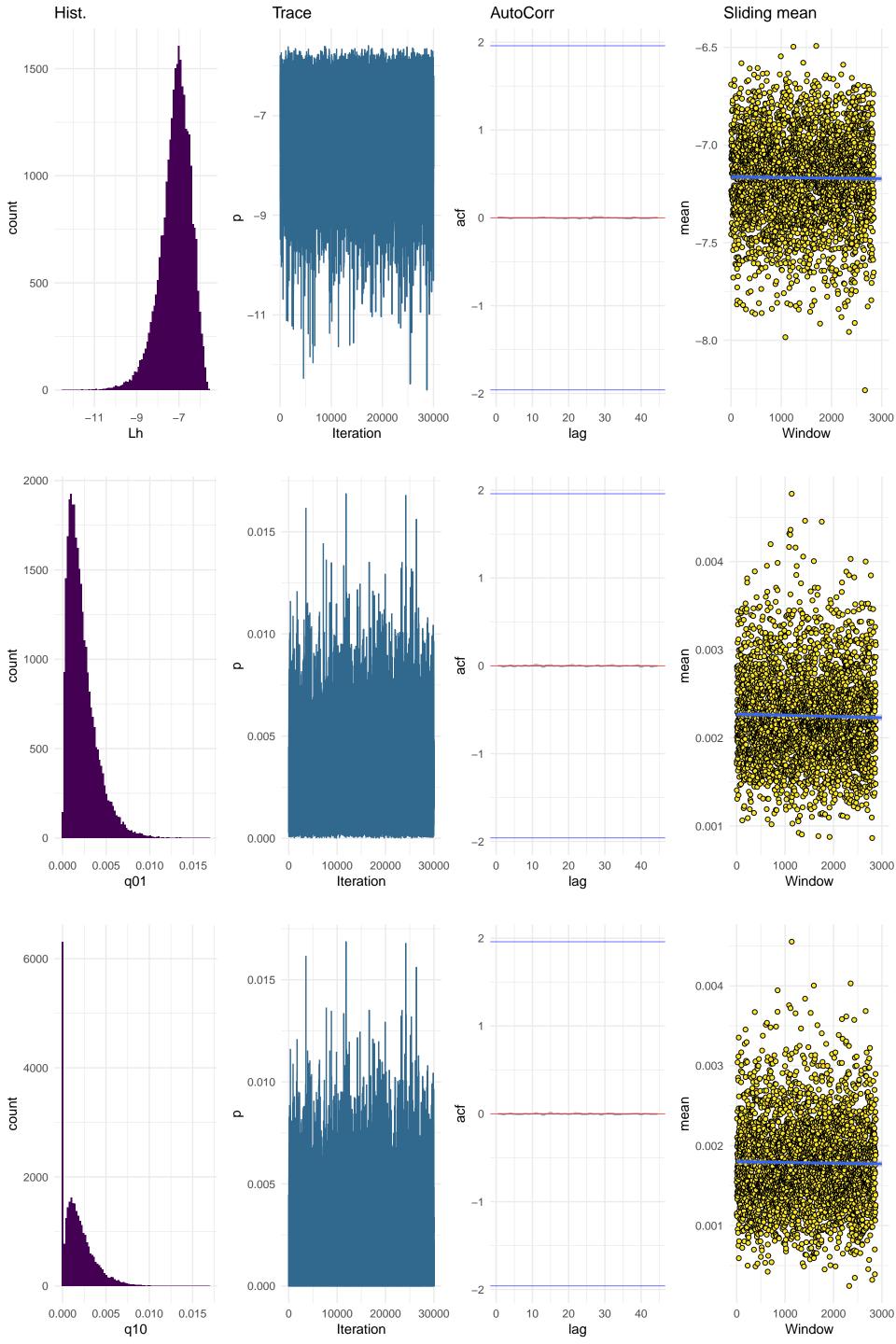


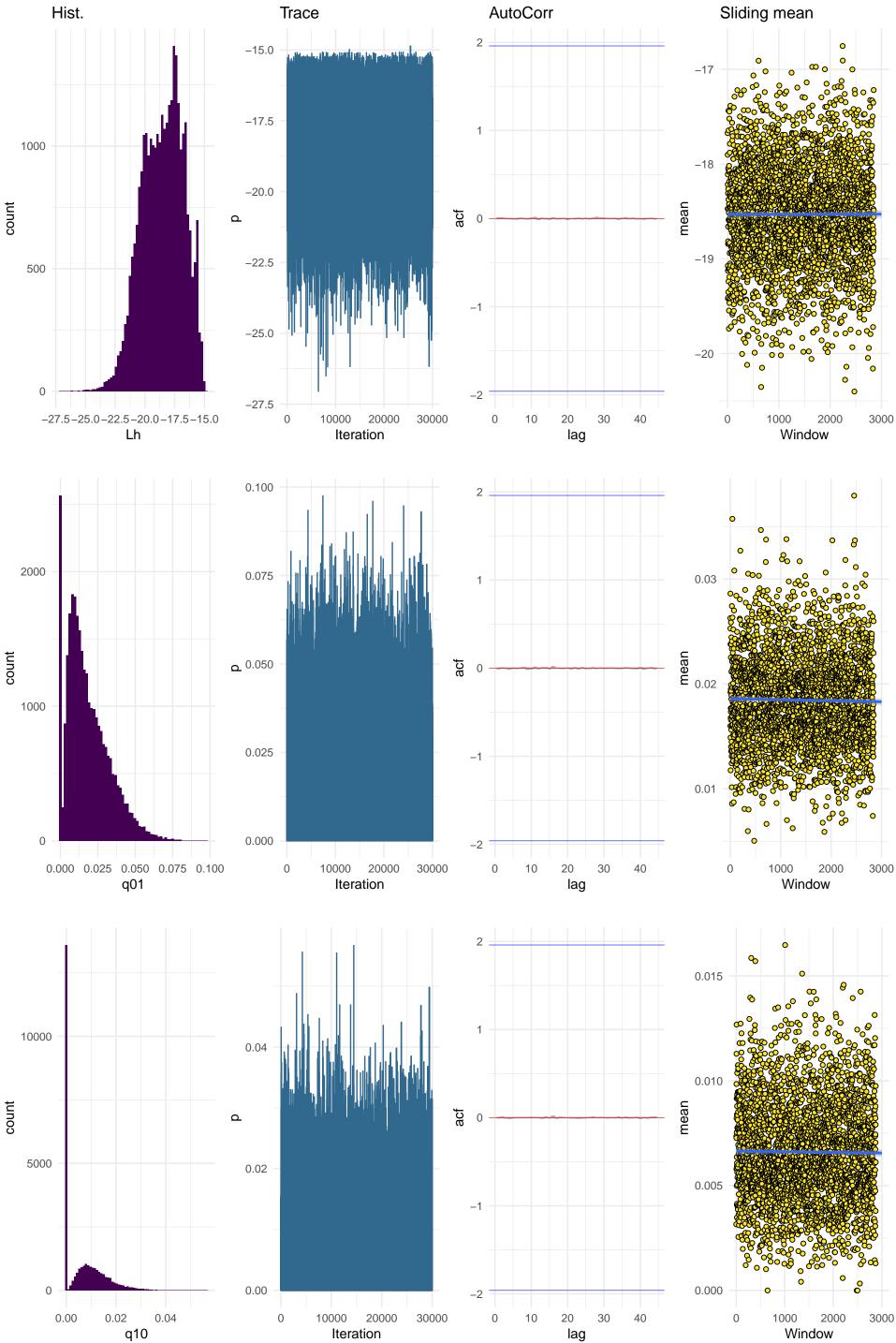

30000 Iteration


0 10 20 40 30 lag


2000 3000 1000 Window


0




0.00 0.02 0.04 **q21** 0000 20000 30000 0 1 Iteration

lag

Window

W

lag

Window

Appendix S15. The genera previously recognized in the *Lepanthes* clade in the 50% majorityrule consensus tree based on BI analysis of the concatenated dataset. Labels of the genera follow the former generic names proposed^{15,30,39}. Plotted branch values for PBP, LPB and PP are given for each well-supported clade of interest. Letters represent genera and numbers clades grouping the genera (see Fig. 3 for the updated proposed classification).

