Supplementary Figures

Supplementary Figure 1. Maximum Likelihood tree of the major groups of oribatid mites with 1000 bootstrap replicates.

icroclava_B foveolatus B Brachypylina onata D Desmonomata ochthonius tectorum D onius cladonicola D nthoniellius crassus D applicatus M Mixonomata SD M honius lanatus E Enarthronota nonius artiodactylus idinus Bra vaiensis Bra Brachychthoniidae nonius peduncularius Bra negiectus Bra Palaeosomata outgroups

Supplementary Figure 2. Bayesien inference tree of the major groups of oribatid mites with posterior probabilities after 4 million generations.

Brachypylina

Desmonomata

Mixonomata

Enarthronota

Brachychthoniidae

Palaeosomata

outgroups

Calibration points are shown in boxes, for details refer to Supplementary Table 2.

Supplementary Figure 3. BEAST phylogeny of the major groups of oribatid mites with estimated divergence times based on 9 fossil constraints.

rycommer

Phylogeny of oribatid mites based on 18S rDNA. Phylogenetic trees were reconstructed with a 2,096 bp alignment of 18S rDNA of 113 oribatid mite species and three non-acariformes outgroup species (3 Parasitiformes). Maximum Likelhood (ML) analysis was performed in R using the pml function of the phangorn package, using the GTR+I+G model and 1,000 bootstrap replicates (Supplementary Figure 1). Bayesian Inference (BI) was conducted in MrBayes v3.2.6 using lset parameters nst=6 rates=invgamma and 4 million generations, all other parameters were set as default (Supplementary Figure 2). The supercohorts Brachypylina and Desmonomata (=Nothrina) included 64 and 17 species, respectively, and were recovered with 94 and 96 percent bootstrap support, respectively (posterior probabiliy=1 for each). The tropical genus *Rostrozetes* represents Haplozetidae, because no sequences of temperate species were available, but body sizes and stable isotope data of three European species. The monotypic superfamily Collohmanniidae clustered within *Trimalaconothridae*. A similar relationship of *Collohmannia gigantea* was also recovered in Pachl et al. (2017)¹, also with equivocal node support. The supercohort Mixonomata was recovered with 92 percent bootstrap (bs) support (posterior probability (pp)=1) and included three Phthiracaroidea, one Euphthiracaroidea and also included the superfamily Epilohmannioidea which agrees with other studies¹⁻³. The position of Perlohmannioidea differed in the ML and BI, being basal to Mixonomata in ML and ancestral to Desmonomata in the BI tree, the later is consistent with the BI analysis of a concatenated 18S+28S rDNA dataset¹ and the BEAST analysis in this study (Supplementary Figure 3).

The supercohort Endeostigmata was paraphyletic in both analyses (ML and BI), resolving into three monophyletic clades. First, the superfamily Hypochthonioidea (bs=92, pp=1) including two species of the genus Hypochthonius, Eniochthonius and Lohmannia which is in agreement with Krantz and Proctor (2009)⁴ and with Dabert et al. (2010)⁵ but not with Pachl et al. (2017) which group Eniochthoniidae basal to Mesoplophoridae. Second, the superfamily Protoplophoridae (bs=97, pp=1), has not been recovered in this and previous molecular phylogenies, mainly due to strong differences in taxon sampling, e.g. of 14 enarthronote taxa in Pachl et al. (2017) of which only six overlap with this study. However, according to Krantz and Proctor (2009) Cosmochthoniidae and Sphaerochthoniidae are part of the superfamily Protoplophoroidea but, in contrast, here Mesoplophoridae are not part of Hypochthoniidae. The position of Eulohmanniidae is traditionally close to Mixonomata but has been recovered as sister taxon to *Gehypochthonius* in Pachl et al. (2017). Consistent with Schaefer et al. (2010) and Pachl et al. (2017), the supercohort Parhyposomata, here represented by the genera *Gehypochthonius* and *Parhypochthonius* were not recovered but clustered among other enarthronote mites. Third, the superfamily Atopochtonioidea was recovered (bs=85, pp=0.99) and included the genera *Atopochthonius* and *Pterochthonius* and additionally the parhyposomatid genus *Parhypochthonius* (Parhyposomata). Notably, the enarthronote superfamily Brachychthonioidea (bs=100, pp=1) clustered with medium support (bs=90, pp=0.88) as sister group to Palaeosomata (bs=96, pp=1) which has not been shown before. Klimov & OConnor (2013)⁶ included one Palaeosomata and two Brachychthoniidae in their study and recovered them as sister taxa as well, but not as monophyletic. This indicates that these taxa require more attention to resolve the early-derived relationships within oribatid mites and among acariformes. The choice of outgroups and their effects on molecular clock estimates: The topology is robust and the mean molecular divergence time estimate of ~415 mya (ranging from 371-447 mya) between [Palaeosomata + Brachychthoniidae] and [Enarthronota + remaining oribatid mites] is reasonable and predating the oldest oribatid mite fossils (i.e., Enarthronota) only by about 25 my. The phylogeny among basal Acariformes and of Acari among Chelicerata is still not resolved with the molecular data currently available, irrespective of the number of genes and the methods used (e.g. secondary structures of rDNA to improve alignment quality) to improve the phylogeny on the base of Acariformes/Acari (e.g. Pepato & Klimov 2015). This study concentrated on nodes within the group of oribatid mites, and used only Acari as outgroups to infer the basal relationships and the origin of the stem group of oribatid mites. The position of Acariformes among Chelicerates is out of the scope of this study and adding more outgroups would not change the internal topology and age of internal nodes of the investigated ingroup (i.e. oribatid mites without Astigmata).

Circles on nodes highlight nodes which traits significantly differ on decending clades (PIC), size of points indicate if the trait increased (large) or decreased (small). Trait distribution is mapped along the phylogeny next to species. Red lines in trait columns show the mean distribution, dashed blue lines show the 25% and 75% quantiles and median of the respective trait. Images of common body forms within each taxonomic group are provided on the right). Body mass was calculated after Caruso & Migliorini (2009)⁷ using body length and width of drawings in Weigmann 2006⁸.

Supplementary Figure 5. Convergent evolution of body size related traits occurred early in oribatid mites and is strongly explained by phylogenetic signal calculated by Blomberg's

K (p=0.01) and Pagel's λ (p<0.001) was significant for mean (K=0.34, λ =0.78), minimum (min: K=0.35, λ =0.79), maximum size (max: K=0.037, λ =0.73), variance (λ =0.25, p<0.05) and ratio (body length/width: K=0.7, λ =0.93). Circles on nodes indicate significant trait divergence calculated by phylogenetic independent contrast (PIC) (black=mean size, red=minimum size, blue=maximum size, green= variance, orange=ratio). Trait distribution is mapped along the phylogeny next to species. Red lines in trait columns show the mean distribution, dashed blue lines show the 25% and 75% quantiles and median of the respective trait. Images of common body forms within each taxonomic group are provided on the right).; * indicates significance only for Pagel's λ .

Supplementary Tables

Supplementary Table 1. Taxonomic overview of species included in the phylogeny and NCBI accession numbers. All six, commonly recognized, groups (infraorders) of or oribtatid mites were covered^{9,10}, and three acariform (Endeostigmata) and three parasitiform mites were included as outgroups for the phylogenetic tree. The majority of oribatid mite species belong to the infraorder Brachypylina (=higher oribatid mites) and represents a balanced taxon sampling across all infraorders, because of 10,000 described oribatid mites species, about ~8,000 belong to Brachypylina¹¹. When available on NCBI, more than ones species per genus were included when available on NCBI (highlighted in grey). The dataset included 103 oribatid mite species of Brachypylina (n=63), Desmonomata (n=17), Mixonomata (n=9), Enarthronota (n=17, including 8 Brachychthoniidae), Parhyposomata (n=2) and Palaeosomata (n=3).

infraorder	superfamily	family	genus	species (available as 18S sequence)	Accno (NCBI)
Brachypylina	Achipteroidea	Achipteriidae	Achipteria	Achipteria_coleoptrata	EF091418
		Achipteriidae	Anachipteria	Anachipteria_sp	JQ000048
			Lepidozetes	Lepidozetes_singularis	EU432193
	Ameroidea	Caleremaeidae	Caleremaeus	Caleremaeus_monilipes	MK630361
		Carabodidae	Carabodes	Carabodes_coriaceus	EF093787
				Carabodes_labyrinthicus	KX397629
				Carabodes_subarcticus	EF091429
			Odontocepheus	Odontocepheus_elongatus	EU432200
		Tectocepheidae	Tectocepheus	Tectocepheus_minor	EF093778
				Tectocepheus_sarekensis	EF093777
				Tectocepheus_velatus	EF093780
	Cepheoidea	Cepheidae	Cepheus	Cepheus_dentatus	MK630354
				Cepheus_latus	EU432206
	Ceratozetoidea	Ceratozetidae	Edwardzetes	Edwardzetes_edwardsi	MH198178
			Oromurcia	Oromurcia_sudetica	EU432194
			Trichoribates	Trichoribates_trimaculatus	EU432195
		Chamobatidae	Chamobates	Chamobates_pusillus	EU432188
				Chamobates_subglobulus	EU432190
				Chamobates_voigtsi	EU432189
		Euzetidae	Euzetes	Euzetes_globulus	AF022030
		Humerobatidae	Humerobates	Humerobates_rostrolamellata	EU432196

Supplementary Tab	le 1 continued				
		Mycobatidae	Mycobates	Mycobates_parmeliae	EU432191
		Punctoribatidae	Punctoribates	Punctoribates_punctum	XX123456
	Cymbaeremaeoidea	Cymbaeremaeidae	Cymbaeremaeus	Cymbaeremaeus_cymba	EU432201
			Scapheremaeus	Scapheremaeus_palustris	EU433989
	Damaeoidea	Belbodamaeidae	Damaeobelba	Damaeobelba_minutissima	MH198179
		Damaeidae	Damaeus	Damaeus_flagelloides	KR081608
			Metabelba	Metabelba_papilles	MH198180
			Parabelbella	Parabelbella_meridiana	KR081627
	Eremaeoidea	Eremaeidae	Eueremaeus	Eueremaeus_oblongus	GQ864287
	Galumnoidea	Galumnidae	Acrogalumna	Acrogalumna_longipluma	GQ864304
			Galumna	Galumna_lanceata	EU432197
			Pilogalumna	Pilogalumna_rosauraruizae	KJ423065
	Gustavioidea	Liacaridae	Adoristes	Adoristes_ovatus	GQ864286
			Liacarus	Liacarus_coracinus	KR081619
		Tenuialidae	Haffenrefferia	Hafenre fferia_gilvipes	MK630363
	Gustavioidea	Xenillidae	Xenillus	Xenillus_discrepans	EU432203
				Xenillus_tegeocranus	KR081637
		Ceratoppiidae	Ceratoppia	Ceratoppia_bipilis	EU432204
	Gymnodamaeoidea	Gymnodaemaeidae	Gymnodamaeus	Gymnodamaeus_bicostatus	GQ864285
	Hermannielloidea	Hermanniellidae	Ambullopates	Ampullobates_ecuadoriensis	KR081601
			Hermannobates	Hermannobates_monstruosus	KR081617
	Hydrozetoidea	Hydrozetidae	Hydrozetes	Hydrozetes_lacustris	EU433987
		Limnozetidae	Limnozetes	Limnozetes_foveolatus	KX397634
				Limnozetes_rugosus	KX397636
	Licneremaeoidea	Scutoverticidae	Scutovertex	Scutovertex_sculptus	GQ864305
	Liodoidea	Liodidae	Poroliodes	Poroliodes_farinosus	EF203779
	Oppioidea	Oppiidae	Disorrhina	Disorrhina_ornata	MH198181
			Oppiella	Oppiella_nasuta	MK630355
				Oppiella_nova	KR081626
				Oppiella_splendens	MK630356
		Thyrisomidae	Banksimona	Banksinoma_lanceolata	MK630359

upplementary I	able 1 continued				
	Oripodoidea	Haplozetidae	Peloribates	Peloribates_acutus	AB818529
			Rostrozetes	Rostrozetes_fove_ovo	MK630358
				Rostrozetes_Kansas02	MK630357
				Rostrozetes_ovulum	HM070342
		Hemileiidae	Hemileus	Hemileius_microclava	KR081616
		Liebstadiidae	Liebstadia	Liebstadia_humerata	KR081620
		Oribatulidae	Oribatula	Oribatula_tibialis	EU433990
			Phauloppia	Phauloppia_lucorum	EU432198
		Protoribatidae	Protoribates	Protoribates_hakonensis	AB818528
		Scheloribatidae	Scheloribates	Scheloribates_ascendens	EU432199
	Phenopelopoidea	Phenopelopidae	Eupelops	Eupelops_hirtus	EF093782
				Eupelops_plicatus	EF093782
Desmonomata	Crotonioidea	Camisiidae	Camisia	Camisia_horrida	EU432207
				Camisia_invenusta	EU432208
				Camisia_segnis	EU432209
			Heminothrus	Heminothrus_capillatus	GQ864288
				Heminothrus_paolianus	EF091423
			Platynothrus	Platynothrus_peltifer	EF091422
		Nothridae	Nothrus	Nothrus_silvestris	EF091425
	Hermannioidea	Hermanniidae	Hermannia	Hermannia_gibba	EF091426
	Nanhermannioidea	Nanhermanniidae	Masthermannia	Masthermannia_sp	KY922217
			Nanhermania	Nanhermannia_coronata	EF091421
				Nanhermannia_nana	KR081624
	Trhypochthonioidea	Malaconothridae	Malaconothrus	Malaconothrus_gracilis	EF091424
			Trimalaconothrus	Trimalaconothrus_sp	EU43221
		Trhypochthoniidae	Mucronothrus	Mucronothrus_nasalis	EF081299
			Trhypochthoniellus	Trhypochthoniellus_crassus	EF081300
		Trhypochthoniidae	Trhypochthonius	Trhypochthonius_cladonicola	JQ000047
				Trhypochthonius_tectorum	AF022041
Mixonomata	Collohmannioidea	Collohmanniidae	Cohllohmannia	Collohmannia_gigantes	KR081604
	Epilohmannioidea	Epilohmanniidae	Epilohmannia	Epilohmannia_sp	EU432213
	Eulohmannioidea	Eulohmanniidae	Eulohmannia	Eulomannia_ribagai	EU432211
	Euphtiracaroidea	Eupthiracaridae	Rhysotritia	Rhysotritia_duplicata	EF091417
	Perlohmannioidea	Perlohmanniidae	Perlohmannia	Perlohmannia_sp	EU432212
	Phthiracaroidea	Phthiracaridae	Phthiracarus	Phthiracarus_sp	KR081629
		Steganacaridae	Atropacarus	Atropacarus_striculus	EF091416
			Steganacarus	Steganacarus_applicatus	GQ864301
				Steganacarus_magnus	AF022040

Supplementary Ta	able 1 continued				
Enarthronota	Atopochthonoidea	Atopochthoniidae	Atopochthonius	Atopochthonius_artiodactylus	EU432216
		Pterochthoniidae	Pterochthonius	Pterochthonius_angelus	EU432214
	Brachychthonioidea	Brachychthoniidae	Brachychthonius	Brachychthonius_bimaculatus	MK630360
			Eobrachychthonius	Eobrachychthonius_sexnotatus	MK630362
			Liochthonius	Liochthonius_neglectus	MK630364
				Liochthonius_peduncularius	MK630365
			Neoliochthonius	Neoliochthonius_piluliferus	MK630366
			Sellnickochthonius	Sellnickochthonius_cricoides	MK630367
				Sellnickochthonius_immaculatus	MN065455
				Sellnickochthonius_zelawaiensis	MH198174
	Cosmochthonioidea	Cosmochthoniidae	Cosmochthonius	Cosmochthonius_lanatus	JN585919
		Sphaerochthoniidae	Sphaerochthonius	Sphaerochthonius_sp	JN585916
	Hypochthonoidea	Eniochtoniidae	Eniochthonius	Eniochthonius_minutissimus	EF091428
		Hypochthoniidae	Hypochthonius	Hypochthonius_luteus	EU152475
				Hypochthonius_rufulus	EF091427
	Lohmannioidea	Lohmanniidae	Lohmannia	Lohmannia_banksi_E	AF022036
	Mesoplophoroidea	Mesoplophoridae	Mesoplophora	Mesoplophora_cubana	EU432217
Parhyposomata	Parhypochthonioidea	Gehypochthoniidae	Gehypochthonius	Gehypochthonius_urticinus	EU433994
		Parhypochthoniidae	Parhypochtonius	Parhypochthonius_aphidinus	EU432215
Palaeosomata	Ctenacaroidea	Aphelacaridae	Aphelacarus	Aphelacarus_sp	DQ648879
		Ctenacaridae	Ctenacarus	Ctenacarus_araneola	EU433991
	Palaeacaroidea	Palaeacaridae	Palaeacarus	Palaeacarus_hystricinus	EF204472
Acariformes	Endeostigmata	Alycidae	Alycus	Alycus_roseus	GQ864294
outgroups			Bimicaelia	Bimichaelia_sp	GQ864295
		Terpnacaridae	Terpnacarus	Terpnacarus_gibbosus	AY620904
Parasitiformes	Holothyrida	Holothyroidea	Allothyrus	Allothyrus_sp	AF018655
outgroups	Ixodidae	Amblyomminae	Amblyomma	Amblyomma_boeroi	FJ464420
	Opilioacariformes	Opilioacarida	Opilioacarus	Opilioacarus_texanus	AF115375

	family	species (available as 18S sequence)	fossil specimen	geological epoch	time (mya)	reference	exponential calibration prior in BEAST
	Achipteriidae	Achipteria_coleoptrata Anachipteria_sp	Achipteria (?) obscura	Tithonian	150.8-145.5	Krivolutsky & Krassilov 1977 ¹²	mean:2.0 offset:145.0
achypylina	Carabodidae	Carabodes_coriaceus Carabodes_labyrinthicus Carabodes_subarcticus	Cretaceobodes martinezae	Albian	122-99.6	Arillo et al. 2008 ¹³	mean:7.0 offset:99.0
Bra	Hydrozetidae Limnozetidae	Hydrozetes_lacustris Limnozetes_foveolatus Limnozetes_rugosus	Hydrozetes sp.	Sinemurian	196.5-189.6	Sivhead & Wallwork 1978 ¹⁴	mean:2.0 offset:189.0
omata	Camisiidae	Camisia_horrida Camisia_invenusta Camisia_segnis	Eocamisia sukatshevae	Santonian	85.8-83.5	Bulanova- Zachvatkina 1974 ¹⁵	mean:3.0 offset:82.0
Desmono	Trhypochthoniidae	Mucronothrus_nasalis Trhypochthoniellus_crassus Trhypochthonius_cladonicola Trhypochthonius_tectorum	Trhypochthonius lopezvallei	Albian	122-99.6	Arillo et al. 2012 ¹⁶	mean:7.0 offset:99.0
osomata thronota	Cosmochthoniidae Gehypochthoniidae	Cosmochthonius_lanatus Gehypochthonius_urticinus	Carbochthonius antrimensis Gehypochthonimimus	Brigantian	336-326.4	Subías & Arillo 2002 ¹⁷	mean:3.0
Parhyf / Enart	Sphaerochthoniidae Eulohmanniidae	Sphaerochthonius_sp Eulomannia_ribagai	nibernicus				offset:328.0

Supplementary Table 2. Taxonomic assignment, geological age of fossil oribatid mites, and prior settings used in the molecular clock analysis.

Suppler	nentary Table 2 con	tinued					
ta	Hypochthoniidae	Hypochthonius_luteus	Paleohypochthonius				
-n C		Hypochthonius_rufulus	jerami			Subías & Arillo	maani2 0
thre	Mesoplophoridae	Mesoplophora_cubana	Archaeoplophora bella	Brigantian	336-326.4	2002^{17}	offset:328.0
nar	Eniochtoniidae	Eniochthonius_minutissimus					
Ê	Lohmanniidae	Lohmannia_banksi					
mata	Aphelacaridae	Aphelacarus_sp	Monoaphelacarus carboniferus		385.3-374.5	Subías & Arillo	
1-0S05	Ctenacaridae	Ctenacarus_araneola	Ctenacaronychus nortoni	lower Frasnian		2002^{17} , Norton et	mean:3.0 offset:377.0
Palae	Palaeacaridae	Palaeacarus_hystricinus	Paleoctenacarus simmsoi			al. 1988 ¹⁰	
oribeti	d mitos	1		Emsian	407-397.5	Shoor at al. 1094^{19}	mean:5.0
oridatid mites				Givetian	385.3-391.8	Sileai et al. 1964	offset:384.0

Supplementary Table 3. Fossil data that decreased the likelihoods and posterior probabilites and were not used in the final molecular clock analyses. Fossil dates either strongly underestimated the age of species or could not be applied because to few specimens of the genus or family were present in the dataset.

	family	species (available as 18S sequence)	fossil specimen	geological epoch	time (mya)	reference
	Cepheoidea	Cepheus dentatus Cepheus latus	Eupterotegaeus bitranslamellatus Ommatocepheus nortoni	Albian	122-99.6	Arillo et al. 2012 ¹⁶
	Cymbae- remaeidae	Cymbaeremaeus cymba	Ametroproctus valeiae	Albian	122-99.6	Arillo et al. 2012 ¹⁶
		Scapheremaeus palustris	Scapheremaeus	late Eocene	42-37	O'Dowd et al. 1991 ²⁰
	Eremaeidae	maeidae Eueremaeus oblongus Eremaeus denaius		Oligocene/ Miocene	25	Woolley 1971 ²¹
Brachypylina	Galumnidae	Acrogalumna longipluma Galumna lanceata Pilogalumna rosauraruizae		middle Eocene	42-49	O'Dowd et al. 1991 ²⁰
	Oppiidae	Disorrhina ornata	Dissorhina paleokrasica n. sp., D. nuda n. sp.	late Pliocene	3.8, 2.7	Mico 2015 ²²
		Oppiella nasuta Oppiella nova Oppiella splendens	Oppia hurdi	Oligocene/ Miocene	25	Woolley 1971 ²¹
	Scutoverticidae	Scutovertex sculptus	Hypovertex hispanicus (Scutoverticidae)	Albian	122-99.6	Arillo et al. 2012 ¹⁶
		Phauloppia lucorum	Phauloppia	middle Eocene	42-49	O'Dowd et al. 1991 ²⁰
Des.	Hermanniidae	Hermannia gibba	Hermannia sellnicki n. sp.	Lutetian	~44	Norton 2006 ²³
	Collohmanniidae	Collohmannia gigantes	Collohmannia schusteri n. sp.	Lutetian	~44	Norton 2006 ²³
Mixonomata	Phthiracaroidea	Phthiracarus sp Atropacarus striculus Steganacarus applicatus Steganacarus magnus		Carboniferous trace fossils (coprolites)	359.2- 299	Labandeira et al. 1997 ²⁴
	Euphtiracarid.	Rhysotritia duplicata				

Supplementary Table 4. Summary of morphological traits (body size and body shape) used in this study. Minimum and maximum size values were collected from Weigman (2006)⁸ if not stated otherwise in the reference column. Body shape (ratio of length/width) was obtained by measuring drawings of species from literature. If sequences were not assigned to species (i.e., sp.) or the exact species was not available as drawing, measurements were taken from a congeneric species as listed in the column references. Sequences of the genus *Haplozetes* were not available at GenBank and were replaced by species of the genus *Rostrozetes*.

			body	v size [µm]		body form	
infraorder	species (available 18S sequence)	mean	minimum	maximum	variance	(ratio=	- reference
						length/width)	
	Achipteria_coleoptrata	590	530	650	120	1.41	
	Anachipteria_sp	690	600	780	180	1.38	Anachipteria nitens
	Lepidozetes_singularis	460	415	505	90	1.53	
	Caleremaeus_monilipes	355	330	380	50	1.82	
	Carabodes_coriaceus	645	565	725	160	1.43	
	Carabodes_labyrinthicus	505	430	580	150	1.71	
(Si	Carabodes_subarcticus	445	400	490	90	1.84	
iite	Odontocepheus_elongatus	655	525	785	260	2.18	
ibatid m	Tectocepheus_minor	280	220	340	120	1.73	Dogan & Ayyildiz 2000 ²⁵
	Tectocepheus_sarekensis	327.5	295	360	65	1.71	Knülle 1953 ²⁶
	Tectocepheus_velatus	300	280	320	40	1.74	Dogan & Ayyildiz 2000 ²⁵
0	Cepheus_dentatus	795	750	840	90	1.44	
ler	Cepheus_latus	785	670	900	230	1.35	
ig 1	Edwardzetes_edwardsi	770	680	860	180	1.35	
(h	Oromurcia_sudetica	677.5	630	725	95	1.3	
18	Trichoribates_trimaculatus	620	560	680	120	1.5	Trichoribates novus
/lin	Chamobates_pusillus	420	370	470	100	1.38	
(d/	Chamobates_subglobulus	685	630	740	110	1.26	
chy	Chamobates_voigtsi	350	320	380	60	1.25	
rac	Euzetes_globulus	1115	1070	1160	90	1.28	
B	Humerobates_rostrolamellata	747.5	655	840	185	1.33	
	Mycobates_parmeliae	462.5	410	515	105	1.53	
	Punctoribates_punctum	380	350	410	60	1.39	
	Cymbaeremaeus_cymba	745	690	800	110	1.68	
	Scapheremaeus_palustris	465	450	480	30	1.91	
	Damaeobelba_minnutissima	272.5	260	285	25	1.32	
	Damaeus_flagelloides	935	830	1040	210	1.46	

Supplementary Table 4 continued						
Metabelba_papilles	465	410	520	110	1.63	
Parabelbella_meridiana	364.5	348	381	33	1.67	
Eueremaeus_oblongus	590	560	620	60	1.97	Eueremaeus silvestris
Acrogalumna_longipluma	707.5	625	790	165	1.19	
Galumna_lanceata	600	530	670	140	1.42	
Pilogalumna_rosauraruizae	525	500	550	50	1.4	Pilogalumna crassiclava
Adoristes_ovatus	537.5	490	585	95	1.54	
Liacarus_coracinus	875	650	1100	450	1.75	
Haffenrefferia_gilvipes	920	870	970	100	1.52	
Xenillus_discrepans	1007.5	860	1155	295	1.54	
Xenillus_tegeocranus	910	720	1100	380	1.56	
Ceratoppia_bipilis	800	700	900	200	1.55	
Gymnodamaeus_bicostatus	695	660	730	70	1.78	
Ampullobates_ecuadoriensis	688.5	664	713	49	1.56	
Hermannobates_monstruosus	730	697	763	66	1.56	
Hydrozetes_lacustris	480	450	510	60	1.55	
Limnozetes_foveolatus	300	270	330	60	1.61	Limnozetes ciliatus
Limnozetes_rugosus	357.5	350	365	15	1.44	
Scutovertex_sculptus	625	590	660	70	1.7	
Poroliodes_farinosus	1050	1000	1100	100	1.8	
Disorrhina_ornata	300	250	350	100	1.84	
Oppiella_nasuta	292.5	285	300	15	1.69	
Oppiella_nova	270	220	320	100	1.83	
Oppiella_splendens	320	320			1.68	Oppiella escotata
Banksinoma_lanceolata	330	300	360	60	1.59	
Peloribates_acutus	440	390	490	100	1.61	Peloribates europaeus
Rostrozetes_fove_ovo	442	415	469	54	1.53	Haplozetes vindobonensis
Rostrozetes_Kansas02	416.5	405	428	23	1.54	Haplozetes elegans
Rostrozetes_ovulum	452.5	426	479	53	1.49	Haplozetes tenuifusus
Hemileius_microclava	376	335	417	82	1.62	
Liebstadia_humerata	345	310	380	70	2.11	
Oribatula_tibialis	470	410	530	120	1.83	
Phauloppia_lucorum	750	600	900	300	1.57	

Supplemen	Supplementary Table 4 continued									
	Protoribates_hakonensis	380	320	440	120	1.81				
chy in£	Scheloribates_ascendens	495	445	545	100	1.62				
rae	Eupelops_hirtus	975	850	1100	250	1.26				
<u> </u>	Eupelops_plicatus	590	500	680	180	1.52				
	Camisia_horrida	892.5	825	960	135	2.13				
	Camisia_invenusta	735	670	800	130	1.96				
	Camisia_segnis	865	830	900	70	2.18				
	Heminothrus_capillatus	1010	960	1060	100	1.93	Platynothrus capillatus			
	Heminothrus_paolianus	660	640	680	40	2	Heminothrus paolianus longisetosus			
	Platynothrus_peltifer	875	770	980	210	1.74				
ta	Nothrus_silvestris	760	710	810	100	1.94				
smonoma	Hermannia_gibba	860	780	940	160	1.57				
	Masthermannia_sp	442.5	400	485	85	2.47	Masthermannia mammillaris			
	Nanhermannia_coronata	525	480	570	90	2.48				
	Nanhermannia_nana	587.5	550	625	75	2.5				
Dee	Malaconothrus_gracilis	415	375	455	80	2.24	Malaconothrus monodactylus			
—	Trimalaconothrus_sp	525	476	574	98	2.05	mean: T. glaber, T. angulatus, T. maior, T. foveolatus, T tardus, T. sculptus, T. vietsi			
	Mucronothrus_nasalis	690	580	800	220	2.08				
	Trhypochthoniellus_crassus	507.5	435	580	145	1.83	mean: T. longiseta, T. setosa			
	Trhypochthonius_cladonicola	540	530	550	20	1.88				
	Trhypochthonius_tectorum	677.5	580	775	195	1.82				
	Collohmannia_gigantes	1535	1450	1620	170	1.9				
	Epilohmannia_sp	512.5	450	575	125	2.5				
æ	Eulomannia_ribagai	665	600	730	130	3.07				
ati	Rhysotritia_duplicata	580	560	600	40	1.28				
m	Perlohmannia_sp	702.5	625	780	155	2.63	Perlohmannia nasuta			
onc	Phthiracarus_sp	400	330	470	140	1.45	Phthiracarus anonymys (Grandjean 1934) ²⁷			
lixe	Atropacarus_striculus	465	340	590	250	1.62	Kamill & Baker 1980 ²⁸			
Σ	Steganacarus_applicatus	750	740	760	20	1.42	Bernini & Avanzati 1989 ²⁹			
	Steganacarus_magnus	950	700	1200	500	1.58	Steganacarus magna forma magnus (Bernini & Avanzati 1988) ³⁰			

Supplement	tary Table 4 continued						
	Atopochthonius_artiodactylus	200	200			1.59	
	Pterochthonius_angelus	400	350	450	100	1.51	
	Brachychthonius_bimaculatus	165	157	173	16	2.5	
	Eobrachychthonius_sexnotatus	302.5	270	335	65	1.53	Eobrachychthonius latior
	Liochthonius_neglectus	193.5	182	205	23	2.03	
_	Liochthonius_peduncularius	205	200	210	10	1.49	
ota	Neoliochthonius_piluliferus	194.5	123	266	143	2.18	
one	Sellnickochthonius_cricoides	150	135	165	30	2.03	
hre	Sellnickochthonius_immaculatus	182.5	170	195	25	2.03	
Enartl	Sellnickochthonius_zelawaiensis	159	148	170	22	2.03	
	Cosmochthonius_lanatus	175	170	180	10	1.78	
	Sphaerochthonius_sp	292.5	275	310	35	1.46	Sphaerochchthonius splendidus
	Eniochthonius_minutissimus	375	370	380	10	2.03	
	Hypochthonius_luteus	615	580	650	70	1.97	
	Hypochthonius_rufulus	675	650	700	50	1.76	
	Lohmannia_banksi_E	1000	1000			2.16	Lohmannia paradoxa
	Mesoplophora_cubana	435	420	450	30	1.45	Mesoplophora aficana (Els 1966) ³¹
Parhypo-	Gehypochthonius_urticinus	267.5	260	275	15	2.61	Gehypochthonius rhadamanthus
somata	Parhypochthonius_aphidinus	435	350	520	170	2.37	
Palaaa-	Aphelacarus_sp	440	440			2.74	Aphelacarus acarinus
I alacu-	Ctenacarus_araneola	367.5	360	375	15	2.12	22
somata	Palaeacarus_hystricinus	360	340	380	40	2.64	Schatz 2004 ³²

Supplementary Table 5. Trophic traits used in this study and list of taxa for which stable isotope data were available. Data are from four 4 habitats³³⁻³⁸ to cover a wide taxon sampling (in total 70 species) which covers most species from the morphological trait dataset and phylogeny (in total 103 species). Trophic levels were assigned based on ¹⁵N values within communities (to account for site specific differences of the baseline values of ¹³C and ¹⁵N, which can geographically strongly differ) and categorized into four, very general functional groups. Within each trophic level, species were hierarchical assigned to their ¹⁵N position within their community. For better visualisation in the graph showing the distribution of trophic traits along the phylogeny, we added the factor 28 to ¹³C and the factor 8 to ¹⁵N values to obtain only positive values, which are also listed in this table. Species are listed from lowest to highest trophic levels and include Brachypylina (n=49), Desmonomata (n=12), Mixonomata (n=6) and Enarthronota (n=3, including a single measurement for Brachychthoniidae).

infraardar	species	13 _C	15 _{NI}	¹³ C . 29	15 _{NI} . 0	trophic	functional
IIII aoi uei	species	C	IN	C + 28	IN + ð	level	group
Brachypylina	Carabodes_labyrinthicus	1.78	-4.34	29.78	3.66	0	
Brachypylina	Mycobates_parmeliae	-0.03	-7.31	27.97	0.69	0.2	ist
Brachypylina	Phauloppia_lucorum	-8.66	-6.62	19.34	1.38	0.23	ial
Brachypylina	Cymbaeremaeus_cymba	-24.23	-5.06	3.77	2.94	0.6	eci
Brachypylina	Anachipteria_sp	3.34	-1.57	31.34	6.43	0.99	sb
Desmonomata	Camisia_invenusta	-25.31	-4.64	2.69	3.36	0.99	
Desmonomata	Camisia_horrida	4.46	-0.57	32.46	7.43	1	
Desmonomata	Hermannia_gibba	-24.4	-4.23	3.6	3.77	1	
Brachypylina	Scutovertex_sculptus	0.38	1.55	28.38	9.55	1	er
Enarthronota	Neoliochthonius_piluliferus	1.75	2.98	29.75	10.98	1.13	SO
Brachypylina	Euzetes_globulus	4.87	0.92	32.87	8.92	1.18	du
Brachypylina	Carabodes_subarcticus	6.8	1.17	34.8	9.17	1.36	C01
Brachypylina	Tectocepheus_sarekensis	-0.08	2.98	27.92	10.98	1.36	de
Mixonomata	Steganacarus_applicatus	21.75	-2.67	49.75	5.33	1.37	Á.
Brachypylina	Limnozetes_foveolatus	1.98	3.63	29.98	11.63	1.38	lar
Mixonomata	Epilohmannia_sp	3.15	3.79	31.15	11.79	1.44	
Brachypylina	Chamobates_pusillus	4.17	1.42	32.17	9.42	1.45	Id
Brachypylina	Achipteria_coleoptrata	1.07	3.23	29.07	11.23	1.5	
Brachypylina	Hydrozetes_lacustris	2.95	6.47	30.95	14.47	1.5	

Supplementary Table 5 continued										
Desmonomata	Malaconothrus_gracilis	1.62	1.98	29.62	9.98	1.6				
Mixonomata	Steganacarus_magnus	8.06	2.47	36.06	10.47	1.64	er			
Desmonomata	Camisia_segnis	-26.37	-3.31	1.63	4.69	1.67	SO			
Enarthronota	Eniochthonius_minutissimus	-2.09	-1.31	25.91	6.69	1.67	du			
Brachypylina	Oromurcia_sudetica	5.52	1.4	33.52	9.4	1.67	COI			
Brachypylina	Scheloribates_ascendens	-0.18	-0.87	27.82	7.13	1.71	de			
Desmonomata	Platynothrus_peltifer	-4.46	-1.45	23.54	6.55	1.75	N			
Desmonomata	Nanhermannia_nana	2.08	1.57	30.08	9.57	1.76	lar			
Brachypylina	Galumna_lanceata	1.72	4.42	29.72	12.42	1.89	.i.			
Brachypylina	Liacarus_coracinus	-11.19	1.09	16.81	9.09	1.98	Id			
Desmonomata	Nothrus_silvestris	4.67	2.92	32.67	10.92	1.99				
Brachypylina	Metabelba_papilles	2.05	5.98	30.05	13.98	2				
Mixonomata	Rhysotritia_duplicata	5.71	3.12	33.71	11.12	2				
Brachypylina	Edwardzetes_edwardsi	-27.56	-2.41	0.44	5.59	2.07				
Brachypylina	Hermannobates_monstruosus	-0.72	-0.41	27.28	7.59	2.13				
Brachypylina	Eueremaeus_oblongus	-12.93	-1.1	15.07	6.9	2.14				
Brachypylina	Liebstadia_humerata	-0.35	1.57	27.65	9.57	2.25				
Brachypylina	Oribatula_tibialis	-0.35	1.57	27.65	9.57	2.25	er			
Brachypylina	Rostrozetes_fove_ovo	2.61	5.66	30.61	13.66	2.25	OSO			
Brachypylina	Ceratoppia_bipilis	-12.25	-2.02	15.75	5.98	2.29	du			
Brachypylina	Odontocepheus_elongatus	5.75	3.49	33.75	11.49	2.29	i oi			
Brachypylina	Caleremaeus_monilipes	-12.6	-2.3	15.4	5.7	2.32	lec			
Brachypylina	Punctoribates_punctum	2.54	5.93	30.54	13.93	2.42	y C			
Brachypylina	Cepheus_latus	-23.22	-1.81	4.78	6.19	2.43	lar			
Brachypylina	Eupelops_plicatus	1.83	6	29.83	14	2.5	pu			
Desmonomata	Heminothrus_paolianus	-1.35	1.61	26.65	9.61	2.54	00			
Brachypylina	Xenillus_tegeocranus	0.38	1.6	28.38	9.6	2.55	Se			
Brachypylina	Pilogalumna_rosauraruizae	1.95	5.14	29.95	13.14	2.56				
Brachypylina	Protoribates_hakonensis	-2.31	5.2	25.69	13.2	2.56				
Brachypylina	Chamobates_subglobulus	2.2	6.43	30.2	14.43	2.58				
Brachypylina	Acrogalumna_longipluma	-10.09	1.78	17.91	9.78	2.64				
Mixonomata	Atropacarus_striculus	4.6	2.15	32.6	10.15	2.66				
Brachypylina	Eupelops_hirtus	1.68	6.44	29.68	14.44	2.67				

Supplementary Table 5 continued										
Brachypylina	Chamobates_voigtsi	-24.07	-0.76	3.93	7.24	2.71				
Desmonomata	Nanhermannia_coronata	5	4.74	33	12.74	2.71	. 4			
Brachypylina	Tectocepheus_minor	1.62	6.62	29.62	14.62	2.75	ury ose			
Mixonomata	Phthiracarus_sp	-20.93	-0.69	7.07	7.31	2.79	lpc			
Enarthronota	Hypochthonius_rufulus	1.92	4.96	29.92	12.96	2.87	uo mo			
Brachypylina	Disorrhina_ornata	1.93	6.83	29.93	14.83	2.92	Sec			
Brachypylina	Oppiella_nova	2.57	7.15	30.57	15.15	2.99	d .			
Brachypylina	Oppiella_splendens	3.53	6.04	31.53	14.04	2.99				
Brachypylina	Damaeus_flagelloides	-23.68	1.18	4.32	9.18	3				
Brachypylina	Tectocepheus_velatus	1.55	1.9	29.55	9.9	3	ger			
Brachypylina	Trichoribates_trimaculatus	6.85	7.39	34.85	15.39	3	gus			
Brachypylina	Oppiella_nasuta	3.81	6.54	31.81	14.54	3.2	IVE			
Brachypylina	Xenillus_discrepans	1.29	2.95	29.29	10.95	3.23	SCE			
Desmonomata	Trimalaconothrus_sp	0.67	3.14	28.67	11.14	3.49)r/			
Brachypylina	Carabodes_coriaceus	-21.74	1.65	6.26	9.65	3.5	atc			
Brachypylina	Damaeobelba_minnutissima	2.2	7.45	30.2	15.45	3.5	ed			
Desmonomata	Trhypochthoniellus_crassus	2.38	3.94	30.38	11.94	3.5	br			
Brachypylina	Limnozetes_rugosus	3.89	7.67	31.89	15.67	3.99				

Supplementary References

- 1. Pachl, P., Lindl, A. C., Krause, A., Scheu, S., Schaefer, I., Maraun, M. The tropics as ancient cradle of oribatid mite diversity. *Acarologia* 57, 309-322 (2017).
- Schaefer, I., Norton, R. A., Scheu, S. & Maraun, M. Arthropod colonization of land linking molecules and fossils in oribatid mites (Acari, Oribatida). *Mol. Phylogenet. Evol.* 57, 113-121 (2010).
- 3. Pepato, A. R. & Klimov, P. B. Origin and higher-level diversification of acariform mites evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment. *BMC Evol. Biol.* 15, 178 (2015).
- 4. Krantz, G. W. & Proctor, D. E. in *A manual of Acarology*. eds Krantz GW and Walter DE (3rd edition, Texas Tech University Press 2009); chapter 15, pp. 430 ff.
- 5. Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z. & Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. *Mol. Phylogenet. Evol.* 56, 222-241 (2010)
- 6. Klimov, P. B. & OConnor, B. Is permanent parasitism reversible? critical evidence from early evolution of house dust mites. *Syst. Biol.* 62, 411-423 (2013).
- 7. Caruso, T. & Migliorini, M. Euclidean geometry explains why lengths allow precise body mass estimates in terrestrial invertebrates: the case of oribatid mites. *J Theor Biol*, **256**, 436-440 (2009).
- 8. Weigmann, G. Hornmilben (Oribatida) Die Tierwelt Deutschlands, 76. Teil. Goecke & Evers, Keltern (2006).
- 9. Grandjean, F. Essai de classification des Oribates (Acariens). *Bull. Soc. Zool. Fr.* **78**, 421-446 (1954).
- Grandjean F. Considération sur le classement des Oribates leur division en 6 groupes majeurs. *Acarologia* 11, 127-153 (1969).
- Schatz, H. Die Oribatidenliteratur und die beschriebenen Oribatidenarten (1758-2001): Eine Analyse. Abh. Ber. Naturk. Görlitz 74, 37-45 (2002).
- Krivolutsky, D. A. & Krassilov, V. A. Oribatid mites from Upper Jurassic, USSR. In: Skarlato OA, Balasho S (Eds.), Morphology and diagnostics of mites. Academy of Sciences of the USSR, Leningrad, pp. 16-24 (1977).
- Arillo, A., Subías, L. S. & Shtanchaeva, U. A new fossil oribatid mite, *Ommatocepheus nortoni* sp. nov. (Acariformes, Oribatida, Cepheidae) from a new outcrop of lower Cretaceous Àlava amber (northern Spain). *System. Appl. Acarol.* 13, 252-255 (2008).
- 14. Sivhead, U. & Wallwork, J. A. An early Jurassic oribatid mite from southern Sweden. *Geol. Foren. Stock. For.* **100**, 65-70 (1978).
- Bulanova-Zachvatkina, Y. M. A new genus of mite (Acariformes, Oribatei) from the upper Cretaecous of Taymyr. *Paleont. Journ.* 8, 247-250 (1974).

- Arillo, A., Subías, L. S. & Shtanchaeva, U. A new species of fossil oribatid mite (Acariformes, Oribatida, Trhypochthoniida) from the lower Cretaceous amber of San Just (Teruel Province, Spain). *System. Appl. Acarol.* 17, 106-112 (2012).
- Subías, L. S. & Arillo, A. Oribatid fossil mites from the upper Devonian of South Mountain, New York and the lower Carboniferous of County Antrim, North Ireland (Acariformes, Oribatida). *Estud. Museo Cienc. Nat. Àlava* 17, 93-106 (2002).
- Norton, R. A., Bonamo, P. M., Crierson, J. D. & Shear, W. A. Oribatid mite fossils from a terrestrial deposit near Gilboa, New York. J. Paleontol. 62, 259-269 (1988).
- Shear, W. A., Bonamo, P. M., Grierson, J. D., Rolfe, W. D. I., Laidlaw Smith, E. & Norton, R. A. Early land animals in North America: evidence from Devonian age arthropods from Gilboa, New York. *Science* 224, 492-494 (1984).
- 20. O'Dowd, D. J., Brew, C. R., Christophel, D. C. & Norton, R. A. Mite-plant associations from the Eocene of Southern Australia. *Science* **252**, 99-101 (1991).
- 21. Woolley, T. A. Fossil oribatid mites in amber from Chiapas, Mexico (Acarina: Oribatei: Cryptostigmata). *Univ. Calif. Publ. Entomol.* **63**, 91-99 (1971).
- 22. Mico, L. Oribatid mite fossils from pre-Quarternary sediments in Slovenian caves III. Two new species of *Dissorhina* (Oppiidae) from the Pliocene. *Acarologia* **55**, 449-457 (2015).
- 23. Norton, R. A. First record of *Collohmannia* (*C. schusteri* n. sp.) and *Hermannia* (*H. sellnicki* n. sp.) from Baltic amber, with notes on Sellnick's genera of fossil oribatid mites (Acari: Oribatida). *Acarologia* 46, 111-125 (2006).
- 24. Labandeira, C. C., Phillips, T. L. & Norton, R. A. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. *Palaios* **12**, 319-353 (1997).
- 25. Doğan, S. & Ayyildiz, N. Systematic investigation on *Tectocepheus* Berlese, 1895 (Acari: Oribatida) species in Erzincan and Erzurum plains. *Türk. entomol. Der.* **24**, 69-80 (2000).
- Knülle, W. Die Arten der Gattung *Tectocepheus* Berlese (Acarina: Oribatei). *Zool. Anz.* 152, 280-305 (1953).
- 27. Grandjean, F. Phthiracarus anonymum, n. sp. Rev. Fr. Entomol. 1, 51-59 (1934).
- Kamill, B. W. & Baker, A. The genus *Atropacarus* Ewing (Acari: Cryptostigmata). *Bull. Br. Mus. Nat. Hist.* (Zool.) 39, 189-204 (1980).
- Bernini, F. & Avanzati, A.M. Notulae oribatologicae xlix. taxonomic revision of *Steganacarus* (*Steganacarus*) apllicatus (Sellnick, 1920) and the description of a new west Mediterranean Steganacarus species (Acarida, Oribatida). *Int. J. Acarol.* 15, 65-74 (1989).
- 30. Bernini, F. & Avanzati, A. M. Taxonomic revision of *Steganacarus (Steganacarus) magnus* (Nicolet, 1855) (Acarida, Oribatida). *J. Nat. Hist.* **22**, 435-464 (1988).
- Els, A. J. Studies on the South African Oribatei Inferiores (Acarina) part 1: description of Mesoplophora africana (Balogh 1958). S. Afr. J. Sci. 62, 76-79 (1966).

- 32. Schatz, H. *Palaeacarus hystricinus* Trägårdh, 1932 (Acari: Oribatida: Palaeacaridae), a remarkable oribatid mite from Tyrol. *Ber. nat.-med. Verein Innsbruck*, **91**, 339-340 (2004).
- 33. Erdmann, G., Otte, V., Langel, R., Scheu, S. & Maraun, M. The trophic structure of bark-living oribatid mite communities analysed with stable isotopes (15N, 13C) indicates strong niche differentiation. *Exp. Appl. Acarol.* **41**, 1-10 (2007).
- Lehmitz, R. & Maraun M. Small-scale spatial heterogeneity of stable isotopes signatures (δ15N, δ13C) in *Sphagnum* sp. Transfers to all trophic levels in oribatid mites. *Soil Biol. Biochem.* 100, 242-251 (2016).
- Maaß, S., Maraun, M., Scheu, D., Rillig, M. C. & Caruso, T. Environmental filtering vs. resourcebased niche partitioning in diverse soil animal assemblages. *Soil Biol. Biochem.* 85, 145-152 (2015).
- Maraun, M., Erdmann, G., Fischer, B. M., Pollierer, M. M., Norton, R. A., Schneider, K. & Scheu, S. Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. *Soil Biol. Biochem.* 43, 87-882 (2011).
- Ilardi, M., Dick, J. T. A., Maraun, M. & Caruso, T. Response of native forest floor microarthropods to the invasive macroinvertebrate *Arcitalitrus dorrieni* (Crustacea; Amphipoda) (in preparation, 2019).
- Magilton, M., Maraun, M., Emmerson, M. & Caruso, T. Oribatid mites reveal that competition for resources and trophic structure combine to regulate the assembly of diverse soil animal communities. (in preparation, 2019).
- 39. Original stable isotope data were obtained from the authors on request.