Supplementary Information

Maternal insulin resistance multigenerationally impairs synaptic plasticity and memory

via gametic mechanisms

Fusco et al.

Supplementary Figure 1. HFD offspring do not show changes in insulin sensitivity. (a) Blood glucose levels of SD and $F1_{HFD}$ mice after intraperitoneal glucose tolerance test (IPGTT) (n = 12 mice from 8 litters per group; statistics by unpaired Student's *t*-test). Data are expressed as mean ± SEM.

Supplementary Figure 2. Transgenerational HFD effects are not sex-specific. (a) Preference index in NOR paradigm for F2_{HFD} (left) and F3_{HFD} (right) female descendants (n = 9 mice from 6 litters for each group; statistics by unpaired Student's *t*-test). (b) Preference index of F2_{HFD} NL (left) and F3_{HFD} NL (right) male mice descended from a progenitor fed with HFD from four weeks before mating until delivery (n = 9 mice from 5 litters for each group; statistics by unpaired Student's *t*-test). (c) BDNF levels in the hippocampus of F2_{HFD} NL and F3_{HFD} NL male mice. ELISA assay was performed in duplicate (n = 8 mice from 6 litters per group; statistics by unpaired Student's *t*-test). (d) Weight, (e) food consumption, (f) fasting glucose plasma levels, (g) fasting insulin plasma levels and (h) IPGTT of SD, F2_{HFD} and F3_{HFD} mice (n = 12 mice from 8 litters per group; statistics by unpaired Student's *t*-test). (i) Locomotor activity of SD, F1_{HFD}, F2_{HFD} and F3_{HFD} mice quantified by Open Field test (left, n = 10 mice derived from 6 litters for each group; statistics by one-way ANOVA and Bonferroni post hoc) and swimming speed in the 1st day of the MWM (right, n = 8 mice derived from 5-6 litters for each group; statistics by one-way ANOVA and Bonferroni post hoc). Data are expressed as mean ± SEM. *** p < 0.001; n.s. not significant.

Supplementary Figure 3. Downregulation of BDNF expression in neurons and other cell types. (a) Updown fold expression changes of synaptic plasticity-related genes more markedly affected in the hippocampus of F1_{HFD}, F2_{HFD} and F3_{HFD} mice. **(b)** Representative *Bdnf* transcript concentration (copies μ L^-1) in CA1 hippocampal neurons of SD and F1_{HFD} mice. Aldolase was used as control. **(c)** ddPCR data were normalized and plotted as mean \pm SEM (n = 6 neurons from 3 mice of different litters per each group). Each sample was analyzed in duplicate (statistics by unpaired Student's *t*-test). **(d)** germline, gastrocnemius muscle and heart Bdnf coding exon IX expression in SD and F1_{HFD} mice (n = 6 mice derived from 4 litters per each group). Gene expression was normalized to actin; experiments were performed in triplicate (statistics by unpaired Student's t-test). **(e)** BDNF plasma levels of SD and HFD descendant male mice measured by ELISA performed in duplicate (n = 8 mice derived from 4 litters per group; statistics by one-way ANOVA and Bonferroni post hoc) **(f)** ChIP assays of H3K9ac and H3K4me3 on the promoters III and VI of *Bdnf* gene in the hippocampus of SD and HFD descendant male mice. Data represent mean values obtained from 6 mice derived from 5 litters for each group; qPCR experiments were performed in triplicate (statistics by one-way ANOVA and Bonferroni post hoc). Data are expressed as mean \pm SEM. * p < 0.05; ** p < 0.01; n.s. not significant.

Supplementary Figure 4. HFD intergenerational effects are not mediated by maternal behavior. (a) Preference index of SD and F1_{HFD} mice fostered by F0 SD-fed females (SD CF and F1_{HFD} CF, respectively; n = 9 mice from 6 litters for each group; statistics by unpaired Student's *t*-test). (b) Expression of Bdnf exon I, IV and IXa in the hippocampus of SD CF and $F1_{HFD}$ CF mice. Data represent mean values obtained from 6 mice derived from 5 litters for each group; experiments were performed in triplicate (statistics by unpaired Student's t-test). (c) ChIP assays of H3K9ac and H3K4me3 on the promoters I, IV and IX of Bdnf gene in the hippocampus and (d) germline of SD CF and $F1_{HFD}$ CF mice. Data represent mean values obtained from 6 mice derived from 4 litters for each group; qPCR experiments were performed in triplicate (statistics by twoway unpaired Student's t-test). (e) Preference index of mice born through in vitro fertilization (IVF) of oocytes with sperm of SD or F1_{HFD} mice (SD IVF and F1_{HFD} IVF, respectively; n = 8 mice from 4 litters for each group; statistics by unpaired Student's t-test). (f) Expression of Bdnf exon I, IV and IXa in the hippocampus of SD IVF and F1_{HFD} IVF animals. Data represent mean values obtained from 6 mice derived from 5 litters for each group; experiments were performed in triplicate (statistics by unpaired Student's t-test). (g) ChIP assays of H3K9ac and H3K4me3 on the promoters I, IV and IX of *Bdnf* gene in the hippocampus of SD IVF and $F1_{HFD}$ IVF mice. Data represent mean values obtained from 6 mice derived from 4 litters for each group; qPCR experiments were performed in triplicate (statistics by unpaired Student's t-test). Data are expressed as mean \pm SEM. * p < 0.05; ** p < 0.01; *** p < 0.001.

Supplementary Figure 5. NEE induces transgenerational effects on learning and memory. (a) ChIP assays of H3K9ac and H3K4me3 on the promoters I, IV and IX of *Bdnf* gene in the germline of SD, SD NEE, F1_{HFD} and F1_{HFD} NEE male mice. Data represent mean values obtained from 6 mice derived from 4 litters for each group; qPCR experiments were performed in triplicate (statistics by two-way ANOVA and Bonferroni post hoc). (b) Latency to reach the hidden platform (left) and time spent in the four quadrants during the probe test (right) in the MWM for SD, F3_{HFD} and F3_{HFD} NEE male mice (n = 9 mice from 6 litters for each group; statistics by two-way ANOVA and Bonferroni post hoc). For latency, significance is indicated between F3_{HFD} and F3_{HFD} NEE mice. Data are expressed as mean \pm SEM. * p < 0.05; ** p < 0.01; *** p < 0.001; n.s. not significant.

Supplementary Figure 6. BDNF administration does not revert the maternal insulin resistance. (a) Calorie intake (Kcal/die), plasma glucose levels and HOMA index of F0 SD, F0 HFD, and F0 HFD BDNF female mice (n = 8 mice per group; statistics by two-way ANOVA and Bonferroni post hoc). Data are expressed as mean \pm SEM. * p < 0.05; ** p < 0.01; *** p < 0.001; n.s. not significant

Supplementary Figure 7. Characterization of p66Shc KO model. (a) Immunoblot of p66Sch expression in ovaries of wild-type and *p66Shc* KO female mice. (b) Weight and (c) fasting insulin plasma levels of SD-fed (black bar) and HFD-fed (red bar) *p66Shc* KO mothers after four weeks of dietary regimen (n = 10 mice per each group; statistics by unpaired Student's *t*-test). Data are expressed as mean \pm SEM. Source data are provided as a Source Data file. *** p < 0.001

Supplementary Table 1. GENE REGULATION

Refseq	Symbol	Description	F1 fold change	F2 fold change	F3 fold change
NM_007399	Adam10	A disintegrin and metallopeptidase domain 10	1,006	1,4163	-4,0559
NM_009622	Adcy1	Adenylate cyclase 1	1,6868	1,6814	1,6825
NM_009623	Adcy8	Adenylate cyclase 8	1,003	1,0036	1,1825
NM_009652	Akt1	Thymoma viral proto-oncogene 1	1,6804	1,4168	1,4115
NM_018790	Arc	Activity regulated cytoskeletal-associated protein	1,4193	1,4177	1,4168
NM_007540	Bdnf	Brain derived neurotrophic factor	-4,7987	-2,8565	-4,0233
NM_177407	Camk2a	Calcium/calmodulin-dependent protein kinase II alpha	-1,4094	-1,1903	-1,1864
NM_178597	Camk2g	Calcium/calmodulin-dependent protein kinase II gamma	-3,368	1,4152	1,4113
NM_007664	Cdh2	Cadherin 2	1,6969	1,1964	1,1913
NM_009883	Cebpb	CCAAT/enhancer binding protein (C/EBP), beta	1,0037	1,0031	1,1918
NM_007679	Cebpd	CCAAT/enhancer binding protein (C/EBP), delta	1,0008	-1,9898	1,0023
NM_007726	Cnr1	Cannabinoid receptor 1 (brain)	1,1986	1,004	-1,1889
NM_133828	Creb1	CAMP responsive element binding protein 1	1,001	-1,001	-1,001
NM_013498	Crem	CAMP responsive element modulator	1,4228	2,0163	1,4197
NM_007864	Dlg4	Discs, large homolog 4 (Drosophila)	1,0068	1,1908	1,0055
NM_007913	Egr1	Early growth response 1	1,6867	1,6865	1,6867
NM_010118	Egr2	Early growth response 2	1,6987	1,6943	2,0167
NM_018781	Egr3	Early growth response 3	1,1934	1,0074	-1,4031
NM_020596	Egr4	Early growth response 4	-1,0005	1,6814	1,1867
NM_010142	Ephb2	Eph receptor B2	-2,3807	1,1905	-1,0014
NM_010234	Fos	FBJ osteosarcoma oncogene	1,4119	1,9954	1,6853
NM_176942	Gabra5	Gamma-aminobutyric acid (GABA) A receptor, subunit alpha 5	-1,4032	-1,4028	1,0058
NM_010305	Gnai1	Guanine nucleotide binding protein (G protein), alpha inhibiting 1	1,0067	-4,7996	1,0039
NM_008165	Gria1	Glutamate receptor, ionotropic, AMPA1 (alpha 1)	-1,4062	-1,4146	-1,1881
NM_013540	Gria2	Glutamate receptor, ionotropic, AMPA2 (alpha 2)	1,0029	1,0083	1,0068
NM_016886	Gria3	Glutamate receptor, ionotropic, AMPA3 (alpha 3)	1,0062	1,1903	-1,0015
NM_019691	Gria4	Glutamate receptor, ionotropic, AMPA4 (alpha 4)	1,1923	1,1917	1,191
NM_008169	Grin1	Glutamate receptor, ionotropic, NMDA1 (zeta 1)	-1,0033	1,1926	1,001
NM_008170	Grin2a	Glutamate receptor, ionotropic, NMDA2A (epsilon 1)	1,2	1,0066	1,0019
NM_008171	Grin2b	Glutamate receptor, ionotropic, NMDA2B (epsilon 2)	-1,0008	-1,0003	-1,0004
NM_010350	Grin2c	Glutamate receptor, ionotropic, NMDA2C (epsilon 3)	1,4193	1,4166	1,0008
NM_008172	Grin2d	Glutamate receptor, ionotropic, NMDA2D (epsilon 4)	-2,0112	1,1935	1,1896
NM_133442	Grip1	Glutamate receptor interacting protein 1	1,6782	1,1913	1,0028

F1, F2, F3 fold changes of genes analyzed in the PCR array (PAMM-126Z).

NM_016976	Grm1	Glutamate receptor, metabotropic 1	1,0073	1,1941	1,0018
NM_001160353	Grm2	Glutamate receptor, metabotropic 2		-1,0013	1,0016
NM_181850	Grm3	Glutamate receptor, metabotropic 3	2,0162	2,0129	1,0061
NM_001013385	Grm4	Glutamate receptor, metabotropic 4	1,7014	1,4298	1,1954
NM_001081414	Grm5	Glutamate receptor, metabotropic 5	1,716	1,1935	1,1985
NM_177328	Grm7	Glutamate receptor, metabotropic 7	1,1969	1,1922	1,4224
NM_008174	Grm8	Glutamate receptor, metabotropic 8	1,6834	1,1962	1,1902
NM_152134	Homer1	Homer homolog 1 (Drosophila)	1,6902	1,4205	1,1914
NM_010512	lgf1	Insulin-like growth factor 1	1,1887	-1,0053	-1,1871
NM_008380	Inhba	Inhibin beta-A	1,1937	-1,1875	-1,4142
NM_010591	Jun	Jun oncogene	-1,186	1,0007	1,1837
NM_008416	Junb	Jun-B oncogene	2,3935	1,1962	1,6848
NM_010623	Kif17	Kinesin family member 17	1,6835	2,3765	1,4144
NM_013692	Klf10	Kruppel-like factor 10	1,6921	1,6875	-1,183
NM_011949	Mapk1	Mitogen-activated protein kinase 1	1,4207	1,689	1,1933
NM_013599	Mmp9	Matrix metallopeptidase 9	1,0051	1,4177	1,6825
NM_010875	Ncam1	Neural cell adhesion molecule 1	1,423	1,4223	1,1909
NM_008689	Nfkb1	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, p105	1,1966	-1,1924	1,0042
NM_010908	Nfkbib	Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta	1,223	1,6874	1,685
NM_013609	Ngf	Nerve growth factor	-1,6741	-2,3704	-1,4121
NM_033217	Ngfr	Nerve growth factor receptor (TNFR superfamily, member 16)	1,6946	2,0117	1,4193
NM_008712	Nos1	Nitric oxide synthase 1, neuronal	1,4143	1,6863	1,6719
NM_016789	Nptx2	Neuronal pentraxin 2	-1,4064	-1,3956	-1,3996
NM_010444	Nr4a1	Nuclear receptor subfamily 4, group A, member 1	2,0023	1,9976	1,6847
NM_008742	Ntf3	Neurotrophin 3	1,0049	-1,4109	1,0034
NM_198190	Ntf5	Neurotrophin 5	1,1714	1,3441	1,3863
NM_008745	Ntrk2	Neurotrophic tyrosine kinase, receptor, type 2	1,4286	1,6832	1,0027
NM_021543	Pcdh8	Protocadherin 8	-1,674	-1,6741	-1,4016
NM_008837	Pick1	Protein interacting with C kinase 1	1,4145	1,1869	1,0032
NM_008842	Pim1	Proviral integration site 1	1,1945	1,1902	1,69
NM_008872	Plat	Plasminogen activator, tissue	1,0031	-1,1904	1,0022
NM_021280	Plcg1	Phospholipase C, gamma 1	1,4123	1,4082	1,6621
NM_031868	Ppp1ca	Protein phosphatase 1, catalytic subunit, alpha isoform	2,0131	1,6829	1,4151
NM_013636	Ppp1cc	Protein phosphatase 1, catalytic subunit, gamma isoform	1,4292	1,0101	1,0095
NM_026731	Ppp1r14a	Protein phosphatase 1, regulatory (inhibitor) subunit 14A	1,4226	1,0003	-1,0024

NM 019411	Pnn2ca	Protein phosphatase 2 (formerly 2A), catalytic	1 1876	1 0009	-1 0014
	i ppzca		1,1070	1,0000	-1,0014
	Dungan	Protein phosphatase 3, catalytic subunit, alpha	4 4004	4 4 0 0 4	4 0007
NM_008913	Рррзса	isoform	1,1934	-1,1864	1,0007
NM_011101	Prkca	Protein kinase C, alpha	-1,1834	-1,1842	-1,1892
NM_011102	Prkcg	Protein kinase C, gamma		1,0021	-1,1913
NM_011160	Prkg1	Protein kinase, cGMP-dependent, type I	1,0024	1,19	1,4128
NM_009001	Rab3a	RAB3A, member RAS oncogene family	-1,1779	1,0025	1,0025
		V-rel reticuloendotheliosis viral oncogene homolog			
NM_009045	Rela	A (avian)	1,1951	1,0049	1,4172
NM_011261	Reln	Reelin	1,4291	1,1961	1,1974
NM_009061	Rgs2	Regulator of G-protein signaling 2	1,9974	1,6785	1,0021
NM_053075	Rheb	Ras homolog enriched in brain	1,1974	-1,1839	1,0046
		Sirtuin 1 (silent mating type information regulation 2,			
NM_019812	Sirt1	homolog) 1	1,0064	-1,1858	-1,1855
NM_020493	Srf	Serum response factor	1,0011	1,1931	1,0017
NM_177340	Synpo	Synaptopodin	1,0088	1,0024	1,0046
NM_011593	Timp1	Tissue inhibitor of metalloproteinase 1	1,2095	1,6688	1,6862
NM_013693	Tnf	Tumor necrosis factor	1,1946	1,6874	1,685
		Tyrosine 3-monooxygenase/tryptophan 5-			
NM_011739	Ywhaq	monooxygenase activation protein	1,0003	1,0022	-1,1893

Blue: statistically significant downregulated genes Red: statistically significant upregulated genes

Supplementary Table 2. PRIMERS

Primer sequences used for mRNA analyses.

Gene	Primer sequence		
<i>Bdnf</i> exon I	FW	5'-TGAGAGTTGAAGCTTTGCGG-3'	
	RV	5'-ATTGTGGCTTTGCTGTCCTG-3'	
Bdnf exon II	FW	5'-TGGAAGAAACCGTCTAGAGC-3'	
	RV	5'- CTCGGTGTGAGCCGAACC -3'	
Bdnf exon III	FW	5'-TATCATCCCTCCCCGAGAG-3'	
	RV	5'-CTCTTCGATCTAGAAAGGACC -3'	
Bdnf exon IV	FW	5'-AGCATGAAATCTCCCAGCCT-3'	
	RV	5'-CGGTCCCCAAGGTTCTAGAC-3'	
<i>Bdnf</i> exon V	FW	5'-GTGTAGTTTCATTGTGTGTTCG-3'	
	RV	5'-GCAATGTGCTCTAGAGTAGG-3'	
<i>Bdnf</i> exon VI	FW	5'-TGGCTGTCGCACGGTTCC-3'	
	RV	5'-GTTGTCACGCTTCTGGTCC-3'	
Bdnf exon VII	FW	5'-AAAGGGTCTGCGGAACTCC-3'	
	RV	5'-CTCTTCCTGTTTCAGCATCC-3'	
<i>Bdnf</i> exon VIII	FW	5'-GTCGCTGCGCCTCAGTGG-3'	
	RV	5'-CACCAAGCTTTAAAAACTGAGG-3'	
Bdnf exon IXa	FW	5'-CAAAGCTGCTAAAGCGGGAGG-3'	
	RV	5'- GATCCACTCCAGCTGCAGG -3'	
Bdnf exon IX	FW	5'-TGGCTGACACTTTTGAGC-3'	
	RV	5'-GTTTGCGGCATCCAGGT-3'	
Gapdh	FW	5'-TCCATGACAACTTTGGCATT-3'	
	RV	5'-GTTGCTGTTGAAGTCGCAGG-3'	
BDNF exon IX (ddPCR)	FW	5'-GGCAGGTTCGAGAGGTCTGA -3'	
	RV	5'-TCGATGACGTGCTCAAAAGTG-3'	
Aldolase	FW	5'-CGCTGCCAGTATGTTACTGAGAA-3'	
(ddPCR)	RV	5'-TGGTCGCTCAGAGCCTTGT-3'	

Primer sequences used for ChIP analyses.

Gene	Primer sequence		
BDNF promoter I	FW	5'-TCGATTCACGCAGTTGTTCC-3'	
	RV	5'-GCACCAGCCGGCTACTGC-3'	
BDNF promoter IV	FW	5'-CATGCAATGCCCTGGAACG-3'	
	RV	5'-GAGAGCAGTCCTCTCCTCG-3'	
BDNF promoter IX	FW	5'-GAAGCTGAGCTCTCTGTGG-3'	
	RV	5'-GGTCTCATGAAGAAACTTAAGG-3'	

Abbreviations: FW, forward; RV, reverse

Supplementary Table 3. ANTIBODIES

Primary Antibody	Host	Catalogue reference
α-TrkB (80E3)	Rabbit	Cell Signaling #4603
α-pTrkB Tyr ⁸¹⁶	Rabbit	See Methods
α-FoxO3a	Rabbit	Cell Signaling #2497
α-phospho FoxO3a Ser ²⁵³	Rabbit	Cell Signaling #9466
α-Irs-1	Rabbit	Cell Signaling #2382
α-phospho Irs-1 Ser ⁶¹²	Rabbit	Cell Signaling #2386
α-beta Actin	Rabbit	Abcam ab8227
α-Sirt1	Rabbit	Millipore #07-131
α-Sirt2 (D4S6J)	Rabbit	Cell Signaling #12672
α-phospho Creb Ser ¹³³	Rabbit	Cell Signaling #9198
α-Creb	Mouse	ThermoFisher #MA1-083
α-Hdac2	Mouse	Abcam ab12169
α-Cbp	Rabbit	Abcam ab2832
α-Tri-Methyl-Histone H3 Lys⁴	Rabbit	Abcam ab8580
α-Histone H3 (acetyl K9)	Rabbit	Abcam ab4441
a-p66Shc	Mouse	BD Bioscience 610878